
Internet Engineering Task Force N. Kuhn
Internet-Draft CNES
Intended status: Informational E. Stephan
Expires: December 9, 2021 Orange
 G. Fairhurst
 T. Jones
 University of Aberdeen
 C. Huitema
 Private Octopus Inc.
 June 7, 2021

Transport parameters for 0-RTT connections
draft-kuhn-quic-0rtt-bdp-09

Abstract

 QUIC 0-RTT transport features currently focuses on egress traffic
 optimization. This draft proposes a QUIC extension that improves the
 performance of ingress traffic.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 9, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Kuhn, et al. Expires December 9, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Transport for 0-RTT June 2021

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Notations and terms 3
1.2. Requirements Language 5

2. Safe jump start . 5
2.1. Rationale behind the safety guidelines 5
2.2. Rationale #1: Variable network conditions 5
2.3. Rationale #2: Malicious clients 6
2.4. Trade-off between the different solutions 6
2.4.1. Security aspects 7
2.4.2. Interoperability and use-cases 7
2.4.3. Summary . 8

3. Safety guidelines . 9
4. Implementation considerations 10
4.1. Rationale behind the different implementation options . . 10
4.2. Independent local storage of values 11
4.3. Using NEW_TOKEN frames 11
4.4. BDP Frame . 12
4.4.1. BDP Frame Format 12
4.4.2. Extension activation 13

5. Discussion . 13
5.1. BDP extension protected as much as initial_max_data . . . 13
5.2. Other use-cases . 14
5.2.1. Optimizing client's requests 14

 5.2.2. Sharing transport information across multiple
 connections . 14

6. Acknowledgments . 14
7. IANA Considerations . 14
8. Security Considerations 14
9. References . 14
9.1. Normative References 14
9.2. Informative References 16

 Authors' Addresses . 16

1. Introduction

 QUIC 0-RTT transport features currently focus on egress traffic
 optimization. This draft proposes a QUIC extension to improve the
 performance of ingress traffic.

 When clients resume a session to download a large document, the
 congestion control algorithms will require time to ramp-up the packet

Kuhn, et al. Expires December 9, 2021 [Page 2]

Internet-Draft Transport for 0-RTT June 2021

 rate. This document specifies a method that can improve traffic
 delivery and that allows a QUIC connection to avoid a slow Round-Trip
 Time (RTT)-based process to grow connection parameters such as the
 congestion window (CWND):

 1. During a previous session, current RTT (current_rtt), CWND
 (current_cwnd) and client's current IP (current_client_ip) are
 stored as saved_rtt, saved_cwnd and saved_client_ip;

 2. When resuming a session, the server might set the current_rtt and
 the current_cwnd to the saved_rtt and saved_cwnd of a previous
 connection.

 This method applies to any QUIC resumed sessions: both saved_session
 and recon_session can be a 0-RTT QUIC connection or a 1-RTT QUIC
 connection.

 This draft consider different solutions: (1) the saved parameters are
 not sent to the client; (2) the saved parameters are sent to the
 client and the client can not read them; (3) the saved parameters are
 sent to the client and the client can read them. There is no
 solution where the client can modify the parameters.

 Sometimes the parameters of a previous session are not relevant,
 e.g.: (1) network conditions can change where using a previously
 computed CWND could increase congestion; (2) a client could convince
 a server to use a CWND much larger than required.

 This draft:

 1. proposes guidelines for how to safely apply the previously
 computed parameters to new sessions;

 2. describes different implementation considerations in QUIC for the
 proposed method;

 3. discusses the trade-off associated to the different
 implementation solutions.

1.1. Notations and terms

 o IW: Initial window (e.g. from [RFC6928]);

 o current_iw: Current Initial window;

 o recom_iw: Recommended Initial window - it seems important to note
 that some Content Delivery Networks (CDNs) currently exploit a
 very high Initial Window (IW) [TMA18] for a local path;

https://datatracker.ietf.org/doc/html/rfc6928

Kuhn, et al. Expires December 9, 2021 [Page 3]

Internet-Draft Transport for 0-RTT June 2021

 o BDP: defined below;

 o CWND: congestion window used by server (bytes allowed in flight by
 CC);

 o current_cwnd : Current congestion window;

 o saved_cwnd: Congestion window preserved from a previous
 connection;

 o RTT: Round-Trip Time;

 o current_rtt: Current RTT;

 o saved_rtt: RTT preserved from a previous connection.

 o client_ip : IP address of the client

 o current_client_ip : Current IP address of the client

 o saved_client_ip : IP address of the client preserved from a
 previous connection;

 o remembered BDP parameters: combination of saved_rtt and
 saved_cwnd.

 o ITT : Interpacket Transmission Time

 o MSS : Maximum Message Size

 o AEAD : Authenticated Encryption with Associated Data

 o LRU : Least Recently Used

 [RFC6349] defines the BDP as follows: "Derived from Round-Trip Time
 (RTT) and network Bottleneck Bandwidth (BB), the Bandwidth-Delay
 Product (BDP) determines the Send and Received Socket buffer sizes
 required to achieve the maximum TCP Throughput." This draft
 considers the Bandwidth-Delay Product (BDP) as estimated by the
 server which includes all buffering along the network path. A QUIC
 connection might not exactly reproduce the procedure detailed in
 [RFC6349] to measure the BDP. The server can exploit internal
 evaluations of the CWND and the to assess the BDP.

https://datatracker.ietf.org/doc/html/rfc6349

Kuhn, et al. Expires December 9, 2021 [Page 4]

Internet-Draft Transport for 0-RTT June 2021

1.2. Requirements Language

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Safe jump start

2.1. Rationale behind the safety guidelines

 The previously measured saved_rtt and saved_cwnd should not be used
 as-is to avoid potential congestion collapse:

 o Rationale #1: An Internet method needs to be robust to network
 conditions that can differ between sessions.

 o Rationale #2: Information sent by a malicious client would not be
 relevant since it might try to convince servers to use a CWND
 higher than required. This could increase congestion.

2.2. Rationale #1: Variable network conditions

 The server MUST check the validity of the saved_rtt and saved_cwnd
 parameters, whether they are sent by a client or stored at the
 server. Indeed, the following events make use of these parameters
 inappropriate:

 o IP address changes: If the client changes its IP address (i.e.
 saved_client_ip is different from current_client_ip), the
 different address indicates a different network path. This new
 path does not necessarily exhibit the same characteristics as the
 old one.

 o Lifetime of the extension: If the network conditions change, e.g.,
 the path was not congested when BDP parameters were evaluated, but
 later the path experiences congestion for the next connection, the
 previously estimated parameters would not be valid.

 There are different solutions for the variable network conditions:

 o Rationale #1 - Solution #1 : When resuming a session, set the
 current_cwnd and current_rtt to the saved_cwnd and saved_rtt
 parameters estimated from a previous connection.

 o Rationale #1 - Solution #2 : When resuming a session, implement a
 safety check to measure whether using the saved_cwnd and saved_rtt

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Kuhn, et al. Expires December 9, 2021 [Page 5]

Internet-Draft Transport for 0-RTT June 2021

 parameters would not cause congestion over the path. In this
 case, the current_cwnd and current_rtt might not be set directly
 to the saved_cwnd and saved_rtt: the server might wait for the
 completion of the safety check before doing so.

Section 3 describes various approaches for Rationale #1 - Solution
 #2.

2.3. Rationale #2: Malicious clients

 The server MUST check the integrity of the saved_rtt and saved_cwnd
 parameters received from a client.

 There are different solutions to avoid attacks by malicious clients:

 o Rationale #2 - Solution #1 : The server stores a local estimation
 of the CWND and RTT parameters as saved_cwnd and saved_rtt.

 o Rationale #2 - Solution #2 : The server sends the estimation of
 the CWND and RTT parameters to the client as saved_cwnd and
 saved_rtt. The information is encrypted by the server. The
 client resends the information when resuming a connection. The
 client can neither read nor modify the saved_rtt and saved_cwnd
 parameters.

 o Rationale #2 - Solution #3 : The server sends the estimation of
 the saved_rtt and saved_cwnd parameters to the client. The
 information includes integrity protection. The client resends the
 information when resuming a connection. The client can read, but
 can not modify, the saved_rtt and saved_cwnd parameters.

Section 4 describes various implementation approaches for each of
 these solutions using local storage (Section 4.2 for Rationale #2 -
 Solution #1), NEW_TOKEN Frame (Section 4.3 for Rationale #2 -
 Solution #2), BDP extension Frame (Section 4.4 for Rationale #2 -
 Solution #3).

2.4. Trade-off between the different solutions

 This section provides a description of different implementation
 options and discusses their respective advantages and drawbacks.
 While there are some discussions for the solutions regarding
 Rationale #2, the server MUST consider Rationale #1 - Solution #2 and
 avoid Rationale #1 - Solution #1: the server MUST implement a safety
 check to measure whether the remembered BDP parameters (i.e.
 saved_rtt and saved_cwnd) are relevant or check that their usage
 would not cause congestion over the path.

Kuhn, et al. Expires December 9, 2021 [Page 6]

Internet-Draft Transport for 0-RTT June 2021

2.4.1. Security aspects

 The client may send information related to the saved_rtt and
 saved_cwnd to the server with the BDP Frame extension using either
 Rationale #2 - Solution #2 or Rationale #2 - Solution #3. However,
 the server may not trust the client. Indeed, even if 0-RTT packets
 containing the BDP Frame are encrypted, a client could modify the
 values within the extension and encrypt the 0-RTT packet.
 Authentication mechanisms might not guarantee that the values are
 safe. The server could then need to also store the saved_rtt and
 saved_cwnd parameters.

 A malicious client might modify the saved_cwnd parameter to convince
 the server to use a CWND much larger than required. Using the
 algorithms proposed in Section 3, the server may reduce any intended
 harm and can check that part of the information provided by the
 client are valid. A supplementary check could decide not to use
 values that would be higher than those currently used by CDNs
 [TMA18].

 Storing the BDP parameters locally at the server reduces the
 associated risks by allowing the client to transmit information
 related to the BDP of the path.

2.4.2. Interoperability and use-cases

 If the server stores a resumption ticket for each client to protect
 against replay on a third party IP, it could also store the IP
 address (i.e. saved_client_ip) and BDP parameters (i.e. saved_rtt
 and saved_cwnd) of the previous session of the client.

 In cases where the BDP Frame extension is exploited, the approach of
 storing the BDP parameters locally at the server can provide a cross-
 check of the BDP parameters sent by a client. The server can anyway
 enable a safe jump start, but without the BDP Frame extension, the
 client does not have the choice of accepting it or not.

 While storing local values related to the BDP would help in improving
 the ingress for 0-RTT connections, not using a BDP Frame extension
 may reduce the interest of the approach where (1) the client knows
 the BDP estimations done at the server, (2) the client decides to
 accept or reject ingress optimization, (3) the client tunes
 application level requests.

Kuhn, et al. Expires December 9, 2021 [Page 7]

Internet-Draft Transport for 0-RTT June 2021

2.4.3. Summary

 As a summary, the approach of local storage of values is more secure
 and the BDP Frame extension provides more information to the client
 and more interoperability. The Figure 1 provides a summary of the
 advantages and drawbacks of each approach.

 +---------+-----------+----------------+---------------+-----------+
 |Rationale| Solution | Advantage | Drawback | Comment |
 +---------+-----------+----------------+---------------+-----------+
#1	#1			
Variable	set	Ingress optim.	Risks of adding	MUST NOT
Network	current_*		congestion	implement
	to saved_*			
+-----------+----------------+---------------+-----------+				
	#2			
	Implement	Reduce risks of	Negative impact	MUST
	safety	adding	on ingress	implement
	check	congestion	optim.	Section 3
+---------+-----------+----------------+---------------+-----------+				
#2	#1			
Malicious	Local	Enforced	Client can not	
client	storage	security	decide to	
			reject	
			Malicious	
			server could	
			fill client's	
			buffer	
			Limited	
			use-cases	Section 4.2
+-----------+----------------+---------------+-----------+				
	#2			
	NEW_TOKEN	Save resource	Malicious	
		at server	client may	
		Opaque token	change token	
		protected	even if	
			protected	
			Malicious	
			server could	
			fill client's	
			buffer	
			Server may not	
			trust client	Section 4.3
+-----------+----------------+---------------+-----------+				
	#3			
	BDP	Extended	Malicious	
	extension	use-cases	client may	
		Save resource	change BDP	

Kuhn, et al. Expires December 9, 2021 [Page 8]

Internet-Draft Transport for 0-RTT June 2021

		at server	even if	
		Client can	protected	
		read and decide	Server may not	
		to reject	trust client	
		BDP extension		
		protected		
				Section 4.4
 +---------+-----------+----------------+---------------+-----------+

 Figure 1: Comparing solutions

3. Safety guidelines

 The safety guidelines are designed to avoid a server adding excessive
 congestion to an already congested path. The following mechanisms
 should help in fulfilling this objective:

 o The server SHOULD compare the measured transport parameters (in
 particular current_rtt) of the 0-RTT connection with those of the
 1-RTT connection (in particular saved_rtt);

 o The server SHOULD NOT consider the saved_cwnd parameter if there
 is any loss of packet during the first transmission of data;

 o The server MUST NOT send more than a recommended maximum IW
 (recom_iw) in the first transmission of data. This value could be
 based on a local understanding of the path characteristics and
 what is deployed in CDNs [TMA18].

 The proposed mechanisms SHOULD be limited by any rate-limitation
 mechanisms of QUIC, such as flow control mechanisms or amplification
 attacks prevention. In particular, the maximum number of packets
 that can be sent without acknowledgment needs to be chosen to avoid
 the creation and the increase of congestion for the path. Moreover,
 this extension should not be an opportunity for the current
 connection to be a vector of an amplification attack. The address
 validation process, used to prevent amplification attacks, SHOULD be
 performed [RFC9000].

 The following mechanisms could be implemented:

 o Exploit a standard IW:

 1. The server sends the first data packet using the IW - this can
 be considered a safe starting point for an unknown path, which
 avoids adding congestion to the path;

https://datatracker.ietf.org/doc/html/rfc9000

Kuhn, et al. Expires December 9, 2021 [Page 9]

Internet-Draft Transport for 0-RTT June 2021

 2. If the reception of IW exhibits characteristics that resemble
 those of a recent previous session from the client (i.e.
 current_rtt < 1.2*saved_rtt and all the data was
 acknowledged), the method permits the sender to consider the
 saved_cwnd as an input to adapt current_cwnd and help rapidly
 determine a new safe rate;

 3. The sender needs to avoid a burst of packets being sent as a
 result of a step-increase in the congestion window [RFC9000].
 Pacing the packets as a function of the current_rtt can
 provide this additional safety during the period in which the
 CWND is increased by the method.

 o Identify a relevant pacing rhythm:

 * The server estimates the pacing rhythm using saved_rtt and
 saved_cwnd. The Interpacket Transmission Time (ITT) is
 determined by the ratio between the current Maximum Message
 Size (MSS) for packets and the ratio between the saved_cwnd and
 saved_rtt. A tunable safety margin might be introduced to
 avoid sending more than a recommended maximum IW (recom_iw):

 + current_iw = min(recom_iw,saved_cwnd)

 + ITT = MSS/(current_iw/saved_rtt)

 * When the IW is acknowledged, the server falls back to a
 standard slow-start mechanism.

 This follows the idea of [RFC4782],
 [I-D.irtf-iccrg-sallantin-initial-spreading] and [CONEXT15].

 While safety recommendations are necessary, it seems important to
 note that some Content Delivery Networks (CDNs) currently exploit a
 very high Initial Window (IW) [TMA18] for a local path.

4. Implementation considerations

4.1. Rationale behind the different implementation options

 Using NewSessionTickets messages of TLS is a solution that could have
 been envisioned. The idea would have been to add a 'bdp_metada'
 field in the NewSessionTickets that the client could read. The sole
 extension currently defined in TLS1.3 that can be seen by the client
 is max_early_data_size (see section 4.6.1 of [RFC8446]). However, in
 the general design of QUIC, TLS sessions are managed by the TLS
 stacks.

https://datatracker.ietf.org/doc/html/rfc9000
https://datatracker.ietf.org/doc/html/rfc4782
https://datatracker.ietf.org/doc/html/rfc8446#section-4.6.1

Kuhn, et al. Expires December 9, 2021 [Page 10]

Internet-Draft Transport for 0-RTT June 2021

 Three distinct approaches are presented: sending an opaque blob to
 the client that it may retransmit for future connection (see

Section 4.3), enable a local storage of BDP related values (see
Section 4.2) and a BDP Frame extension (see Section 4.4).

4.2. Independent local storage of values

 This approach independently lets both a client and a server remember
 their BDP parameters:

 o During a 1-RTT session, the endpoint stores the RTT (as the
 saved_rtt) and CWND (as the saved_cwnd) together with the session
 resume ticket. The client can also store the IP address of the
 server.

 o The server maintains a table of previously issued tickets, indexed
 by the random ticket identifier that is used to guarantee
 uniqueness of the Authenticated Encryption with Associated Data
 (AEAD) encryption. Old tokens are removed from the table using
 the Least Recently Used (LRU) logic. For each ticket identifier,
 the table holds the RTT and CWND (i.e. saved_rtt and saved_cwnd),
 and also the IP address of the client (i.e. saved_client_ip).

 During the 0-RTT session, the endpoint wait for the first RTT
 measurement from the peer's IP address. This is used to verify that
 the current_rtt has not significantly changed from the saved_rtt, and
 hence is an indication that the BDP information applies to the path
 that is currently being used.

 If this RTT is confirmed (e.g. current_rtt < 1.2*saved_rtt, the
 endpoint also verifies that an initial window of data has been
 acknowledged without requiring retransmission. This second check is
 used to detect a path with significant incipient congestion (i.e.
 where it would not be safe to update the CWND based on the
 saved_cwnd). In practice, this could be realized by a proportional
 increase in the CWND, where the increase is (saved_cwnd/
 IW)*proportion_of_IW_currently-ACKed.

4.3. Using NEW_TOKEN frames

 Using NEW_TOKEN Frames, the server could send a token to the client
 through a NEW_TOKEN Frame. The token is an opaque blob and the
 client can not read its content (see section 19.7 of [RFC9000]). The
 client sends the received token in the header of an Initial packet
 for future connection.

https://datatracker.ietf.org/doc/html/rfc9000#section-19.7

Kuhn, et al. Expires December 9, 2021 [Page 11]

Internet-Draft Transport for 0-RTT June 2021

4.4. BDP Frame

 This section proposes the exploitation of a new Frame, the BDP Frame.
 The BDP Frame MUST be contained in 0-RTT packets if sent by the
 client. The BDP Frame MUST be contained in 1-RTT packets if sent by
 the server. The BDP Frame MUST be considered in the congestion
 control and its data may not be limited by flow control limits. The
 server MAY send multiple BDP Frames in both 1-RTT and 0-RTT
 connections. The client may send BDP Frames during 1-RTT and 0-RTT
 connections.

4.4.1. BDP Frame Format

 A BDP Frame is formatted as shown in Figure 2.

 BDP Frame {
 Type (i) = 0xXXX,
 Lifetime (i),
 Saved CWND (i),
 Saved RTT (i),
 Saved IP,
 }

 Figure 2: BDP Frame Format

 A BDP Frame contains the following fields:

 o Lifetime (extension_lifetime): The extension_lifetime is a value
 in milliseconds, encoded as a variable length integer. This
 follows the idea of NewSessionTicket of TLS [RFC8446]. This
 represents the validity in time of this extension.

 o Saved CWND (saved_cwnd): The saved_cwnd is a value in bytes,
 encoded as a variable length integer. The bytes in flight
 measured on the previous connection by the server (or CWND). The
 previous values of bytes_in_flight defined in [RFC9002],
 recon_bytes_in_flight could be used to determine this value.

 o Saved RTT (saved_rtt): The saved_rtt is a value in milliseconds,
 encoded as a variable length integer. This could be set to the
 min_rtt defined in [RFC9002], saved_rtt can be set to min_rtt.
 The min_rtt parameter might not track a decreasing RTT: the
 min_rtt that is reported here might not be the actual minimum RTT
 measured during the 1-RTT connection, but usually reflects the
 characteristics of the path latency.

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc9002
https://datatracker.ietf.org/doc/html/rfc9002

Kuhn, et al. Expires December 9, 2021 [Page 12]

Internet-Draft Transport for 0-RTT June 2021

 o Saved IP (saved_client_ip) : The saved_client_ip could be set to
 the IP address of the client. The IP address of the client can be
 encoded as the preferred_address parameter [RFC9000].

4.4.2. Extension activation

 The client can accept the transmission of BDP Frames from the server
 by using the following enable_bdp transport extension.

 enable_bdp (0xTBD): in the 1-RTT connection, the client indicates to
 the server that it wishes to receive BDP extension Frames for
 improving ingress of 0-RTT connection. The default value is 0.
 Values strictly above 3 are invalid, and receipt of these values MUST
 be treated as a connection error of type TRANSPORT_PARAMETER_ERROR.

 o 0: Default value. If the client does not send this parameter, the
 server considers that the client does not support or does not wish
 to activate the BDP extension.

 o 1: The client indicates to the server that it wishes to receive
 BDP Frame and activates the ingress optimization for the 0-RTT
 connection.

 o 2: The client indicates that it does not wish to receive BDP
 Frames but activates ingress optimization.

 o 3: The client indicates that it wishes to receive BDP Frames but
 does not activate ingress optimization.

 This Transport Parameter is encoded as per Section 18 of [RFC9000].

5. Discussion

5.1. BDP extension protected as much as initial_max_data

 The BDP metadata parameters are measured by the server during a
 previous connection. The BDP extension is protected by the mechanism
 that protects the exchange of the 0-RTT transport parameters. For
 version 1 of QUIC, the BDP extension is protected using the mechanism
 that already protects the "initial_max_data" parameter. This is
 defined in sections 4.5 to 4.7 of [RFC9001]. This provides the
 server with a way to verify that the parameters proposed by the
 client are the same as those that the server sent to the client
 during the previous connection.

https://datatracker.ietf.org/doc/html/rfc9000
https://datatracker.ietf.org/doc/html/rfc9000#section-18
https://datatracker.ietf.org/doc/html/rfc9001

Kuhn, et al. Expires December 9, 2021 [Page 13]

Internet-Draft Transport for 0-RTT June 2021

5.2. Other use-cases

5.2.1. Optimizing client's requests

 In a case with Dynamic Adaptive Streaming over HTTPS (DASH), clients
 might encounter issues in knowing the available path capacity or DASH
 can encounter issues in reaching the best available video playback
 quality. The client requests could then be adapted and specific
 traffic could utilize information from the path characteristics (such
 as encouraging the client to increase the quality of video chunks, to
 fill the buffers and avoid video blocking or to send high quality
 adds).

 In other cases, applications may provide additional services if
 clients can know the server's estimation of the path characteristics.

5.2.2. Sharing transport information across multiple connections

 There can be benefit in sharing transport information across multiple
 connections. [I-D.ietf-tcpm-2140bis] considers the sharing of
 transport parameters between TCP connections originating from the
 same host. The proposal in this document has the advantage of
 storing server-generated information at the client and not requiring
 the server to retain additional state for each client.

6. Acknowledgments

 The authors would like to thank Gabriel Montenegro, Patrick McManus,
 Ian Swett, Igor Lubashev, Robin Marx, Roland Bless and Franklin Simo
 for their fruitful comments on earlier versions of this document.

7. IANA Considerations

 TBD: Text is required to register the BDP Frame and the enable_bdp
 transport parameter. Parameters are registered using the procedure
 defined in [RFC9000].

8. Security Considerations

 Security considerations are discussed in Section 5 and in Section 3.

9. References

9.1. Normative References

https://datatracker.ietf.org/doc/html/rfc9000

Kuhn, et al. Expires December 9, 2021 [Page 14]

Internet-Draft Transport for 0-RTT June 2021

 [I-D.ietf-tcpm-2140bis]
 Touch, J., Welzl, M., and S. Islam, "TCP Control Block
 Interdependence", draft-ietf-tcpm-2140bis-11 (work in
 progress), April 2021.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4782] Floyd, S., Allman, M., Jain, A., and P. Sarolahti, "Quick-
 Start for TCP and IP", RFC 4782, DOI 10.17487/RFC4782,
 January 2007, <https://www.rfc-editor.org/info/rfc4782>.

 [RFC6349] Constantine, B., Forget, G., Geib, R., and R. Schrage,
 "Framework for TCP Throughput Testing", RFC 6349,
 DOI 10.17487/RFC6349, August 2011,
 <https://www.rfc-editor.org/info/rfc6349>.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP's Initial Window", RFC 6928,
 DOI 10.17487/RFC6928, April 2013,
 <https://www.rfc-editor.org/info/rfc6928>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/info/rfc9000>.

 [RFC9001] Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
 QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,
 <https://www.rfc-editor.org/info/rfc9001>.

 [RFC9002] Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,
 May 2021, <https://www.rfc-editor.org/info/rfc9002>.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-2140bis-11
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4782
https://www.rfc-editor.org/info/rfc4782
https://datatracker.ietf.org/doc/html/rfc6349
https://www.rfc-editor.org/info/rfc6349
https://datatracker.ietf.org/doc/html/rfc6928
https://www.rfc-editor.org/info/rfc6928
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://datatracker.ietf.org/doc/html/rfc9001
https://www.rfc-editor.org/info/rfc9001
https://datatracker.ietf.org/doc/html/rfc9002
https://www.rfc-editor.org/info/rfc9002

Kuhn, et al. Expires December 9, 2021 [Page 15]

Internet-Draft Transport for 0-RTT June 2021

9.2. Informative References

 [CONEXT15]
 Li, Q., Dong, M., and P. Godfrey, "Halfback: Running Short
 Flows Quickly and Safely", ACM CoNEXT , 2015.

 [I-D.irtf-iccrg-sallantin-initial-spreading]
 Sallantin, R., Baudoin, C., Arnal, F., Dubois, E., Chaput,
 E., and A. Beylot, "Safe increase of the TCP's Initial
 Window Using Initial Spreading", draft-irtf-iccrg-

sallantin-initial-spreading-00 (work in progress), January
 2014.

 [TMA18] Ruth, J. and O. Hohlfeld, "Demystifying TCP Initial Window
 Configurations of Content Distribution Networks", 2018
 Network Traffic Measurement and Analysis Conference
 (TMA) , 2018.

Authors' Addresses

 Nicolas Kuhn
 CNES

 Email: nicolas.kuhn@cnes.fr

 Emile Stephan
 Orange

 Email: emile.stephan@orange.com

 Godred Fairhurst
 University of Aberdeen
 Department of Engineering
 Fraser Noble Building
 Aberdeen AB24 3UE
 Scotland, UK

 Email: gorry@erg.abdn.ac.uk

https://datatracker.ietf.org/doc/html/draft-irtf-iccrg-sallantin-initial-spreading-00
https://datatracker.ietf.org/doc/html/draft-irtf-iccrg-sallantin-initial-spreading-00

Kuhn, et al. Expires December 9, 2021 [Page 16]

Internet-Draft Transport for 0-RTT June 2021

 Tom Jones
 University of Aberdeen
 Department of Engineering
 Fraser Noble Building
 Aberdeen AB24 3UE
 Scotland, UK

 Email: tom@erg.abdn.ac.uk

 Christian Huitema
 Private Octopus Inc.

 Email: huitema@huitema.net

Kuhn, et al. Expires December 9, 2021 [Page 17]

