
Workgroup: Internet Engineering Task Force

Internet-Draft: draft-kuhn-quic-0rtt-bdp-11

Published: 23 October 2021

Intended Status: Informational

Expires: 26 April 2022

Authors: N. Kuhn

CNES

E. Stephan

Orange

G. Fairhurst

University of Aberdeen

T. Jones

University of Aberdeen

C. Huitema

Private Octopus Inc.

Transport parameters for 0-RTT connections

Abstract

QUIC 0-RTT transport features currently focuses on egress traffic

optimization. This draft describes a QUIC extension that can be used

to improve the performance of ingress traffic.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 26 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Notations and terms

1.2. Requirements Language

2. Safe jump start

2.1. Rationale behind the safety guidelines

2.2. Rationale #1: Variable network conditions

2.3. Rationale #2: Malicious clients

2.4. Trade-off between the different solutions

2.4.1. Security aspects

2.4.2. Interoperability and use-cases

2.4.3. Summary

3. Safety guidelines

4. Implementation considerations

4.1. Rationale behind the different implementation options

4.2. Independent local storage of values

4.3. Using NEW_TOKEN frames

4.4. BDP Frame

4.4.1. BDP Frame Format

4.4.2. Extension activation

5. Discussion

5.1. BDP extension protected as much as initial_max_data

5.2. Other use-cases

5.2.1. Optimizing client's requests

5.2.2. Sharing transport information across multiple

connections

6. Acknowledgments

7. IANA Considerations

8. Security Considerations

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

1. Introduction

QUIC 0-RTT transport features currently focus on egress traffic

optimization. This draft describes a QUIC extension that can be used

to improve the performance of ingress traffic.

[RFC9000] mentions that "Generally, implementations are advised to

be cautious when using previous values on a new path." This draft

proposes a discussion on how using previous values can be achieved

in a interoperable manner and how it can be done safely.

When clients resume a session to download a large object, the

congestion control algorithms will require time to ramp-up the

packet rate as a sequence of Round-Trip Time (RTT)-based increases.

¶

¶

This document specifies a method that can improve traffic delivery

by allowing a QUIC connection to avoid a the slow process to

discover key path parameters including a way to more rapidly grow

the congestion window (cwnd):

During a previous session, current RTT (current_rtt),

bottleneck bandwidth (current_bb) and current client IP

(current_client_ip) are stored as saved_rtt, saved_bb and

saved_client_ip;

When resuming a session to the same IP address, the server can

then utilize the current_rtt and the current_bb to the

saved_rtt and saved_bb of a previous connection.

This method applies to any resumed QUIC session: both saved_session

and recon_session can be a 0-RTT QUIC connection or a 1-RTT QUIC

connection.

The current version of this draft considers several possible

solutions: (1) the saved parameters are stored at the server; they

are not sent to the client; (2) the saved parameters are sent to the

client as an encrypted opaque blob; although the client is unable to

read the parameters can include this opaque blob in a subsequent

request to the server; (3) the saved parameters are sent to the

client and the client is notified of their value, but the parameters

also include a cryptographic integrity check; the client can include

both the parameters and the integrity check in a subsequent request

to the server.

None of these possible solutions allow q client to modify the

parameters that will be used by the server.

There are several cases where the parameters of a previous session

are not appropriate. These include:

(1) the network conditions have changed and the current capacity

is less than the previously estimated bottleneck bandwidth. Using

the saved congestion control state would increase congestion;

(2) the network path has changed and the new path is different.

Using the saved congestion control state could increase

congestion. This case might be accompanied by a change in the RTT

or IP address.

(3) a client uses parameters that are no longer appropriate,

e.g., to intentionally try to use a CWND larger than appropriate.

¶

1.

¶

2.

¶

¶

¶

¶

¶

¶

¶

¶

This document:

proposes guidelines for how to safely apply the previously

computed parameters to new sessions;

describes different implementation considerations for the

proposed method using QUIC;

discusses the trade-offs associated with the different

implementation solutions.

1.1. Notations and terms

IW: Initial Window (e.g., from [RFC6928]);

current_iw: Current Initial Window

recom_iw: Recommended Initial Window

BDP: defined below

CWND: the congestion window used by server (maximum number of

bytes allowed in flight by the CC)

current_bb : Current estimated bottleneck bandwidth

saved_bb: Estimated bottleneck bandwidth preserved from a

previous connection

RTT: Round-Trip Time

current_rtt: Current RTT

saved_rtt: RTT preserved from a previous connection

client_ip : IP address of the client

current_client_ip : Current IP address of the client

saved_client_ip : IP address of the client preserved from a

previous connection

remembered BDP parameters: a combination of saved_rtt and

saved_bb

ITT : Interpacket Transmission Time

MSS : Maximum Message Size

AEAD : Authenticated Encryption with Associated Data

¶

1.

¶

2.

¶

3.

¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

LRU : Least Recently Used

[RFC6349] defines the BDP as follows: "Derived from Round-Trip Time

(RTT) and network Bottleneck Bandwidth (BB), the Bandwidth-Delay

Product (BDP) determines the Send and Received Socket buffer sizes

required to achieve the maximum TCP Throughput." This draft

considers the BDP estimated by a server that includes all buffering

along the network path. In that sense, the BDP estimated is related

to the amount of bytes in flight.

A QUIC connection might not reproduce the procedure detailed in

[RFC6349] to measure the BDP. A server might be able to exploit an

internal evaluation of the Bottleneck Bandwidth to estimate the BDP.

This document refers to the saved_bb and current_bb for the

previously estimated bottleneck bandwidth. This value can be easilly

estimated when using a rate-based congestion controller, such as

BBR. Other congestion controllers, such as CUBIC or RENO, could

estimate the bottleneck bandwidth by utilizing a combinatioin of the

cwnd and the minimum RTT. This approach could result in over

estimating the bottleneck bandwidth and ought to be used with

caution.

1.2. Requirements Language

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Safe jump start

2.1. Rationale behind the safety guidelines

The previously measured saved_rtt and saved_bb SHOULD NOT be used

as-is, to avoid potential congestion collapse:

Rationale #1: Internet path capacity can change at any time. An

Internet method needs to be robust to network conditions that can

differ from one session to the next.

Rationale #2: Information sent by a malicious client is not

relevant. A client could try to convince a server to use a CWND

higher than appropriate, to gain an unfair share of capacity for

itself or to induce congestion for other flows.

* ¶

¶

¶

¶

¶

¶

*

¶

*

¶

2.2. Rationale #1: Variable network conditions

The server MUST check the validity of the saved_rtt and saved_bb

parameters, whether these are sent by a client or are stored at the

server. The following events indicates cases where use of these

parameters is inappropriate:

IP address changed: If the client changes its IP address (i.e.

the saved_client_ip is different from the current_client_ip), the

different address is to be takne as an indication of a different

network path. This new path does not necessarily exhibit the same

characteristics as the old one. If the server changes its IP

address after a migration, it would not be safe to exploit

previously estimated parameters.

RTT changed: A significant change in RTT might be an indication

that the the network conditions changed. Since the CC information

is directly impacted by the RTT, a significant change in RTT is a

strong indication that the previously estimated BDP parameters

are likely to not be valid for the current path.

Lifetime of the extension: The CC information is temporal.

Frequent connections to the same IP address are likely to track

changes, but long-term use of previous values are not

appropriate.

BB over estimation: There are cases where using the cwnd would

infralte the bottleneck bandwidth. However, at the end of a CC

slow start, the value of cwnd can be significantly larger than

the value, that the CC finally converges to (after a few more

rounds). Directly exploiting such value for the bottleneck

bandwidth estimation may be inappropriate. One mitigation could

be to restrict to only a fraction (e.g., 1/2) of the previously

used cwnd; another mitigation might be to calculate the

bottleneck bandwidth based on the flightsize.

There are different solutions for the variable network conditions:

Rationale #1 - Solution #1 : When resuming a session, restore the

current_bb and current_rtt from the saved_bb and saved_rtt

parameters estimated from a previous connection.

Rationale #1 - Solution #2 : When resuming a session, implement a

safety check to measure avoid using the saved_bb and saved_rtt

parameters to cause congestion over the path. In this case, the

current_bb and current_rtt might not be set directly to the

saved_bb and saved_rtt: the server might wait for the completion

of the safety check before doing so.

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

Section 3 describes various approaches for Rationale #1 - Solution

#2.

2.3. Rationale #2: Malicious clients

The server MUST check the integrity of the saved_rtt and saved_bb

parameters received from a client.

There are several solutions to avoid attacks by malicious clients:

Rationale #2 - Solution #1 : The server stores a local estimate

of the bottleneck bandwidth and RTT parameters as the saved_bb

and saved_rtt.

Rationale #2 - Solution #2 : The server sends the estimate of the

bottleneck bandwidth and RTT parameters to the client as the

saved_bb and saved_rtt. This information is encrypted by the

server. The client resends the same encrypted information when

resuming a connection. The client can neither read nor modify the

saved_rtt and saved_bb parameters.

Rationale #2 - Solution #3 : The server sends an estimate of the

saved_rtt and saved_bb parameters to the client. The information

includes an integrity protection check. The client can resend the

information when resuming a connection. This allows a client to

read, but not modify, the saved_rtt and saved_bb parameters. This

might enable a client to decide whether the new parameters are

appropriate, based on client-side information about the network

conidtions or connectivity.

Section 4 describes various implementation approaches for each of

these solutions using local storage (Section 4.2 for Rationale #2 -

Solution #1), NEW_TOKEN Frame (Section 4.3 for Rationale #2 -

Solution #2), BDP extension Frame (Section 4.4 for Rationale #2 -

Solution #3).

2.4. Trade-off between the different solutions

This section provides a description of different implementation

options and discusses their respective advantages and drawbacks.

While there are some discussions for the solutions regarding

Rationale #2, the server MUST consider Rationale #1 - Solution #2

and avoid Rationale #1 - Solution #1: the server MUST implement a

safety check to measure whether the saved BDP parameters (i.e.

saved_rtt and saved_bb) are relevant or check that their usage would

not cause excessive congestion over the path.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

2.4.1. Security aspects

The client can send information related to the saved_rtt and

saved_bb to the server with the BDP Frame extension using either

Rationale #2 - Solution #2 or Rationale #2 - Solution #3. However,

the server SHOULD NOT trust the client. Indeed, even if 0-RTT

packets containing the BDP Frame are encrypted, a client could

modify the values within the extension and encrypt the 0-RTT packet.

Authentication mechanisms might not guarantee that the values are

safe. It is not an easy operation for a client to modify

authenticated or encrypted data without this being detected by a

server. Modification could be realized by malicious clients. One way

to avoid this is for a server to also store the saved_rtt and

saved_bb parameters.

A malicious client might modify the saved_bb parameter to convince

the server to use a larger CWND than appropriate. Using the

algorithms proposed in Section 3, the server may reduce any intended

harm and can check that part of the information provided by the

client are valid.

Storing the BDP parameters locally at the server reduces the

associated risks by allowing the client to transmit information

related to the BDP of the path in the case of a malicious client

trying to break the encryption mechanism that it had received.

2.4.2. Interoperability and use-cases

If the server stores a resumption ticket for each client to protect

against replay on a third party IP, it could also store the IP

address (i.e. saved_client_ip) and BDP parameters (i.e. saved_rtt

and saved_bb) of the previous session of the client.

In cases where the BDP Frame extension is exploited, the approach of

storing the BDP parameters locally at the server can provide a

cross-check of the BDP parameters sent by a client. The server can

anyway enable a safe jumpstart, but without the BDP Frame extension.

However, the client does not have the choice of accepting to use

this or not, and is unable to utilize local knowledge of the network

conditions or conenctivity.

Storing local values related to the BDP would help in improving the

ingress for 0-RTT connections, however, not using a BDP Frame

extension could reduce the interest of the approach where (1) the

client knows the BDP estimations done at the server, (2) the client

decides to accept or reject ingress optimization, (3) the client

tunes application level requests.

¶

¶

¶

¶

¶

¶

2.4.3. Summary

As a summary, the approach of local storage of values can be secure

and the BDP Frame extension provides more information to the client

and more interoperability. The Figure 1 provides a summary of the

advantages and drawbacks of each approach.¶

+---------+-----------+----------------+---------------+-----------+

|Rationale| Solution | Advantage | Drawback | Comment |

+---------+-----------+----------------+---------------+-----------+

|#1 |#1 | | | |

|Variable |set |Ingress optim. |Risks of adding|MUST NOT |

|Network |current_* | | congestion |implement |

| |to saved_* | | | |

| +-----------+----------------+---------------+-----------+

| |#2 | | | |

| |Implement |Reduce risks of |Negative impact|MUST |

| |safety | adding | on ingress |implement |

| |check | congestion | optim. |Section 3 |

+---------+-----------+----------------+---------------+-----------+

|#2 |#1 | | | |

|Malicious|Local |Enforced |Client unable | |

|client |storage | security | to decide to | |

| | | | reject | |

| | | |Malicious | |

| | | | server could | |

| | | | fill client's | |

| | | | buffer | |

| | | |Limited | |

| | | | use-cases |Section 4.2|

| +-----------+----------------+---------------+-----------+

| |#2 | | | |

| |NEW_TOKEN |Save resource |Malicious | |

| | | at server | client could | |

| | |Opaque token | change token | |

| | | protected | even if | |

| | | | protected | |

| | | |Malicious | |

| | | | server could | |

| | | | fill client's | |

| | | | buffer | |

| | | |Server may not | |

| | | | trust client |Section 4.3|

| +-----------+----------------+---------------+-----------+

| |#3 | | | |

| |BDP |Extended |Malicious | |

| |extension | use-cases | client could | |

| | |Save resource | change BDP | |

| | | at server | even if | |

| | |Client can | protected | |

| | | read and decide|Server may not | |

| | | to reject | trust client | |

| | |BDP extension | | |

| | | protected | | |

| | | | |Section 4.4|

+---------+-----------+----------------+---------------+-----------+

Figure 1: Comparing solutions

3. Safety guidelines

The safety guidelines are designed to avoid a server adding

excessive congestion to an already congested path. The following

mechanisms help in fulfilling this objective:

The server SHOULD compare the measured transport parameters (in

particular current_rtt) of the 0-RTT connection with those of the

1-RTT connection (in particular saved_rtt);

The server SHOULD NOT consider the saved_bb parameter when there

is any indicated congestion (e.g., loss of packet during the

first transmission of data or ECN-CE mark);

The server MUST NOT send more than the recommended maximum IW

(recom_iw) in the first transmission of data. This value could be

based on a local understanding of the path characteristics.

Knowing the congestion status of the network in closed

environments may help in increasing the recommended maximum IW.

The server SHOULD NOT store and/or send information related to

the previously estimated bottleneck bandwidth (saved_bb) (see

Section 1.1 for more details on bottleneck bandwidth definition),

if this estimation has not been computed after some rounds during

the 1-RTT connection. At least, the 1-RTT connection should have

reached the congestion avoidance phase.

The proposed mechanisms SHOULD be limited by any rate-limitation

mechanisms of QUIC, such as flow control mechanisms or amplification

attack prevention. In particular, it may be necessary to issue

proactive MAX_DATA frames to increase the flow control limits of a

connection. In particular, the maximum number of packets that can be

sent without acknowledgment needs to be chosen to avoid the creation

and the increase of congestion for the path.

This extension should not provide an opportunity for the current

connection to be a vector of an amplification attack. The address

validation process, used to prevent amplification attacks, SHOULD be

performed [RFC9000].

The following mechanisms could be implemented:

Exploit a standard IW:

The server sends the first data packet using the IW - this

is a safe starting point for any path where there is no path

information or where there is no congestion state. This

avoids adding excessive congestion to the path;

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

* ¶

1.

¶

If the reception of IW exhibits characteristics that

resemble those of a recent previous session from the client

(i.e. current_rtt < 1.2*saved_rtt and all data was

acknowledged without reported congestion), the method

permits the sender to consider the saved_bb as an input to

adapt current_bb to rapidly determine a new safe rate;

The sender needs to avoid a burst of packets resulting from

a step-increase in the congestion window [RFC9000]. Pacing

the packets as a function of the current_rtt can provide

this additional safety during the period in which the CWND

is increased by the method.

Identify a relevant pacing rhythm:

The server estimates the pacing rhythm using saved_rtt and

saved_bb. The Interpacket Transmission Time (ITT) is

determined by the ratio between the current Maximum Message

Size (MSS) for packets and the ratio between the saved_bb and

saved_rtt. A tunable safety margin might be introduced to

avoid sending more than a recommended maximum IW (recom_iw):

current_iw = min(recom_iw,saved_bb)

ITT = MSS/(current_iw/saved_rtt)

When the IW is acknowledged, the server falls back to a

standard slow-start mechanism.

Tune slow-start mechanisms: After transport parameters are set to

a previously estimated bottleneck bandwidth, if slow-start

mechanisms continue, the sender can overshoot the bottleneck

capacity. This can occur even if the safety check described in

this section is implemented.

For NewReno and CUBIC, it is recommended to exit slow-start

and enter in congestion avoidance phase.

For BBR, it is recommended to move to the "probe bandwidth"

state.

This follows the idea of [RFC4782], [I-D.irtf-iccrg-sallantin-

initial-spreading] and [CONEXT15].

4. Implementation considerations

4.1. Rationale behind the different implementation options

The NewSessionTickets messages of TLS offer a solution. The idea

would have been to add a 'bdp_metada' field in the NewSessionTickets

2.

¶

3.

¶

* ¶

-

¶

o ¶

o ¶

-

¶

*

¶

-

¶

-

¶

¶

that the client could read. The sole extension currently defined in

TLS1.3 that can be seen by the client is max_early_data_size (see

section 4.6.1 of [RFC8446]). However, in the general design of QUIC,

TLS sessions are managed by the TLS stacks.

Three distinct approaches are presented: sending an opaque blob to

the client that it may return to the server for a future connection

(see Section 4.3), enable a local storage of BDP related values

(see Section 4.2) and a BDP Frame extension (see Section 4.4).

4.2. Independent local storage of values

This approach independently lets both a client and a server remember

their BDP parameters:

During a 1-RTT session, the endpoint stores the RTT (as the

saved_rtt) and bottleneck bandwidth (as the saved_bb) together

with the session resume ticket. The client can also store the IP

address of the server.

The server maintains a table of previously issued tickets,

indexed by the random ticket identifier that is used to guarantee

uniqueness of the Authenticated Encryption with Associated Data

(AEAD) encryption. Old tokens are removed from the table using

the Least Recently Used (LRU) logic. For each ticket identifier,

the table holds the RTT and bottleneck bandwidth (i.e. saved_rtt

and saved_bb), and also the IP address of the client (i.e.

saved_client_ip).

During the 0-RTT session, the endpoint waits for the first RTT

measurement from the peer's IP address. This is used to verify that

the current_rtt has not significantly changed from the saved_rtt,

and hence is an indication that the BDP information is appropriate

to the path that is currently being used.

If this RTT is confirmed (e.g. current_rtt < 1.2*saved_rtt, the

endpoint also verifies that an initial window of data has been

acknowledged without requiring retransmission. This second check

detects a path with significant incipient congestion (i.e. where it

would not be safe to update the CWND based on the saved_bb). In

practice, this could be realized by a proportional increase in the

CWND, where the increase is (saved_bb/

IW)*proportion_of_IW_currently-ACKed.

This solution does not allow the client to refuse the exploitation

of the BDP parameters. If the server does not want to store the

metrics from previous connections, an equivalent of the

tcp_no_metrics_save for QUIC may be necessary. This option could be

negociated that alows a client to choose whether to use the saved

information.

¶

¶

¶

*

¶

*

¶

¶

¶

¶

4.3. Using NEW_TOKEN frames

Using NEW_TOKEN Frames, the server could send a token to the client

through a NEW_TOKEN Frame. The token is an opaque blob and the

client can not read its content (see section 19.7 of [RFC9000]). The

client sends the received token in the header of an Initial packet

for a later connection.

4.4. BDP Frame

This section describes the use of a new Frame, the BDP Frame. The

BDP Frame MUST be contained in 0-RTT packets, if sent by the client.

The BDP Frame MUST be contained in 1-RTT packets, if sent by the

server. The BDP Frame MUST be considered by congestion control and

its data is not be limited by flow control limits. The server MAY

send multiple BDP Frames in both 1-RTT and 0-RTT connections. The

client can send BDP Frames during 1-RTT and 0-RTT connections.

4.4.1. BDP Frame Format

A BDP Frame is formatted as shown in Figure 2.

Figure 2: BDP Frame Format

A BDP Frame contains the following fields:

Lifetime (extension_lifetime): The extension_lifetime is a value

in milliseconds, encoded as a variable length integer. This

follows the idea of NewSessionTicket of TLS [RFC8446]. This

represents the validity in time of this extension.

Saved BB (saved_bb): The saved_bb is a value in bytes, encoded as

a variable length integer. The bottleneck bandwidth estimated for

the previous connection by the server. Using the previous values

of bytes_in_flight defined in [RFC9002] can result in overshoot

of the bottleneck capacity and is not advised.

Saved RTT (saved_rtt): The saved_rtt is a value in milliseconds,

encoded as a variable length integer. This could be set to the

minimum RTT (min_rtt). The saved_rtt can be set to min_rtt. NOTE:

¶

¶

¶

BDP Frame {

 Type (i) = 0xXXX,

 Lifetime (i),

 Saved BB (i),

 Saved RTT (i),

 Saved IP length (i),

 Saved IP (...)

}

¶

*

¶

*

¶

*

The min_rtt defined in [RFC9002], does not track a decreasing

RTT: therefore min_rtt reported might be larger than the actual

minimum RTT measured during the 1-RTT connection.

Saved IP length (saved_ip_length) : The length of the IP address

set to either 4 (IPv4) or 16 (IPv6).

Saved IP (saved_client_ip) : The saved_client_ip could be set to

the IP address of the client.

4.4.2. Extension activation

The client can accept the transmission of BDP Frames from the server

by using the enable_bdp transport extension.

enable_bdp (0xTBD): in the 1-RTT connection, the client indicates to

the server that it wishes to receive BDP extension Frames for

improving ingress of 0-RTT connection. The default value is 0.

Values strictly above 3 are invalid, and receipt of these values

MUST be treated as a connection error of type

TRANSPORT_PARAMETER_ERROR.

0: Default value. If the client does not send this parameter, the

server considers that the client does not support or does not

wish to activate the BDP extension.

1: The client indicates to the server that it wishes to receive

BDP Frame and activates the ingress optimization for the 0-RTT

connection.

2: The client indicates that it does not wish to receive BDP

Frames but activates ingress optimization.

3: The client indicates that it wishes to receive BDP Frames but

does not activate ingress optimization.

This Transport Parameter is encoded as per Section 18 of [RFC9000].

5. Discussion

5.1. BDP extension protected as much as initial_max_data

The BDP metadata parameters are measured by the server during a

previous connection. The BDP extension is protected by the mechanism

that protects the exchange of the 0-RTT transport parameters. For

version 1 of QUIC, the BDP extension is protected using the

mechanism that already protects the "initial_max_data" parameter.

This is defined in sections 4.5 to 4.7 of [RFC9001]. This provides a

way for the server to verify that the parameters proposed by the

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

[I-D.ietf-tcpm-2140bis]

client are the same as those that the server sent to the client

during the previous connection.

5.2. Other use-cases

5.2.1. Optimizing client's requests

When using Dynamic Adaptive Streaming over HTTPS (DASH), clients

might encounter issues in knowing the available path capacity or

DASH can encounter issues in reaching the best available video

playback quality. The client requests could then be adapted and

specific traffic could utilize information from the path

characteristics (such as encouraging the client to increase the

quality of video chunks, to fill the buffers and avoid video

blocking or to send high quality adds).

In other cases, applications could provide additional services if

clients can know the server estimation of the path characteristics.

5.2.2. Sharing transport information across multiple connections

There can be benefit in sharing transport information across

multiple connections. [I-D.ietf-tcpm-2140bis] considers the sharing

of transport parameters between TCP connections originating from the

same host. The proposal in this document has the advantage of

storing server-generated information at the client and not requiring

the server to retain additional state for each client.

6. Acknowledgments

The authors would like to thank Gabriel Montenegro, Patrick McManus,

Ian Swett, Igor Lubashev, Robin Marx, Roland Bless and Franklin Simo

for their fruitful comments on earlier versions of this document.

7. IANA Considerations

TBD: Text is required to register the BDP Frame and the enable_bdp

transport parameter. Parameters are registered using the procedure

defined in [RFC9000].

8. Security Considerations

Security considerations are discussed in Section 5 and in Section 3.

9. References

9.1. Normative References

Touch, J., Welzl, M., and S. Islam, "TCP

Control Block Interdependence", Work in Progress,

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC4782]

[RFC6349]

[RFC6928]

[RFC8174]

[RFC8446]

[RFC9000]

[RFC9001]

[RFC9002]

[CONEXT15]

Internet-Draft, draft-ietf-tcpm-2140bis-11, 12 April

2021, <https://www.ietf.org/archive/id/draft-ietf-

tcpm-2140bis-11.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Floyd, S., Allman, M., Jain, A., and P. Sarolahti,

"Quick-Start for TCP and IP", RFC 4782, DOI 10.17487/

RFC4782, January 2007, <https://www.rfc-editor.org/info/

rfc4782>.

Constantine, B., Forget, G., Geib, R., and R. Schrage,

"Framework for TCP Throughput Testing", RFC 6349, DOI

10.17487/RFC6349, August 2011, <https://www.rfc-

editor.org/info/rfc6349>.

Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,

"Increasing TCP's Initial Window", RFC 6928, DOI

10.17487/RFC6928, April 2013, <https://www.rfc-

editor.org/info/rfc6928>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

info/rfc9000>.

Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure

QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,

<https://www.rfc-editor.org/info/rfc9001>.

Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection

and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,

May 2021, <https://www.rfc-editor.org/info/rfc9002>.

9.2. Informative References

Li, Q., Dong, M., and P B. Godfrey, "Halfback: Running

Short Flows Quickly and Safely", ACM CoNEXT , 2015.

https://www.ietf.org/archive/id/draft-ietf-tcpm-2140bis-11.txt
https://www.ietf.org/archive/id/draft-ietf-tcpm-2140bis-11.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4782
https://www.rfc-editor.org/info/rfc4782
https://www.rfc-editor.org/info/rfc6349
https://www.rfc-editor.org/info/rfc6349
https://www.rfc-editor.org/info/rfc6928
https://www.rfc-editor.org/info/rfc6928
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9002

[I-D.irtf-iccrg-sallantin-initial-spreading]

Sallantin, R., Baudoin, C., Arnal, F., Dubois, E.,

Chaput, E., and A. Beylot, "Safe increase of the TCP's

Initial Window Using Initial Spreading", Work in

Progress, Internet-Draft, draft-irtf-iccrg-sallantin-

initial-spreading-00, 15 January 2014, <https://

www.ietf.org/archive/id/draft-irtf-iccrg-sallantin-

initial-spreading-00.txt>.

Authors' Addresses

Nicolas Kuhn

CNES

Email: nicolas.kuhn.ietf@gmail.com

Emile Stephan

Orange

Email: emile.stephan@orange.com

Godred Fairhurst

University of Aberdeen

Department of Engineering

Fraser Noble Building

Aberdeen

Email: gorry@erg.abdn.ac.uk

Tom Jones

University of Aberdeen

Department of Engineering

Fraser Noble Building

Aberdeen

Email: tom@erg.abdn.ac.uk

Christian Huitema

Private Octopus Inc.

Email: huitema@huitema.net

https://www.ietf.org/archive/id/draft-irtf-iccrg-sallantin-initial-spreading-00.txt
https://www.ietf.org/archive/id/draft-irtf-iccrg-sallantin-initial-spreading-00.txt
https://www.ietf.org/archive/id/draft-irtf-iccrg-sallantin-initial-spreading-00.txt
mailto:nicolas.kuhn.ietf@gmail.com
mailto:emile.stephan@orange.com
mailto:gorry@erg.abdn.ac.uk
mailto:tom@erg.abdn.ac.uk
mailto:huitema@huitema.net

	Transport parameters for 0-RTT connections
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notations and terms
	1.2. Requirements Language

	2. Safe jump start
	2.1. Rationale behind the safety guidelines
	2.2. Rationale #1: Variable network conditions
	2.3. Rationale #2: Malicious clients
	2.4. Trade-off between the different solutions
	2.4.1. Security aspects
	2.4.2. Interoperability and use-cases
	2.4.3. Summary

	3. Safety guidelines
	4. Implementation considerations
	4.1. Rationale behind the different implementation options
	4.2. Independent local storage of values
	4.3. Using NEW_TOKEN frames
	4.4. BDP Frame
	4.4.1. BDP Frame Format
	4.4.2. Extension activation

	5. Discussion
	5.1. BDP extension protected as much as initial_max_data
	5.2. Other use-cases
	5.2.1. Optimizing client's requests
	5.2.2. Sharing transport information across multiple connections

	6. Acknowledgments
	7. IANA Considerations
	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Authors' Addresses

