
Workgroup: Internet Engineering Task Force

Internet-Draft:

draft-kuhn-quic-careful-resume-02

Published: 10 July 2022

Intended Status: Informational

Expires: 11 January 2023

Authors: N. Kuhn

Thales Alenia Space

E. Stephan

Orange

G. Fairhurst

University of Aberdeen

T. Jones

University of Aberdeen

C. Huitema

Private Octopus Inc.

Careful resumption of congestion control from retained state with QUIC

Abstract

This document discusses careful resumption of congestion control

parameters in QUIC with a cautious method that enables faster

startup of new connections.

The method uses a set of computed congestion control parameters that

are based on the previously observed path characteristics, such as

the bottleneck bandwidth, available capacity, or the RTT. These

parameters are stored and can then used to modify the congestion

control behaviour of a subsequent connection. The draft discusses

assumptions around how a server ought to utilise these parameters to

provide opportunities for a new connection to more quickly get up to

speed (i.e. utilise available capacity). It discusses how these

changes impact the capacity at a shared network bottleneck and the

response that is needed after any indication that the new rate is

inappropriate.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 January 2023.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Language, notations and terms

2.1. Requirements Language

2.2. Notations and Terms

3. Scenarios of Interest

3.1. Large BDP Scenarios

3.2. Accomodating from a Known Reduction in Capacity

3.3. Optimizing Client Requests

3.4. Sharing Transport Information across Multiple Connections

3.5. Connection Establishment, Client and Server

4. The Phases of CC

5. Safe Jump

5.1. Rationale behind the Safety Guidelines

5.2. Rationale #1: Variable Network Conditions

5.3. Rationale #2: Malicious clients

5.4. Trade-off between the different solutions

5.4.1. Interoperability and Use Cases

5.4.2. Summary

6. Safety Guidelines

7. Acknowledgments

8. IANA Considerations

9. Security Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Implementation Considerations

A.1. Rationale behind the different implementation options

A.2. Independent Local Storage of Values

A.3. Using NEW_TOKEN frames

A.4. BDP Frame

Authors' Addresses

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

All Internet transports are required to use a CC method. In 2010,

RFC 5783 provided a survey of alternative CC methods, and noted that

there are challenges when a CC operates across an Internet path with

a high and/or variable bandwidth-delay product (BDP) [RFC5783].

A CC algorithm typically takes time to ramp-up the packet rate,

called the "slow-start phase", informally known as the time to "Get

up to speed". The slow start phase is a period in which a sender

intentionally uses less capacity than might be available with the

intention to avoid overshooting the actual capacity at a bottleneck,

which would result in increased queueing (latency/jitter) and/or

congestion packet loss. An overshoot in the capacity can have a

detrimental effect on other flows sharing a common bottleneck. In

the extreme case, persistent congestion can result in unwanted

starvation of other flows [RFC8867] (i.e. Preventing other flows

from successfully sharing a common bottleneck).

In Reno, the slow-start phase consists of a sequence of increases in

the congestion window (cwnd) starting from the Initial Window (IW).

Each step lasts approximately one path RTT, until the sender

estimates that the capacity at the bottleneck for the path has been

(or is nearing) reached.

To fully-utilise the capacity along a path with a certain RTT, the

transport needs to determine an appropriate volume of bytes in

flight, based on the product of the available capacity and the path

RTT. [RFC6349] defines the BDP as follows: "Derived from Round-Trip

Time (RTT) and network Bottleneck Bandwidth (BB), the Bandwidth-

Delay Product (BDP) determines the Send and Received Socket buffer

sizes required to achieve the maximum TCP Throughput." The BDP

estimated by a server includes all buffering experienced along a

network path. Various approaches are possible to determine the BDP,

based on measurements of the path characteristics. [RFC6349]

specifies one procedure for TCP. CC for QUIC is specified in

[RFC9002] and does not specify a required method to measure the BDP,

allowing the sender to implement an appropriate method.

The specification for the QUIC transport protocol [RFC9000] notes

"Generally, implementations are advised to be cautious when using

previous values on a new path." The method uses a set of computed

Congestion Control (CC) parameters that are based on the previously

observed path characteristics, such as the bottleneck bandwidth,

available capacity, or the Round Trip Time (RTT). These parameters

are stored and can then used to modify the CC behaviour of a

subsequent connection.

¶

¶

¶

¶

¶

This document specifies a method that can improve throughput by

reducing the time to get up to speed, and hence the total duration

of a transfer. It introduces an alternative method to select initial

CC parameters, including a way to more rapidly and safely grow the

cwnd.

There are scenarios where temporal sharing of previously parameters

relating to observed path characteristics, such as the bottleneck

bandwidth or RTT, can help to save round-trip times at the start of

a new connection. For example:

To optimize applications that use a series of short connections

over the same path, each of which needs to individually learn

the available capacity/rtt;

After a pause in transmission (e.g., when transmission pauses,

and then the transport protocol wishes to connect over the same

path);

To connect after a service disruption where the network service

was temporarily reduced (e.g. due to a link propagation

impairment, or where a user on a train journey travels through

different areas of connectivity before the user returns to a

path with the original characteristics).

In these cases, specific characteristics of the path may have been

learned, including CC information. This information might be

expected to be similar when a new connection is made between the

same local and remote endpoints.

While a server could take optimization decisions without considering

the client's preference, in some cases a client could have

information that is not available at the server. A client may

provide hints, for example: (1) an indication that the path/local

interface has changed; (2) information related to current hardware

limitations of the client or (3) an understanding about the capacity

needs of other concurrent flows that would compete for shared

capacity. As a result, a client could explicitely ask for tuning the

slow start when the application continues transmission, or to

inhibit tuning. This is discussed further later in the document.

There are also cases where using the parameters of a previous

connection are not appropriate, and a need to evaluate the potential

for malicious use of the method.

The remainder of this document:

discusses use-cases where carefully resuming QUIC connections

is expected to have benefit;

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

¶

1.

¶

proposes guidelines for how to carefully utilise the previously

stored CC information;

describes implementation considerations for the proposed method

using QUIC;

discusses the trade-offs associated with the different

implementation solutions.

2. Language, notations and terms

This section provides a brief summary of key terms and the

requirements language that is used. The document uses language drawn

from a range of IETF RFCs.

2.1. Requirements Language

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2.2. Notations and Terms

This document defines current, and saved values for a set of CC

parameters:

IW: Initial Window [RFC9002];

current_iw: Current IW;

recom_iw: Recommended IW;

current_bb : Current estimated bottleneck bandwidth;

saved_bb: Estimated bottleneck bandwidth preserved from a

previous connection;

current_rtt: Current RTT;

saved_rtt: RTT measure RTT preserved from a previous connection;

client_ip : IP address of the client;

current_client_ip : Current IP address of the client;

saved_client_ip : IP address of a previous connection by the

client;

2.

¶

3.

¶

4.

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

*

¶

remembered BDP parameters: a combination of saved_rtt and

saved_bb

Congestion controllers, such as CUBIC or RENO, could estimate the

saved_bb and current_bb values by utilizing a combination of the

cwnd/flight_size and the minimum RTT. A different method could be

used to estimate the same values when using a rate-based congestion

controller, such as BBR [I-D.cardwell-iccrg-bbr-congestion-control].

It is important to consider whether the methods could result in

over-estimating the bottleneck bandwidth, and the preserved values

ought to be used with caution.

3. Scenarios of Interest

3.1. Large BDP Scenarios

QUIC introduces the concept of transport parameters (section 4 of

[RFC9000]). This document notes that a new connection can utilise a

set of key transport parameters from a previous connection to reduce

the completion time for a transfer with a size much larger than the

IW over paths where the available capacity is also significantly

larger than the IW. This benefit is particularly evident for a path

where the RTT is much larger than for typical Internet paths.

For example, a satellite access network, a 5.3 MB transfer takes up

to 9 seconds using standard congestion control, whereas using the

specified method this could reduce to 4 seconds [IJSCN]; and the

time to complete a 1 MB transfer could be reduced by 62 %

[MAPRG111]. Benefits is also expected for other sizes of transfer

and for different path characteristics that also result in a higher

BDP.

3.2. Accomodating from a Known Reduction in Capacity

A transport protocol is not able to assume that the path

characteristics remain the same. Variation can arise from a

combination of various factors:

Competing network traffic sharing a common bottleneck can result

in short or long term variation;

Changes in the forward path can change the set of links/routers

over forming the path (from routing/mobility/circuit restoration/

interface change), resulting in a change in the bandwidth and the

other traffic that shares a bottleneck on the path;

Link conditions can change, resulting in a change of the

bottleneck bandwidth (e.g., as a result of changes in propagation

conditions or sharing of a medium);

*

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

Application/endpoint behavior can change the capacity available

to a flow.

Although a transport protocol can have information about a

previously used path, the path characteristics can change, and

previous information may not be appropriate when a new connection

uses the path.

In some cases (e.g., after a change in the interface used by the

local endpoint), a client may be aware of such a change, and might

be able to infer that a previously available path has again become

available. However, to safetly utilise the previous information, the

client would need assurance that the path was to the same endpoint,

and that the characteristics have not significantly changed from

those previously measured. When the path is expected to be the same,

there is then an opportunity to reduce the time to get up to speed

by utilising saved CC information for the path.

3.3. Optimizing Client Requests

3.4. Sharing Transport Information across Multiple Connections

There can be benefit in sharing transport information across

multiple concurrent connections. [RFC9040] considers the sharing of

transport parameters between TCP connections that originate from a

host. The proposal in this document has the advantage of storing

server-generated information at the client and not requiring the

server to retain additional state for each client.

3.5. Connection Establishment, Client and Server

In the previously detailed scenarios, the application data transfer

was unidirectional towards the client, i.e., the main flow of data

was from a server to a client (e.g., downloading a file or web

page). This is the focus of the current version of the document.

In a different example, the application data transfer can be

unidirectional towards the server, e.g., uploading an image/video is

a server.

There are also use cases where a client initiates a connection for a

bidirectional service where both endpoints send data to each other,

such as to support a remote executing application, or a video

conference call.

In general, the guidelines proposed in this document apply when a

congestion controller is sending data to a remote peer and that

remote endpoint resumes the connection. Both endpoints can assume

the role of a client or a server.

*

¶

¶

¶

¶

¶

¶

¶

¶

4. The Phases of CC

This document defines a series of different phases through which the

CC algorithm moves as a connection gets up to speed. The phases are

labelled as follows:

Observe: During a previous connection, the current RTT

(current_rtt), bottleneck bandwidth (current_bb) and current

client IP (current_client_ip) are stored as saved_rtt, saved_bb

and saved_client_ip;

Reconnaissance: When an application resumes between the same

pair of IP addresses, the server measures the path

characteristics of a new connection to confirm the path appears

to be similar to that observed previously (e.g., a similar

RTT). The server also seeks assurance that initial data is not

lost, to avoid resuming under congested conditions.

Unvalidated: Utilise the saved path characteristics to send at

a rate higher than allowed by slow start. The convergence

towards the previous rate is expected be faster than when using

traditional slow-start mechanisms, but should not be

instantaneous, to avoid adding congestion to an already

congested bottleneck.

If the unvalidated rate was used without inducing

noticeable congestion to the path, the sender is permitted

to continue at this rate in the 'Normal' phase.

If the validation phase determines that previous

parameters are not valid (due to a change) or congestion

was experienced, the sender must withdraw rapidly to a

safe rate, before it enters the 'Normal' phase.

Normal: Resume using the normal CC method.

5. Safe Jump

This section introduces the rationale behind safety guidelines

related to the usage of previous values on a new path: variable

network conditions and malicious client.

The "variable network conditions" related to the fact that

previously measured values may not remaib relevant and should be

exploited cautiously by a CC algorithm.

The "malicious client" relates to the fact that a malicious client

could try to send malicious information to a server. Three

approaches are then introduced and compared : either (1) all the

information related to previous connections is stored at the server

¶

1.

¶

2.

¶

3.

¶

1.

¶

2.

¶

4. ¶

¶

¶

and never send to a client ("Local storage"), (2) some information

is transmited to a client that can use it when reconnecting but the

client cannot read the information received from the server ("NEW

TOKEN"), or (3) some information is transmitted to a client that can

use it when reconnecting and the client can read it to accept or not

the exploitation of previous congestion information (a.k.a. "BDP

extension").

5.1. Rationale behind the Safety Guidelines

NOTE: The sender ought not to re-utilise all the capacity it

previously used, to avoid starving other flows that started or

increased their capacity after the last measurement. How strong

should this be stated: ... MUST or SHOULD ... What safety factor is

appropriate for the resuming sender? If using slow-start it would

anyway double the rate on the next RTT, so is capacity/2 appropriate

to initially try?

A new connection MUST NOT use the previously measured saved_rtt and

saved_bb to simply initialise a new flow to resume sending at the

same rate.

Rationale #1: Bottleneck bandwidth and network traffic can change

at any time. An Internet method needs to be robust to network

conditions that can differ from one connection to the next, due

to variations in the forwarding path, reconfiguration of

equipment or changes in the link conditions. An Internet method

needs to be robust to changes in network traffic, including the

arrival of new traffic flows that compete for the bottleneck

capacity. Behaviours need to be designed that avoid sending

excessive data into a congestion bottleneck because this can have

a material impact on any flows using that bottleneck, and the

ability of those flows to control their own sending rate.

Rationale #2: Information sent by a malicious client is not

relevant. A client could request a server to use a cwnd higher

than appropriate, to gain an unfair share of capacity for itself

or to induce congestion for other flows. A server might anyway

decide whether to fully use the new allowed rate.

5.2. Rationale #1: Variable Network Conditions

The server MUST check the validity of any received saved_rtt and

saved_bb parameters, whether these are sent by a client or are

stored at the server. The following events indicates cases where the

use of these parameters is inappropriate:

IP address change: If the client changes its local IP address

(i.e., the saved_client_ip is different from the

current_client_ip), the different source address is a assumed an

¶

¶

¶

*

¶

*

¶

¶

*

indication of a different network path. This new path does not

necessarily exhibit the same characteristics as the old one. If

the server changes its IP address after a migration, it would not

be safe to exploit previously estimated parameters.

RTT change: A significant change in RTT might be an indication

that the network conditions have changed. Since the CC

information is directly impacted by the RTT, a significant change

in the RTT is a strong indication that the previously estimated

BDP parameters are likely to not be valid for the current path.

NOTE: This document needs to define a significant change.

Lifetime of the information: The CC information is temporal.

Frequent connections to the same IP address are likely to track

changes, but long-term use of previous values is not appropriate.

NOTE: This document needs to define how long.

BB over-estimation: There are cases where using a measured cwnd

would inflate the bottleneck bandwidth. At the end of the CC slow

start phase, the value of cwnd can be significantly larger than

the minimum value needed to utilise the path (i.e., cwnd

overshoot). In most case, the cwnd finally converges to a stable

value after a few more RTTs. It would be inappropriate to use an

overshoot in the cwnd as a basis for estimating the bottleneck

bandwidth. NOTE: One mitigation could be to further restrict to

only a fraction (e.g., 1/2) of the previously used cwnd; another

mitigation might be to calculate the bottleneck bandwidth based

on the flight_size or an averaged cwnd.

Preventing Starvation of New Flows: It would not be appropriate

to fully use a bottleneck bandwidth estimate based on a previous

measurement of capacity, because new flows might have started

using the available capacity since that measurement was made. The

mitigation could be to restrict to only a fraction (e.g., 1/2) of

the previously used cwnd.

There are several solutions to mitigate the impact of changes in

network conditions:

Rationale #1 - Solution #1 : When resuming, restore the

current_bb and current_rtt from the saved_bb and saved_rtt

parameters estimated from a previous connection.

Rationale #1 - Solution #2 : When resuming, implement a safety

check to measure avoid using the saved_bb and saved_rtt

parameters to cause congestion over the path. In this case, the

current_bb and current_rtt might not be set directly to the

saved_bb and saved_rtt: the server might wait for the completion

of the safety check before this is done.

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

Section 6 describes various approaches for Rationale #1 - Solution

#2.

5.3. Rationale #2: Malicious clients

The server MUST check the integrity of the saved_rtt and saved_bb

parameters received from a client.

There are several solutions to avoid attacks by malicious clients:

Rationale #2 - Solution #1 : The server stores a local estimate

of the bottleneck bandwidth and RTT parameters as the saved_bb

and saved_rtt.

Rationale #2 - Solution #2 : The server sends the estimate of the

bottleneck bandwidth and RTT parameters to the client as the

saved_bb and saved_rtt in a block of information that is

authenticated. This information also could be encrypted by the

server. The client resends the same information for a new

connection. The server can use its local key information to

authenticate the information, without needing to keep a local

copy.

Rationale #2 - Solution #3 : This approach is the same as above,

except that the server sends an estimate of the saved_rtt and

saved_bb parameters in a form that may be read by the client. The

information might not be encrypted, or the information might be

duplicated outside of the encrypted block. This allows a client

to read, but not modify, the saved_rtt and saved_bb parameters

and could enable a client to decide whether the new parameters

are thought appropriate, based on client-side information about

the network conditions, connectivity, or needs of the new

connection.

Appendix A describes various implementation approaches for each of

these solutions using local storage (Appendix A.2 for Rationale #2

- Solution #1), NEW_TOKEN Frame (Appendix A.3 for Rationale #2 -

Solution #2), BDP extension Frame (Appendix A.4 for Rationale #2 -

Solution #3).

5.4. Trade-off between the different solutions

This section provides a description of several implementation

options and discusses their respective advantages and drawbacks.

While there are some discussions for the solutions regarding

Rationale #2, the server MUST consider Rationale #1 - Solution #2

and avoid Rationale #1 - Solution #1: the server MUST implement a

safety check to measure whether the saved BDP parameters (i.e.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

saved_rtt and saved_bb) are relevant or check that their usage would

not cause excessive congestion over the path.

Security consideration are discussed in Section 9 .

5.4.1. Interoperability and Use Cases

A server that stores a resumption ticket for each client to protect

against replay on a third party IP, it could also store the IP

address (i.e., saved_client_ip) and BDP parameters (i.e., saved_rtt

and saved_bb) of a previous connection.

When the BDP Frame extension is used, locally stored BDP parameters

at the server can provide a cross-check of the BDP parameters sent

by a client. The server can anyway enable a safe jump, but without

the BDP Frame extension. However, using the parameters enables a

client to choose whether to request this or not, enabling it to

utilize local knowledge of the network conditions, connectivity, or

connection requirements.

XXX-Editor-note: Text to be improved: Storing local values related

to the BDP would help improve the ingress for new connections,

however, not using a BDP Frame extension could reduce the interest

of the approach where (1) the client knows the BDP estimation at the

server, (2) the client decides to accept or reject ingress

optimization, (3) the client tunes application level requests.

5.4.2. Summary

Local storage of values can be secure and the BDP Frame extension

provides more information to the client and more interoperability.

The Figure 1 provides a summary of the advantages and drawbacks of

each approach.

¶

¶

¶

¶

¶

¶

+---------+-----------+----------------+---------------+-----------+

|Rationale| Solution | Advantage | Drawback | Comment |

+---------+-----------+----------------+---------------+-----------+

|#1 |#1 | | | |

|Variable |set |Ingress optim. |Risk of adding |MUST NOT |

|Network |current_* | | congestion |implement |

| |to saved_* | | | |

| +-----------+----------------+---------------+-----------+

| |#2 | | | |

| |Implement |Reduce risk of |Negative impact|MUST |

| |safety | adding | on ingress |implement |

| |check | congestion | optim. |Section 3 |

+---------+-----------+----------------+---------------+-----------+

|#2 |#1 | | | |

|Malicious|Local |Enforced |Client unable | |

|client |storage | security | to decide to | |

| | | | reject | |

| | | |Malicious | |

| | | | server could | |

| | | | fill client's | |

| | | | buffer | |

| | | |Limited | |

| | | | use-cases |Section 4.2|

| +-----------+----------------+---------------+-----------+

| |#2 | | | |

| |NEW_TOKEN |Save resource |Malicious | |

| | | at server | client could | |

| | |Opaque token | change token | |

| | | protected | even if | |

| | | | protected | |

| | | |Malicious | |

| | | | server could | |

| | | | fill client's | |

| | | | buffer | |

| | | |Server may not | |

| | | | trust client |Section 4.3|

| +-----------+----------------+---------------+-----------+

| |#3 | | | |

| |BDP |Extended |Malicious | |

| |extension | use-cases | client could | |

| | |Save resource | change BDP | |

| | | at server | even if | |

| | |Client can | protected | |

| | | read and decide|Server may not | |

| | | to reject | trust client | |

| | |BDP extension | | |

| | | protected | | |

| | | | |Section 4.4|

+---------+-----------+----------------+---------------+-----------+

XXX-Editor-Note: Need to clarify the text around changing

the authenticated token.

Figure 1: Comparing solutions

6. Safety Guidelines

The following safety guidelines refer to the labelling defined in

Section 4.

The safety guidelines are designed to mitigate the risk that a

server adds excessive congestion to an already congested path. The

following mechanisms help in fulfilling this objective:

(observation phase) The server SHOULD NOT store and/or send

information related to a previously estimated bottleneck

bandwidth (saved_bb) (see Section 2.2 for more details on

bottleneck bandwidth definition), if the cwnd is not at least

four times larger than the IW.

(reconnaissance phase) The server MUST NOT send more than the

recommended maximum IW (recom_iw) in the first RTT of

transmitting data [RFC9000]. (When used in a controlled network,

additional information about local path characteristics could be

known that might be used to configure a non-standard IW).

(reconnaissance phase) The server MUST compare the measured

transport parameters (in particular current_rtt) of the 0-RTT

connection with those of the 1-RTT connection (in particular

saved_rtt). The method MUST NOT be used when the path fails to be

validated;

(unvalidated phase) The server MUST NOT use the parameters unless

the first IW packets when packets are detected as lost or

acknowledgements indicate the packets were ECN CE-marked. These

are indication of potential congestion and therefore the method

MUST NOT be used;

(unvalidated phase) The server MUST implement the retreat method

when packets are detected as lost or acknowledgements indicate

the packets were ECN CE-marked. These are indication of potential

congestion and therefore the method MUST NOT be used.

The proposed mechanisms SHOULD be limited by any rate-limitation

mechanisms of QUIC, such as flow control mechanisms or amplification

attack prevention. In particular, it may be necessary to issue

proactive MAX_DATA frames to increase the flow control limits of a

connection. In particular, the maximum number of packets that can be

sent without acknowledgements needs to be chosen to avoid the

creation and the increase of congestion for the path.

This extension MUST NOT provide an opportunity for the current

connection to be a vector of an amplification attack. The address

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

validation process, used to prevent amplification attacks, SHOULD be

performed [RFC9000].

XXX-Editor-note: This probbaly should be a range rather than an

inequality (current_rtt < 1.2*saved_rtt).

The following mechanisms could be implemented:

Exploit a standard IW:

The server sends the first data packet using the IW - this

is a safe starting point for any path where there is no path

information or congestion control information. This avoids

adding excessive congestion to a path;

The sender monitors the reception of the IW data. If the

path characteristics resemble those of a recent previous

connection from to the same server (i.e., current_rtt <

1.2*saved_rtt) and all data was acknowledged without

reported congestion), the method permits the sender to

utilise the saved_bb as an input to adapt current_bb to

rapidly determine a new safe rate;

The sender needs to avoid a burst of packets resulting from

a step-increase in the congestion window [RFC9000]. Pacing

the packets as a function of the current_rtt can provide

this additional safety during the period in which the CWND

is increased by the method.

Identify a relevant pacing rhythm:

The server estimates the pacing rhythm using saved_rtt and

saved_bb. The Inter-packet Transmission Time (ITT) is

determined by the ratio between the current Maximum Message

Size (MMS) and the ratio between the saved_bb and saved_rtt. A

tunable safety margin can avoid sending more than a

recommended maximum IW (recom_iw):

current_iw = min(recom_iw,saved_bb)

ITT = MSS/(current_iw/saved_rtt)

When the successful receipt of the IW data is acknowledged,

the server returns to a standard slow-start mechanism.

Tune slow-start mechanisms: After transport parameters are set to

a previously estimated bottleneck bandwidth, if the slow-start

mechanisms continue, the sender can then overshoot the bottleneck

¶

¶

¶

* ¶

1.

¶

2.

¶

3.

¶

* ¶

-

¶

o ¶

o ¶

-

¶

*

capacity. This can occur even when using the safety check

described in this section.

For NewReno and CUBIC, it is recommended to exit slow-start

and enter the congestion avoidance phase.

For BBR, it is recommended to enter the "probe bandwidth"

state.

This follows the idea presented in [RFC4782], [I-D.irtf-iccrg-

sallantin-initial-spreading] and [CONEXT15].

7. Acknowledgments

The authors would like to thank Gabriel Montenegro, Patrick McManus,

Ian Swett, Igor Lubashev, Robin Marx, Roland Bless and Franklin Simo

for their fruitful comments on earlier versions of this document.

8. IANA Considerations

TBD: Text is required to register the BDP Frame and the enable_bdp

transport parameter. Parameters are registered using the procedure

defined in [RFC9000].

9. Security Considerations

Security considerations for QUIC are discussed in Section 6

The client can send information related to the saved_rtt and

saved_bb to the server with the BDP Frame extension using either

Rationale #2 - Solution #2 or Rationale #2 - Solution #3. However,

the server SHOULD NOT trust the client. Indeed, even if 0-RTT

packets containing the BDP Frame are encrypted, a client could

modify the values within the extension and encrypt the 0-RTT packet.

Authentication mechanisms might not guarantee that the values are

safe. It is not an easy operation for a client to modify

authenticated or encrypted data without this being detected by a

server. Modification could be realized by malicious clients. One way

to avoid this is for a server to also store the saved_rtt and

saved_bb parameters.

A malicious client might modify the saved_bb parameter to convince

the server to use a larger CWND than appropriate. Using the

algorithms proposed in Section 6, the server may reduce any intended

harm and can check that part of the information provided by the

client are valid.

Storing the BDP parameters locally at the server reduces the

associated risks by allowing the client to transmit information

¶

-

¶

-

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC4782]

[RFC6349]

[RFC8174]

[RFC8446]

[RFC9000]

[RFC9002]

[CONEXT15]

[I-D.cardwell-iccrg-bbr-congestion-control]

related to the BDP of the path in the case of a malicious client

trying to break the encryption mechanism that it had received.

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Floyd, S., Allman, M., Jain, A., and P. Sarolahti,

"Quick-Start for TCP and IP", RFC 4782, DOI 10.17487/

RFC4782, January 2007, <https://www.rfc-editor.org/info/

rfc4782>.

Constantine, B., Forget, G., Geib, R., and R. Schrage,

"Framework for TCP Throughput Testing", RFC 6349, DOI

10.17487/RFC6349, August 2011, <https://www.rfc-

editor.org/info/rfc6349>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

info/rfc9000>.

Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection

and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,

May 2021, <https://www.rfc-editor.org/info/rfc9002>.

10.2. Informative References

Li, Q., Dong, M., and P B. Godfrey, "Halfback: Running

Short Flows Quickly and Safely", ACM CoNEXT , 2015.

Cardwell, N., Cheng, Y., Yeganeh, S. H., Swett, I., and

V. Jacobson, "BBR Congestion Control", Work in Progress,

Internet-Draft, draft-cardwell-iccrg-bbr-congestion-

control-02, 7 March 2022, <https://www.ietf.org/archive/

id/draft-cardwell-iccrg-bbr-congestion-control-02.txt>.

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4782
https://www.rfc-editor.org/info/rfc4782
https://www.rfc-editor.org/info/rfc6349
https://www.rfc-editor.org/info/rfc6349
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9002
https://www.ietf.org/archive/id/draft-cardwell-iccrg-bbr-congestion-control-02.txt
https://www.ietf.org/archive/id/draft-cardwell-iccrg-bbr-congestion-control-02.txt

[I-D.irtf-iccrg-sallantin-initial-spreading]

[IJSCN]

[MAPRG111]

[RFC5783]

[RFC8867]

[RFC9040]

Sallantin, R., Baudoin, C., Arnal, F., Dubois, E.,

Chaput, E., and A. Beylot, "Safe increase of the TCP's

Initial Window Using Initial Spreading", Work in

Progress, Internet-Draft, draft-irtf-iccrg-sallantin-

initial-spreading-00, 15 January 2014, <https://

www.ietf.org/archive/id/draft-irtf-iccrg-sallantin-

initial-spreading-00.txt>.

Thomas, L., Dubois, E., Kuhn, N., and E. Lochin, "Google

QUIC performance over a public SATCOM access",

International Journal of Satellite Communications and

Networking 10.1002/sat.1301, 2019.

Kuhn, N., Stephan, E., Fairhurst, G., Jones, T., and C.

Huitema, "Feedback from using QUIC's 0-RTT-BDP extension

over SATCOM public access", IETF 111 - MAPRG meeting ,

2022.

Welzl, M. and W. Eddy, "Congestion Control in the RFC

Series", RFC 5783, DOI 10.17487/RFC5783, February 2010,

<https://www.rfc-editor.org/info/rfc5783>.

Sarker, Z., Singh, V., Zhu, X., and M. Ramalho, "Test

Cases for Evaluating Congestion Control for Interactive

Real-Time Media", RFC 8867, DOI 10.17487/RFC8867, January

2021, <https://www.rfc-editor.org/info/rfc8867>.

Touch, J., Welzl, M., and S. Islam, "TCP Control Block

Interdependence", RFC 9040, DOI 10.17487/RFC9040, July

2021, <https://www.rfc-editor.org/info/rfc9040>.

Appendix A. Implementation Considerations

A.1. Rationale behind the different implementation options

The NewSessionTickets message of TLS can offer a solution. The

proposal is to add a 'bdp_metada' field in the NewSessionTickets,

which the client is able to read. The only extension currently

defined in TLS1.3 that can be seen by the client is

max_early_data_size (see Section 4.6.1 of [RFC8446]). However, in

the general design of QUIC, TLS sessions are managed by a TLS stack.

Three distinct approaches are presented: sending an opaque blob to

the client that the client may return to the server when

establishing a future new connection (see Appendix A.3), enabling

local storage of the BDP infromation (see Appendix A.2) and a BDP

Frame extension (see Appendix A.4).

¶

¶

https://www.ietf.org/archive/id/draft-irtf-iccrg-sallantin-initial-spreading-00.txt
https://www.ietf.org/archive/id/draft-irtf-iccrg-sallantin-initial-spreading-00.txt
https://www.ietf.org/archive/id/draft-irtf-iccrg-sallantin-initial-spreading-00.txt
https://www.rfc-editor.org/info/rfc5783
https://www.rfc-editor.org/info/rfc8867
https://www.rfc-editor.org/info/rfc9040

A.2. Independent Local Storage of Values

This approach independently lets both a client and a server store

their BDP parameters:

During a 1-RTT session, the endpoint stores the RTT (as the

saved_rtt) and bottleneck bandwidth (as the saved_bb) together in

the session resume ticket. The client can also store the IP

address of the server;

The server maintains a table of previously issued tickets,

indexed by the random ticket identifier that is used to guarantee

uniqueness of the Authenticated Encryption with Associated Data

(AEAD) encryption. Old tokens are removed from the table using

the Least Recently Used (LRU) logic. For each ticket identifier,

the table holds the RTT and bottleneck bandwidth (i.e. saved_rtt

and saved_bb), and also the IP address of the client (i.e.

saved_client_ip).

During the 0-RTT session, the local endpoint waits for the first RTT

measurement from the remote endpoint IP address. This is used to

verify that the current_rtt has not significantly changed from the

saved_rtt (used as an indication that the BDP information is

appropriate for the current path).

If this RTT is confirmed, the endpoint also verifies that an IW of

data has been acknowledged without requiring retransmission or

resulting in an ECN CE-mark. This second check detects whether a

path is experiencing significant congestion (i.e., where it would

not be safe to update the cwnd based on the saved_bb). In practice,

this could be realized by a proportional increase in the cwnd, where

the increase is (saved_bb/IW)*proportion_of_IW_currently-ACKed.

This solution does not allow a client to request the server not to

use the BDP parameters. If the server does not want to store the

metrics from previous connections, an equivalent of the

tcp_no_metrics_save for QUIC may be necessary. This option could be

negotiated that allows a client to choose whether to use the saved

information.

A.3. Using NEW_TOKEN frames

A server can send a NEW_TOKEN Frame to the client. The token is an

opaque (encrypyted) blob and the client can not read its content

(see section 19.7 of [RFC9000]). The client sends the received token

in the header of an Initial packet of a later connection.

¶

*

¶

*

¶

¶

¶

¶

¶

A.4. BDP Frame

Using BDP Frames, the server could send information relating to the

path characteristics to the client. The use of the BDP Frame is

negotiated with the client. The client can read its content. If the

client agrees with the usage of previous parameters, it can send the

BDP Frame back to the server in an Initial packet of a later

connection.

Authors' Addresses

Nicolas Kuhn

Thales Alenia Space

Email: nicolas.kuhn.ietf@gmail.com

Emile Stephan

Orange

Email: emile.stephan@orange.com

Godred Fairhurst

University of Aberdeen

Department of Engineering

Fraser Noble Building

Aberdeen

Email: gorry@erg.abdn.ac.uk

Tom Jones

University of Aberdeen

Department of Engineering

Fraser Noble Building

Aberdeen

Email: tom@erg.abdn.ac.uk

Christian Huitema

Private Octopus Inc.

Email: huitema@huitema.net

¶

mailto:nicolas.kuhn.ietf@gmail.com
mailto:emile.stephan@orange.com
mailto:gorry@erg.abdn.ac.uk
mailto:tom@erg.abdn.ac.uk
mailto:huitema@huitema.net

	Careful resumption of congestion control from retained state with QUIC
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Language, notations and terms
	2.1. Requirements Language
	2.2. Notations and Terms

	3. Scenarios of Interest
	3.1. Large BDP Scenarios
	3.2. Accomodating from a Known Reduction in Capacity
	3.3. Optimizing Client Requests
	3.4. Sharing Transport Information across Multiple Connections
	3.5. Connection Establishment, Client and Server

	4. The Phases of CC
	5. Safe Jump
	5.1. Rationale behind the Safety Guidelines
	5.2. Rationale #1: Variable Network Conditions
	5.3. Rationale #2: Malicious clients
	5.4. Trade-off between the different solutions
	5.4.1. Interoperability and Use Cases
	5.4.2. Summary

	6. Safety Guidelines
	7. Acknowledgments
	8. IANA Considerations
	9. Security Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Implementation Considerations
	A.1. Rationale behind the different implementation options
	A.2. Independent Local Storage of Values
	A.3. Using NEW_TOKEN frames
	A.4. BDP Frame

	Authors' Addresses

