CCAMP Working Gro	oup Kenji Kumaki				
KDDI Corporation					
Zafar Ali					
Systems	Cisco				
Tomohiro Otani					
Laboratories, Inc	KDDI R&D				
Swallow	George				
Tatipamula	Mallik				
Systems	Cisco Internet Draft				
January 2006	Category: BCP Expires: July 2006				
GMPLS	Operational, Deployment and Interworking Considerations for <u>draft-kumaki-ccamp-mpls-gmpls-interworking-02.txt</u>				
St	atus of this Memo				
that any	By submitting this Internet-Draft, each author represents applicable patent or other IPR claims of which he or she is				
aware becomes	have been or will be disclosed, and any of which he or she				
<u>79</u> .	aware will be disclosed, in accordance with <u>Section 6 of BCP</u>				
Engineering	Internet-Drafts are working documents of the Internet				
that other	Task Force (IETF), its areas, and its working groups. Note				
Ducéta	groups may also distribute working documents as Internet-				

Drafts.

	Internet-Drafts are draft documents valid for a maximum of
six months	
	and may be updated, replaced, or obsoleted by other documents
at any	
	time. It is inappropriate to use Internet-Drafts as
reference	
	material or to cite them other than as "work in progress."
	The list of current Internet-Drafts can be accessed at
	<u>http://www.ietf.org/ietf/1id-abstracts.txt</u> .
	The list of Internet-Draft Shadow Directories can be accessed
at	The fist of internet-brait shadow bilectories can be accessed
ut	http://www.ietf.org/shadow.html.
	······································
	Copyright Notice
	Copyright (C) The Internet Society (2006). All Rights
Reserved.	

<u>K</u> . Kumaki,	et al.	Page 1
[Page 1]		

At	ostract
networks, MPLS/GMPLS	In order to deploy GMPLS technology in the existing IP/MPLS various operation, deployment and interworking aspect of needs to be addressed.
lists can be [GMPLS-mig] networks using space for augmented model	From the deployment perspective, GMPLS architecture document [RFC3945] three different scenarios in which GMPLS technology deployed: overlay, augmented and integrated. Reference addresses the problem of migration from MPLS to GMPLS the integrated model. This draft addresses the same problem augmented model and illustrates the applicability of in deploying GMPLS technology in existing IP/MPLS networks.
ability includes the type operation	Another very important aspect of MPLS/GMPLS interworking is to effectively use GMPLS services in IP/MPLS networks. This ability to specify GMPLS LSPs in signaling requests based on of the setup desired, as well as considerations for the aspects of using GMPLS LSPs. In this draft, we highlight some deployment and MPLS/GMPLS
them. We solution and	interworking requirements and propose solutions to address also highlight some operation aspects and the possible provide applicability statement for the available options.

Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL"

in this

[<u>RFC2119</u>].	document are to be interpret	ed as described in <u>RFC 2119</u>			
Ro	Routing Area ID Summary				
	(This section to be removed before publication.)				
	SUMMARY				
operational and	This document addresses some	MPLS/ GMPLS deployment,			
	interworking aspects.				
	WHERE DOES IT FIT IN THE PIC	TURE OF THE ROUTING AREA WORK?			
operational	This work fits in the contex	t of MPLS/GMPLS deployment,			
	and interworking.				
<u>K</u> .	Kumaki, et al.	Page 2			

[Page 2]

WHY IS IT TARGETED AT THIS WG? This document is targeted at ccamp as it addresses some MPLS/ GMPLS deployment, operational and interworking aspects. RELATED REFERENCES Please refer to the reference section. Table of Contents 1. 2. 3. MPLS/GMPLS Deployment, Operational and interworking requirements5 **3.1** Software Upgrade Requirement......5 3.2 Use of GMPLS network resources in IP/MPLS networks.....6 3.3 Interworking of MPLS and GMPLS protection.....6 3.4 Separation of IP/MPLS domain and GMPLS domain.....6 3.5 Failure 4. Augmented model......<u>6</u> 4.1 Routing in Augmented Model......<u>7</u> 4.2 Failure Recovery in Augmented 4.3 Management in Augmented 4.4 GMPLS Deployment Considerations.....8 4.5 Applicability of real/virtual FA-4.6 Applicability of FA 4.7 Bundling FA-5. MPLS/GMPLS Interworking

5.1 Static vs. signaling triggered dynamic FA-LSPs.....9 5.2 MPLS/GMPLS LSP Resource Affinity Mapping.....<u>10</u> 5.3 MPLS/GMPLS LSP Priority Mapping.....<u>10</u> 5.4 Signaling Protected MPLS LSPs......<u>11</u> 6. Operational 6.1 Applicability of the Priority Management Options.....<u>12</u> 6.2 Applicability of the Signaling Triggered Dynamic FA-LSP....13 7. Backward Compatibility Note......<u>13</u> 8. Security 9. Intellectual Property Considerations.....<u>13</u> <u>11.1</u> Normative Reference......<u>14</u> **11.2** Informative 12.Author's 13.Full Copyright

K. Kumaki, et al. Page 3
[Page 3]

<u>1</u>. Introduction

and	Introduction of GMPLS technology in existing IP/MPLS networks						
	migration of IP/MPLS services to GMPLS core poses some new requirements that do not exist while using point to point						
physical	links in the core network. One of the biggest challenges in						
today's	network is "how to deploy GMPLS technology" in a manner least						
impact							
desired	on the existing IP/MPLS networks. It is neither feasible nor						
it is	to upgrade all existing nodes to GMPLS technology. In fact,						
	required to minimize the impact of migration to GMPLS on the						
existing	IP/MPLS network. It is also desired to respect the						
administrative	boundaries between IP/MPLS and Optical domains.						
	There are several architectural alternatives including						
overlay,	integrated and augmented models proposed in GMPLS						
architecture	document [<u>RFC3945</u>]. The key difference among these models is						
how much	and what kind of network information can be shared between						
packet and							
transport and	Optical domains. Peer model is suitable, where optical						
entity.	Internet/Intranet Service networks are operated by a single						
their	Currently, many service providers have traditionally built						
	networks, where Optical transport and IP/MPLS service						
networks belong	to different operation, management, ownership. Most important						
thing	is that service providers wants to operate and manage their						
networks							
MPLS	independently, and deploy them without changing existing IP/						
is	network topologies, protocols and scalability. Overlay model						
benefits of	suitable for such scenario, however does not offer the						

peer model approach for efficient resource utilization, optimal optical optical transport and IP/MPLS service networks administrated by different entities and would like to maintain a separation between IP/ MPLS and optical layers, at the same time, get the benefits of integrated model approach.

Reference [GMPLS-mig] addresses the problem of migration fromMPLS toGMPLS networks using the integrated model. This draftaddresses theGMPLS deployment considerations using augmented model andillustrateshow it can be used in existing IP, MPLS and non-IP/MPLSnetworks. Inthis regard, there are three different considerations takenintoaccount while comparing these approaches. They are:Deploymentconsiderations, routing aspects, and failure recovery

MPLS/GMPLS interworking is also an important aspect that needs to be considered in deploying GMPLS technology in existing IP/MPLS networks. MPLS/GMPLS interworking function refers to methods deployed for mapping between MPLS LSPs and GMPLS LSPs. From a Packet Switching Capable (PSC) network point of view, a router in the PSC network sees

K. Kumaki, et al. Page 4
[Page 4]

link. How	GMPLS LSP (signaled in non-PSC network) as a point-to-point
	effectively IP/MPLS networks can utilize these TE links (FA-
LPSs)	created in GMPLS networks is an important aspect that needs
to be	considered.
	Resource affinity and Priority management are operational
aspect that	must be considered in deploying GMPLS technology.
Specifically, GMP	LS technology is equipped with features like resource affinity
and	priority management, protection and restoration. These
features have	some implications on how IP/MPLS networks can utilize
forwarding	
networks.	and/or routing adjacencies established on top of GMPLS
	Especially, these management can be a local decision. In this draft, we highlight these implications/requirements
and	propose solutions to address them. In this fashion this draft complements [<u>GMPLS-mig</u>] draft, which formalizes the MPLS/
GMPLS	interworking problem. However, [GMPLS-mig] draft does not
address	
protected	MPLS/GMPLS interworking problems such as a mapping between
	MPLS LSPs and protected GMPLS LSPs.
	Feature richness of MPLS and GMPLS technology allows service providers to use a set of options on how GMPLS services can
be used	by IP/MPLS networks. However, there are some operational considerations and pros and cons associated with the
individual	options. This draft also highlights some operations
considerations	associated with use of GMPLS services by IP/MPLS networks.
<u>2</u> .	Terminology

SP: Service provider MPLS LSP setup request: MPLS rsvp path message MPLS signaling request: MPLS rsvp path message

MPLS TE topology: MPLS TE database (TED)

3. MPLS/GMPLS Deployment, Operational and interworking requirements

In this section, we highlight requirements that service providers have in order to deploy GMPLS technology in existing IP/MPLS networks.

3.1 Software Upgrade Requirement

Generally speaking, it is not practical to upgrade all IP/ MPLS routers to GMPLS capable routers in real SP networks due to a number of reasons. Especially, in case of accommodating enterprise customer, we do not allow IP/MPLS routers to upgrade GMPLS capable routers. This means in the real IP/MPLS networks some routers would not be upgraded to support GMPLS and some routers support would it.

K. Kumaki, et al. Page 5

[Page 5]

3.2 Use of GMPLS network resources in IP/MPLS networks

	Most SPs have different networks for various services; their						
GMPLS	deployment plans are to have these service networks use a						
effective use	GMPLS controlled optical core. We need a way to make						
service	of GMPLS network resources (e.g. bandwidth) by the IP/MPLS						
501 1100	networks.						
<u>3.3</u>	Interworking of MPLS and GMPLS protection						
FRR	If MPLS LSPs are protected using MPLS FRR [<u>RFC4090</u>], when an						
select	protected packet LSP is signaled, we should be able to						
	protected FA-LSPs from GMPLS network. In terms of MPLS						
protection, object	MPLS path message can be included some flags in FAST REROUTE						
-	and SESSION_ATTRIBUTE object. In terms of GMPLS protection, there are both signaling						
aspects	[<u>RFC3471</u>] [<u>RFC3473</u>] and routing aspects [<u>GMPLS-routing</u>]. Protected MPLS LSPs should be able to select GMPLS						
protection type	with the option.						
<u>3.4</u>	Separation of IP/MPLS domain and GMPLS domain						
where	Most SPs have had different networks for every service,						
operation,	optical networks and IP/MPLS networks belong to different						
to	management, ownership. Most important thing is that SPs want						
them	operate and manage their networks independently, and deploy						
protocols and	without changing existing IP/MPLS network topologies,						
prococors and	affecting scalability.						

<u>3.5</u> Failure recovery

Failure in optical routing domain should not affect services

in	
	IP/MPLS routing domain, and failure can be restored/repaired
in	
	optical domain without impacting IP/MPLS domain and vice
versa.	

<u>4</u>. Augmented model

Augmented Model is introduced in GMPLS Architecture document [<u>RFC3945</u>]. It is a hybrid model between the full peer and overlay models as shown in figure1. Border nodes at the edge of IP/ MPLS domain and optical domain receive routing information from the optical devices (in optical domain) and nodes (in IP/MPLS domain). Based on this information, border node keeps the optical and IP/MPLS routing domain topology information in separate topology database. No routing information from the router region is carried into the optical region and vice versa. These are quite useful aspects from

<u>K</u>. Kumaki, et al. Page 6

[Page 6]

MPLS/GMPLS deployment, operations as well as interworking requirements.

								Optical Netw	vork	·		
			·	+	+		-+	+	· - +	+	-+	
+	+	+	+									
			Ì	IP/MPLS+-	-+	Border	+ +	+ 0XC1	+-	-+ 0XC2	+-+	-+
Border	++	IP/MPLS	•									
		·	Ι	Service	Ι	Node	1	1	1	1	1	1
Node	1 1	Service	'		'		'		'			
			T	Network	I		1	1	I.	1	1	
1	1	Network	1	Network	I		1	I	I	I	I	
I	I		Ι.									
			+.	+	+	+	-+	++	+	++	-+	
+	+	+	+									

Figure 1. Augmented Model

4.1 Routing in Augmented Model

	Augmented model maintains a separation between optical and
routing	
	topologies; unlike integrated model approach, where topology
	information is shared between IP/MPLS and Optical domains.
	Nonetheless, as the border node has full knowledge of the
optical	
	network, it can compute routes for GMPLS LSPs within the
optical	
	domain. This allows augmented model to be more efficient in
resource	
	utilization than overlay model, such that router and optical
domain	
	resource can be optimized. At the same time, it can yield
more	
	efficient use of resources, similar to the full peer model.
In the	full area model thereas a ciner all the devices in antical
a va d	full peer model, however, since all the devices in optical
and	weithing develops above the same tenelow, and weithing
information with	routing domains share the same topology and routing
information with	some TCD instance, it requires all the devices within near
modol to	same IGP instance, it requires all the devices within peer
model to	be MPLS/GMPLS aware.
	DE MILES OMPLES AWATE.

<u>4.2</u> Failure Recovery in Augmented Model

	Both integrated model and augmented model offer a tighter coordination between IP/MPLS and optical layers, which helps
to	
, de é a le	resolve uncorrelated failures. This is unlike overlay model,
which	offers no coordination between optical and IP/MPLS layers; consequently a single failure in one layer may trigger
uncorrelated	
	failures in the other domain, which may complicate the fault
handling.	
	Another important aspect in augmented model is failure
transparency,	i.e., a failure in an optical network does not affect
operations at a	router network and vice verse. Checifically failure in the
optical	router network and vice versa. Specifically, failure in the
	domain does not affect services in routing (IP/MPLS) domain,
and	failure can be restored/repaired in optical domain without
impacting	
	IP/MPLS domain and vice versa. Where as in peer model, since
optical	

K. Kumaki, et al. Page 7
[Page 7]

and IP/MPLS domains share the same topology and routing information, failure in optical domain is visible to IP/MPLS domain and vice versa.

<u>4.3</u> Management in Augmented model

Currently, many SPs have traditionally built their networks, where Optical transport and IP/MPLS service networks belong to different operation, management, ownership. In augmented model, each network administrator can operate and manage his network independently because this model maintains a complete separation between these networks.

4.4 GMPLS Deployment Considerations

	In the integrated model, since all the devices in optical and
routing	domains share the same topology and routing information with
same IGP	instance, it requires all the devices within peer model to be
aspects of	MPLS/GMPLS aware. Reference [<u>GMPLS-mig</u>] discusses various
model.	migration from MPLS to GMPLS technology using integrated
	In augmented model, as shown in figure 1, devices within
optical and	its routing domains have no visibility into others topology
and/or	routing information, except the border nodes. This will help
based	augmented model to accommodate both MPLS based or non-MPLS
node in	service networks connected to border nodes, as long as Border
	augmented model can support GMPLS control plane.
context of	One of the main advantages of the augmented model in the
	GMPLS deployment is that it does not require existing IP/MPLS networks to be GMPLS aware. Only border nodes need to be

upgraded with the GMPLS functionality. In this fashion, augmented model renders itself for incremental deployment of the optical regions, without requiring reconfiguration of existing areas/ASes, changing IP/MPLS service networks.

4.5 Applicability of real/virtual FA-LSP

Real/Virtual FA-LSPs discussed in [GMPLS-mig] are equally applicable augmented model, the integrated and augmented models. Specifically, in model, the border node can advertise virtual GMPLS FA-LSPs into IP/MPLS networks and can establish the LSP statically or dynamically on as needed basis. The only additional requirement posed by the augmented model is to have at least one full routing adjacency over the GMPLS LSP, such that TE topology exchange for the individual service network can happen.

K. Kumaki, et al. Page 8
[Page 8]

<u>4.6</u> Applicability of FA Utilization

	There are several possible schemes for determining how many
FAs to	provision, when to enable the FAs, and whether to choose FAs
of	wintural FAs as discussed in FONDLO mini for intermeted model
These	virtual FAs as discussed in [<u>GMPLS-mig</u>] for integrated model.
modol	aspects of FA Utilization are equally applicable to augmented
model,	with intelligence of FA Utilization implemented at the border
node.	

4.7 Bundling FA-LSP

	In augmented model, it is also possible to bundle GMPLS FA-
LSPs at	
	the border nodes. Since IP/MPLS network will only see a
bundled link	with TE on TOD attributes exercises on the bundled link
0 0	with TE or IGP attributes, operations on the bundled link,
e.g.,	adding a new component link, failure of a component link,
etc., are	
	completely transparent to the rest of the network.

5. MPLS/GMPLS Interworking aspects

This section outlines some MPLS/GMPLS interworking aspects.

<u>5.1</u> Static vs. signaling triggered dynamic FA-LSPs

alternatives in	From signaling perspective, clearly there are two
	which setup for GMPLS tunnel can be triggered: Static (pre-
request).	configured) and Dynamic (on-demand based on signaling setup
	Decision to establish new Static GMPLS LSPs are made either
	operator or automatically (e.g., using features like TE auto-
	In either case, Static FA-LSP are established and advertised
prior to	setup of MPLS LSPs using them in the ERO. In case of static
FA-LSP,	if MPLS LSP setup request cannot be satisfied by existing

Static FA-LSPs, it is rejected. Dynamic FA-LSP is triggered by MPLS LSP setup request for an MPLS LSP. Please note that dynamic FA-LSPs can be virtual FAs from routing perspective. In either case, LSP creation from signaling perspective is triggered by the MPLS RSVP Path message received at a MPLS/GMPLS border router. In the case of Static or Virtual FA-LSPs, the FA may be specified in an ERO encoded as strict ERO. In the case where FA-LSPs are dynamic and are not advertised as virtual links in the MPLS TE topology, MPLS signaling request contains a loose ERO, and GMPLS LSP selection is a local decision at the border router. In the case of Static or Virtual FA-LSPs, a signaling request may also be encoded as loose ERO.

K. Kumaki, et al. Page 9
[Page 9]

	When the border router receives the signaling setup request
and	determines that in order for it to expand the loose ERO
content, it	
GMPLS LSP	needs to create GMPLS FA-LSP. Consequently, it signals a
	respecting MPLS/GMPLS signaling interworking aspects
discussed in	this sections. Once the GMPLS FA-LSP is fully established,
the ERO	
use the	contents for the MPLS signaling setup request are expanded to
use the	GMPLS LSP and signaling setup for the FA-LSP are carried in-
band of	the CNDIC LCD. The CNDIC LCD can then clea be advertised as
an FA-LSP	the GMPLS LSP. The GMPLS LSP can then also be advertised as
	in MPLS TE topology or an IGP adjacency can be brought up on
the	GMPLS LSP.
<u>5</u>	.2 MPLS/GMPLS LSP Resource Affinity Mapping

In terms of signaling aspects, both MPLS and GMPLS LSPs are signaled for specific resource class affinities [RFC3209], [RFC3473]. This can be viewed as "colors". In terms of routing aspects, resource classes are associated with links and advertised by routing protocol in IP/MPLS domain [<u>RFC3630</u>] and GMPLS domain, respectively. A real or virtual GMPLS FA-LSP or a full Routing Adjacency (RA) over GMPLS LSP can be advertised as TE-links with resource class. In this case, MPLS routers can select a GMPLS FA/RA that has а specific color. If MPLS signaling request contains a loose ERO, and GMPLS LSP selection is a local decision at the border router. This is possible for the cases when GMPLS LSP is not advertised into IP/MPLS networks. In this case, any mapping combination may be defined manually

and

dynamically based on some policies at the border router.

5.3 MPLS/GMPLS LSP Priority Mapping

	In terms of signaling aspects, both MPLS and GMPLS LSPs are	
signaled		
	for specific setup and hold priority [<u>RFC3209</u>], [<u>RFC3473</u>],	
based on		
operation of	the importance of traffic carried over them. For proper	
operation of	the network, it is desirable to create/use GMPLS LSPs of	
specified		
000000	setup and hold priority, based on the setup and hold priority	
of the		
	MPLS LSPs using them. In terms of routing aspects, unreserved	
	bandwidth sub-TLV is used for the amount of bandwidth not yet	
	reserved at each of the eight priority levels in MPLS domain	
	[<u>RFC3630</u>] and max lsp bandwidth at priority 0-7 in interface	
amount of	switching capability descriptor sub-TLV is used for the	
	bandwidth that can be reserved at each of the eight priority	
levels	same set our so root tou at out of the sight priority	
	in GMPLS domain [<u>GMPLS-ospf-routing</u>].	

<u>K</u>. Kumaki, et al. Page 10

[Page 10]

into	In an MPLS/GMPLS interworking, if a GMPLS LSP is advertised
can see it border a	IP/MPLS networks as an FA/RA, an LSR in the packet network
	a TE-link with unreserved bandwidth as advertised by the
	router. In this case, MPLS routers can select links that meet
	bandwidth depending on a priority level.
	If MPLS signaling request contains a loose ERO, the GMPLS LSP selection is a local decision at the border router. This is
possible	in the case where GMPLS LSP is not advertised as an FA into
IP/MPLS	networks.
setup and	In this case, following approaches are possible for mapping
functions	hold priority of MPLS LSPs to GMPLS FA-LSPs. These mapping
some	can be applied, either manually or dynamically, depending on
30110	policies at the border router.
	1) Exact Match: In this case setup and hold priority of the
GMPLS	1) Exact Match: In this case setup and hold priority of the FA-LSP is same as setup and hold priority of MPLS LSP
using it.	
	FA-LSP is same as setup and hold priority of MPLS LSP In other words, GMPLS LSP Priority set = MPLS LSP Priority
using it.	FA-LSP is same as setup and hold priority of MPLS LSPIn other words, GMPLS LSP Priority set = MPLS LSP Priority2) Better Priority: In this case GMPLS FA-LSP can be of setup
using it. set.	FA-LSP is same as setup and hold priority of MPLS LSPIn other words, GMPLS LSP Priority set = MPLS LSP Priority2) Better Priority: In this case GMPLS FA-LSP can be of setuphold priority equal better than the MPLS LSP using it. In
using it. set. and	 FA-LSP is same as setup and hold priority of MPLS LSP In other words, GMPLS LSP Priority set = MPLS LSP Priority 2) Better Priority: In this case GMPLS FA-LSP can be of setup hold priority equal better than the MPLS LSP using it. In words, GMPLS LSP Priority set <= MPLS LSP Priority set.
using it. set. and	 FA-LSP is same as setup and hold priority of MPLS LSP In other words, GMPLS LSP Priority set = MPLS LSP Priority 2) Better Priority: In this case GMPLS FA-LSP can be of setup hold priority equal better than the MPLS LSP using it. In words, GMPLS LSP Priority set <= MPLS LSP Priority set. 3) Dynamic Priority for GMPLS LSP: In this case priority of
using it. set. and other	 FA-LSP is same as setup and hold priority of MPLS LSP In other words, GMPLS LSP Priority set = MPLS LSP Priority 2) Better Priority: In this case GMPLS FA-LSP can be of setup hold priority equal better than the MPLS LSP using it. In words, GMPLS LSP Priority set <= MPLS LSP Priority set. 3) Dynamic Priority for GMPLS LSP: In this case priority of LSP is dynamically changed based on priority of the MPLS
using it. set. and other GMPLS	 FA-LSP is same as setup and hold priority of MPLS LSP In other words, GMPLS LSP Priority set = MPLS LSP Priority 2) Better Priority: In this case GMPLS FA-LSP can be of setup hold priority equal better than the MPLS LSP using it. In words, GMPLS LSP Priority set <= MPLS LSP Priority set. 3) Dynamic Priority for GMPLS LSP: In this case priority of

possible	4) Any to Any Mapping Matrix: Based on some policies, it is
possible	to have an any to any manning for MDLC (CMDLC priority)
menning of	to have an any-to-any mapping for MPLS/GMPLS priority
mapping at	the MDLC (CMDLC herder reuter
	the MPLS/GMPLS border router.

5) No Priority Management in GMPLS core: In this simple minded hold priority of "0", i.e., the GMPLS LSPs are already set as better match. In this case, priority management is handled purely at MPLS layer, with GMPLS network providing L1 connectivity without

5.4 Signaling Protected MPLS LSPs

When MPLS LSPs are protected using MPLS-FRR mechanism

[<u>RFC4090</u>] and

it may be desired to signal MPLS LSP such that it uses

protected

GMPLS tunnel FA-LSPs. In this section we discuss MPLS/GMPLS interworking aspect for protected MPLS LSPs.

K. Kumaki, et al. Page 11

[Page 11]

a left	In the case of loose ERO, where selection of GMPLS FA-LSP is
	for the border nodes and "One-to-One backup desired" or
"facility	backup desired" flag of the FAST REROUTE object, "Local
protection	desired" and/or "bandwidth protection desired" and/or "node protection desired" flag of the SESSION_ATTRIBUTE object is
set, the	border router SHOULD try to map the signaling setup request
to a	GMPLS LSP which is protected within GMPLS domain. However, in
the	case of strict ERO, the selection of GMPLS FA-LSP is based on
the	contents of the ERO and these flags are ignored.
	When a GMPLS LSP is advertised as FA or RA in MPLS network, Protection Capabilities attribute of the Link Protection Type
is a	sub-TLV of the Link TLV can be used for selecting GMPLS LSP
of	desired protection capability.
<u>6</u>	. Operational Considerations
and pros	In this section, we discuss some operational considerations
<u>Section 5.3</u> .	and cons associated with the individual options listed in
<u>6</u>	<u>.1</u> Applicability of the Priority Management Options
,	In <u>section 5.3</u> , various options from exact match to no
priority	
	management in GMPLS network are discussed. This section
provides an	management in GMPLS network are discussed. This section applicability of these options.
cost of	applicability of these options.
	applicability of these options. The benefit of Priority Management in GMPLS Core comes at the

	management in GMPLS network does allow full aggregation of
MPLS	traffic on GMPLS FAs, i.e. avoids bandwidth fragmentation. If
IGP	adjacency is to be established over the GMPLS LSPs, having
more GMPLS	LSP leads to more links in the IGP/IP topology. The same is
true of	MPLS TE topology with the exception that FA-LSPs can be
bundled to	avoid flooding of multiple TE links.
danger of	With priority management within GMPLS network, there is a
This is	creating oscillations in the IP/MPLS network using GMPLS.
routing	because when a new FA-LSP is established based on a local
5	decision made at the border router; we can have undesirable preemption affecting MPLS LSPs carried over the GMPLS LSP
that is	
	being preempted. This can have cascading affect leading to oscillations on the operation of MPLS traffic.

<u>K</u>. Kumaki, et al. Page 12

[Page 12]

6.2 Applicability of the Signaling Triggered Dynamic FA-LSP

	In this section, we discussed applicability of static vs.
dynamic FA-	LSPs. It is important to realize that we can have FA-LSPs
that are	created dynamically based on triggers like configuration,
link	utilization level, etc. However, in the context of this
document,	such FA-LSPs are considered as static FAs. In this document,
the term	dynamic FA-LSPs are used for FA-LSPs that are triggered by
RSVP Path	message for MPLS LSP.
	Signaling triggered dynamic FA-LSPs are addressing a problem
space	where traffic pattern cannot be predicted or objective is to
optimize	operations of the network based on actually signaled request
rather	than predicted use of the network resource (i.e., off-line
traffic	engineering).
	The problem with the use of signaling triggered dynamic FA-
LSPs is at the	that we loose ability to better aggregate the traffic request
at the	border routers. This leads to potential cases of bandwidth fragmentation inside GMPLS core, which has disadvantages
discussed in	<u>Section 6.1</u> . Furthermore, signaling triggered dynamic FA-LSPs
coupled	with preemption can lead to oscillations in the operation of
the	network. This is because when a new FA-LSP is dynamically
established	based on a local routing decision made at the border router;
we can	have undesirable preemption affecting MPLS LSPs carried over
the	
	GMPLS LSP that is being preempted. This can have cascading

7. Backward Compatibility Note

The procedure presented in this document is backward compatible with [RFC3630], [RFC3784], [RFC3209] and [RFC3473].

8. Security Considerations

This document does not introduce new security issues.

9. Intellectual Property Considerations

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights.

<u>K</u> . Kumaki	, et al.	Page 13
[Page 13]		

be	on the procedures with respect to rights in RFC documents can	
	found in <u>BCP 78</u> and <u>BCP 79</u> .	
	Copies of IPR disclosures made to the IETF Secretariat and	
any	assurances of licenses to be made available, or the result of	
an the use of repository at	attempt made to obtain a general license or permission for	
	such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR	
	<pre>http://www.ietf.org/ipr.</pre>	
attention any proprietary implement ietf-	The IETF invites any interested party to bring to its	
	copyrights, patents or patent applications, or other	
	rights that may cover technology that may be required to	
	this standard. Please address the information to the IETF at	
	ipr@ietf.org.	
for	10.Acknowledgement	
	The author would like to express the thanks to Arthi Ayyangar	
	helpful comments and feedback.	
	11.Reference	
	<u>11.1</u> Normative Reference	
et al,	[RFC3209] "Extensions to RSVP for LSP Tunnels", D. Awduche,	
	<u>RFC 3209</u> , December 2001.	
Engineering	[RFC3630] Katz, D., Kompella, K. and D. Yeung, "Traffic	
	(TE) Extensions to OSPF Version 2", <u>RFC 3630</u> , September 2003.	
Levels",	[RFC2119] "Key words for use in RFCs to Indicate Requirement	
	<u>RFC 2119</u> , S. Bradner, March 1997.	
	[GMPLS-mig] "IP/MPLS - GMPLS interworking in support of IP/	

MPLS to GMPLS migration", <u>draft-oki-ccamp-gmpls-ip-</u> <u>interworking-05.txt</u>, D. Brungard, et al, February 2005.

> [RFC3945] "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", <u>RFC 3945</u>, E. Mannie, October 2004.

<u>11.2</u> Informative Reference

[GMPLS-routing] "Routing Extensions in Support of Generalized

Multi-

Protocol Label Switching", <u>draft-ietf-ccamp-gmpls-</u>

routing-09.txt

(work in progress), October 2003.

<u>K</u>. Kumaki, et al. Page 14

[Page 14]

draft-kumaki-ccamp-mpls-gmpls-interworking-02.txt January 2006 [GMPLS-ospf-routing] "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching", draft-ietf-ccamp-ospf-gmplsextensions-12.txt (work in progress), October 2003. [RFC2205] "Resource Reservation Protocol (RSVP) - Version 1, Functional Specification", RFC 2205, Braden, et al, September 1997. [RFC3471] "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", <u>RFC 3471</u>, L. Berger, et al, January 2003. [RFC3473] "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource Reservation Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC 3473, L. Berger, et al, January 2003. [RFC4090] "Fast Reroute Extensions to RSVP-TE for LSP Tunnels", <u>RFC</u> 4090, Pan, et al, May 2005. 12.Author's Addresses Kenji Kumaki **KDDI** Corporation Garden Air Tower Iidabashi, Chiyoda-ku, Tokyo 102-8460, JAPAN E-mail : ke-kumaki@kddi.com Zafar Ali Cisco systems, Inc., 2000 Innovation Drive Phone: 613 254 3498 Kanata, Ontario Email: zali@cisco.com Canada K2K 3E8 Tomohiro Otani KDDI R&D Laboratories, Inc. Phone: +81-49-278-7357 2-1-15 Ohara Kamifukuoka Saitama, 356-8502. Japan Email: otani@kddilabs.jp George Swallow Cisco Systems, Inc. 1414 Massachusetts Ave,

Boxborough, MA 01719 Phone: +1 978 936 1398 Email: swallow@cisco.com

K. Kumaki, et al. Page 15

[Page 15]

	Mallik Tatipamula Cisco systems, Inc., 170 W. Tasman Drive San Jose, CA 95134 USA.	Phone: 408 525 4568 Email: mallikt@cisco.com	
13	3.Full Copyright Statement		
Copyright (C) The Internet Society (2006).			
	This document is subject to and restrictions contained i therein, the authors retain	in <u>BCP 78</u> , and except as set forth	
provided on an	This document and the inform	mation contained herein are	
provided on an		IBUTOR, THE ORGANIZATION HE/SHE 3Y (IF ANY), THE INTERNET SOCIETY	
AND THE	INTERNET ENGINEERING TASK FO	DRCE DISCLAIM ALL WARRANTIES,	
EXPRESS OR			
USE OF		CLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE	
IMPLIED	THE INFORMATION HEREIN WILL	NOT INFRINGE ANY RIGHTS OR ANY	
WARRANTIES OF MERCHANTABII		TY OR FITNESS FOR A PARTICULAR	

<u>K</u>. Kumaki, et al.

Page 16

[Page 16]