
I2NSF Working Group R. Kumar
Internet-Draft A. Lohiya
Intended status: Informational Juniper Networks
Expires: February 3, 2017 D. Qi
 Bloomberg
 X. Long
 August 2, 2016

Client Interface for Security Controller : A Framework for Security
Policy Requirements

draft-kumar-i2nsf-client-facing-interface-req-00

Abstract

 This document provides a framework and information model for the
 definition of northbound interfaces for a security controller. The
 interfaces are based on user-intent instead of vendor-specific or
 device-centric approaches that would require deep knowledge of vendor
 products and their security features. The document identifies the
 common interfaces needed to enforce the user-intent based policies
 onto network security functions (NSFs) irrespective of how those
 functions are realized. The function may be physical or virtual in
 nature and may be implemented in networking or dedicated appliances.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 3, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Kumar, et al. Expires February 3, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Client Interface Requirements August 2016

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions Used in this Document 4
3. Security Provisioning Framework 4
3.1. Client Interface Guiding Principles 5
3.2. Deployment Models for Implementing Security Policies . . 5

 3.3. Client Perspective on Security Policy Configuration and
 Management . 9

4. Functional Requirements for the Client Interface 9
4.1. Multi-Tenancy and RBAC for Policy Management 10
4.2. Policy Lifecycle Management 11
4.3. Policy Endpoint Groups 11
4.4. Policy Rules . 13
4.5. Policy Actions . 13
4.6. Third-Party Integration 14
4.7. Telemetry Data . 14

5. Operational Requirements for the Client Interface 14
5.1. API Versioning . 14
5.2. API Extensiblity . 15
5.3. APIs and Data Model Transport 15
5.4. Notification . 15
5.5. Affinity . 15
5.6. Test Interface . 16

6. IANA Considerations . 16
7. Acknowledgements . 16
8. Normative References . 16

 Authors' Addresses . 16

1. Introduction

 Programming security policies in a network is a fairly complex task
 and requires very deep knowledge of the vendors' devices in order to
 implement a security policy. This has been the biggest challenge for
 both Service Providers and Enterprise, henceforth known as end-
 customers, to keep up-to-date with the security of their networks and
 assets. The challenge is amplified due to virtualization because
 security appliances come in both physical and virtual forms and are

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Kumar, et al. Expires February 3, 2017 [Page 2]

Internet-Draft Client Interface Requirements August 2016

 supplied by a variety of vendors who have their own proprietary
 interfaces to manage and implement the security policies on their
 devices.

 Even if an end-customer deploys a single vendor solution across its
 entire network, it is difficult to manage security policies due to
 the complexity of network security features available in the devices.
 The end-customer may use a vendor-provided management system that
 gives some abstraction in the form of GUI and helps in provisioning
 and managing security policies. The single vendor approach is highly
 restrictive in today's network as explained below:

 o The end-customer cannot rely on a single vendor because one vendor
 may not be able keep up to date with its security needs.

 o The large end-customer may have a presence across different sites
 and regions and that may mean it is not possible to have a single
 vendor solution due to technical or business reasons.

 o If and when the end-customer migrates from one vendor to another,
 it is not possible to migrate security policies from one
 management system to another without complex manual work.

 o Due to virtualization within data centers, end-customers are using
 physical and virtual forms of security functions with a wide
 variety of vendors, including open source, to control their costs.

 o The end-customer might choose various devices in the network (such
 as routers, switches, firewall devices, and overlay-networks) as
 enforcement points for security policies for any reason (such as
 network design simplicity, cost, most-effective place, scale and
 performance).

 In order to provide the end-customer with a solution where they can
 deploy security policies across different vendors and devices whether
 physical or virtual, the Interface to Network Security Functions
 (I2NSF) working group in the IETF is defining a set of northbound
 interfaces. Using these interfaces, a user can write any application
 e.g. GUI portal, template engine etc. but this is completely out of
 scope for this working group.

 This document discusses the requirements for these northbound
 interfaces and describes a framework that can be easily used by end-
 customer security administrators without knowledge of specific
 security devices or features. We refer to this as "user-intent"
 based interfaces. To further clarify, the "user-intent" here does
 not mean some natural lanuguage input or an abstract intent such as
 "I want my traffic secure" or "I don't want DDoS attcks in my

Kumar, et al. Expires February 3, 2017 [Page 3]

Internet-Draft Client Interface Requirements August 2016

 network"; rather the user-intent here means that policies are
 described using client-oriented expressions such as application
 groups, device groups, user groups etc. instead of using standard
 n-tuples from the packet header.

2. Conventions Used in this Document

 BSS: Business Support System.

 CMDB: Configuration Management Database.

 Controller: Used interchangeably with Service Provider Security
 Controller or management system throughout this document.

 CRUD: Create, Retrieve, Update, Delete.

 FW: Firewall.

 IDS: Intrusion Detection System.

 IPS: Intrusion Protection System.

 LDAP: Lightweight Directory Access Protocol.

 NSF: Network Security Function, defined by
 [I-D.ietf-i2nsf-problem-and-use-cases].

 OSS: Operation Support System.

 RBAC: Role Based Access Control.

 SIEM: Security Information and Event Management.

 URL: Universal Resource Locator.

 vNSF: Refers to NSF being instantiated on Virtual Machines.

3. Security Provisioning Framework

 The IETF I2NSF working group has defined a framework for Interfaces
 to Network Security Functions that defines following terminology:

 Client: A client could be a GUI system used by a security
 administrator, an OSS/BSS system used by an end-customer, or a
 security controller system or application in the end-customer's
 management system.

Kumar, et al. Expires February 3, 2017 [Page 4]

Internet-Draft Client Interface Requirements August 2016

 Client-Facing Interface: A client-facing interface is an interface
 used to configure and manage security a framework across the
 entire network independent of device-specific interface so that
 same interface can be used for any device from any vendor.

 The "Client Facing Interface" ensures that an end-customer can deploy
 any device from any vendor and still be able to use same consistent
 interface. In essence, these interfaces give a framework to manage
 end-customer's security policies. Henceforth in this document, we
 "security policy management interface" interchangeably when we refer
 to these northbound interfaces.

3.1. Client Interface Guiding Principles

 Guiding principles in defining the client interfaces are as follows:

 o Agnostic of network topology and NSF location in the network.

 o Declarative/Descriptive model instead of Imperative/Prescriptive
 model - How a user would like to see security policy instead of
 how it would be actually implemented.

 o Agnostic of vendor, implementation and form-factor (physical,
 virtual).

 o Agnostic to how NSF is implemented and its hosting environment.

 o Agnostic to how NSF becomes operational - Network connectivity and
 other hosting requirements

 o Agnostic to NSF control plane implementation (if there is one)
 E.g., cluster of NSF active as one unified service for scale and/
 or resilience.

 o Agnostic to NSF data plane implementation i.e. Encapsulation,
 Service function chains.

3.2. Deployment Models for Implementing Security Policies

 This document describes a framework for security policy management
 interfaces. This document does not describe a framework for
 southbound interface: those may be defined in another draft.

 Traditionally, medium and larger end-customers deploy management
 systems to manage their security policies. This approach may not be
 suitable for modern datacenters that are virtualized and manage their
 resources using controllers.

Kumar, et al. Expires February 3, 2017 [Page 5]

Internet-Draft Client Interface Requirements August 2016

 There are two different deployment models:

 a. Management without an explicit management system for control of
 devices and NSFs. In this deployment, the security controller
 acts as a NSF policy management system that takes information
 passed over the northbound policy interface and translates into
 data on the I2NSF southbound interface. The I2NSF interfaces are
 implemented by security device/function vendors. This would
 usually be done by having an I2NSF agent embedded in the security
 device or NSF. This deployment model is shown in Figure 1.

Kumar, et al. Expires February 3, 2017 [Page 6]

Internet-Draft Client Interface Requirements August 2016

 RESTful API
 SUPA or I2NSF Policy Management
 ^
 Northbound |
 Security Policy Interface |
 (Independent of individual |
 NSFs, devices, and vendors) |
 |

 | |
 | Security Controller |
 | |

 | ^
 Southbound Security | I2NSF |
 Capability Interface | NSF-facing |
 (Specific to NSFs) | Interface |

 | |
 v |

 ------------- -------------
 | I2NSF Agent | | I2NSF Agent |
 |-------------| |-------------|
 | |---| |
 | NSF | | NSF |
 NSFs | | | |
 (virtual -------------\ /-------------
 and | \ / |
 physical) | X |
 | / \ |
 -------------/ \-------------
 | I2NSF Agent | | I2NSF Agent |
 |-------------| |-------------|
 | |---| |
 | NSF | | NSF |
 | | | |
 ------------- -------------

 Figure 1: Deployment without Management System

 b. Management with an explicit management system for control of
 devices and NSFs. This model is similar to the model above
 except that security controller interacts with a dedicated
 management system which could either proxy I2NSF southbound
 interfaces or could provide a layer where security devices or

Kumar, et al. Expires February 3, 2017 [Page 7]

Internet-Draft Client Interface Requirements August 2016

 NSFs do not support an I2NSF agent to process I2NSF southbound
 interfaces. This deployment model is shown in Figure 2.

 RESTful API
 SUPA or I2NSF Policy Management
 ^
 Northbound |
 Security Policy Interface |
 (Independent of individual |
 NSFs, devices, and vendors) |
 |

 | |
 | Security Controller |
 | |

 | ^
 Southbound Security | I2NSF |
 Capability Interface | NSF-facing |
 (Specific to NSFs) | Interface |

 | |
 v |

 | |
 | I2NSF Proxy Agent / |
 | Management System |
 | |

 | ^
 | Proprietary |
 | Functional |
 | Interface |

 | |
 v |

 ------------- -------------
 | |---| |
 | NSF | | NSF |
 NSFs | | | |
 (virtual -------------\ /-------------
 and | \ / |
 physical) | X |
 | / \ |
 -------------/ \-------------
 | |---| |

Kumar, et al. Expires February 3, 2017 [Page 8]

Internet-Draft Client Interface Requirements August 2016

 | NSF | | NSF |
 | | | |
 ------------- -------------

 Figure 2: Deployment with Management System or I2NSF Proxy Agent

 Although the deployment models discussed here don't necessarily
 affect the northbound security policy interface, they do give an
 overall context for defining a security policy interface based on
 abstraction.

3.3. Client Perspective on Security Policy Configuration and Management

 In order to provide I2NSF northbound interface for security policies
 to client that are not specific to any vendor, device or feature
 implementation, it is important that security policies shall be
 configured and managed from a client's perspective. We refer to this
 as the user-intent based model since it is primarily driven by how
 security administrators view security policies from the deployment
 perspective.

 The client perspective ensures that policy management is not only
 easy to understand for them (the actual users), but is also
 independent of vendor, device, and specific implementation which is
 the foremost goal for a northbound interface.

4. Functional Requirements for the Client Interface

 As mentioned earlier, it is important that the northbound interface
 be primarily driven by user-intent which is what a client understands
 well. In order to define this interface, we must understand the
 requirements and framework used by the security administrator.

 A security policy that is based on user-intent is completely agnostic
 of how this policy is enforced in the end-customer's network. The
 security controller may choose to implement such a policy on any
 device (router, switch, firewall) in a physical or virtual form
 factor. The security controller's implementation is outside the
 scope of this document and the I2NSF working group.

 At a high level, the objects that are required in order to express
 and build the security policies fall into the following categories:

 o Multi-tenancy and RBAC for policy management

 o Policy lifecycle management

Kumar, et al. Expires February 3, 2017 [Page 9]

Internet-Draft Client Interface Requirements August 2016

 o Policy endpoint groups

 o Policy rules

 o Policy actions

 o Third party integration

 o Telemetry data

 The above categories are by no means a complete list and may not be
 sufficient for all use-cases and all end-customers, but should be a
 good start for a wide variety of use-cases in both Service Provider
 networks and Enterprise networks.

 The following sections provide further details on the above mentioned
 security policies categories.

4.1. Multi-Tenancy and RBAC for Policy Management

 An end-customer that uses security policies may have internal tenants
 and would like to have a framework wherein each tenant manages its
 own security policies to provide isolation across different tenants.

 An end-customer may be a cloud service provider with multi-tenant
 deployments where each tenant is a different organization and must
 allow complete isolation across different tenants.

 The RBAC objects and method needed to build such a framework is
 defined below.

 Policy-Tenant: An entity that owns and manages the security
 policies.

 Policy-User: A user within a Policy-Tenant authorized to manage
 security policies for that tenant.

 Policy-Authorization-Role: A role assigned to a Policy-User that
 determines whether the user has read-write access, read-only
 access, or no access for certain resources.

 Authentication and Authorization Scheme: There must be a scheme for
 a Policy-User to be authenticated and authorized to use the
 security controller. There are several authentication schemes
 avialable such as OAuth, XAuth and X.509 certificate based. The
 authentication scheme between client and controller may also be
 mutual instead of one-way. Any specific scheme may be determined

Kumar, et al. Expires February 3, 2017 [Page 10]

Internet-Draft Client Interface Requirements August 2016

 based on organizational and deployment needs and outside the scope
 of I2NSF.

4.2. Policy Lifecycle Management

 In order to provide more sophisticated security framework, there
 should be a mechanism to express that a policy becomes dynamically
 active/enforced or inactive based on either security administrator
 intervention or an event.

 One example of dynamic policy management is when the security
 administrator pre-configures all the security policies, but the
 policies get activated/enforced or deactivated based on dynamic
 threats faced by the end-customer. Basically, a threat event may
 activate certain inactive policies, and once a new event indicates
 that the threat has gone away, the policies become inactive again.

 The northbound interface should support the following mechanisms for
 policy enforcement:

 Admin-Enforced: The policy, once configured, remains active/enforced
 until removed by the security administrator.

 Time-Enforced: The policy configuration specifies the time profile
 that determines when policy is activated/enforced.

 Event-Enforced: The policy configuration specifies the event profile
 that determines when policy is activated/enforced.

4.3. Policy Endpoint Groups

 Typically, when the security administrator configures a security
 policy, the intention is to apply this policy to certain subsets of
 the network. The subsets may be identified based on criteria such as
 users, devices, and applications. We refer to such a subset of the
 network as a "Policy Endpoint Group".

 One of the biggest challenges for a security administrator is how to
 make sure that security policies remain effective while constant
 changes are happening to the "Policy Endpoint Group" for various
 reasons (e.g., organizational changes). If the policy is created
 based on static information such as user names, application, or
 network subnets, then every time that this static information changes
 policies would need to be updated. For example, if a policy is
 created that allows access to an application only from the group of
 Human Resource users (the HR-users group), then each time the HR-
 users group changes, the policy needs to be updated.

Kumar, et al. Expires February 3, 2017 [Page 11]

Internet-Draft Client Interface Requirements August 2016

 Changes to policy could be highly taxing to the end-customer for
 various operational reasons. The policy management framework must
 allow "Policy Endpoint Group" to be dynamic in nature so that changes
 to the group (HR-users in our example) automatically result in
 updates to its content.

 We call these dynamic Policy Endpoint Groups "Meta-data Driven
 Groups". The meta-data is a tag associated with endpoint information
 such as users, applications, and devices. The mapping from meta-data
 to dynamic content could come either from standards-based or
 proprietary tools. The security controller could use any available
 mechanisms to derive this mapping and to make automatic updates to
 the policy content if the mapping information changes.

 The northbound policy interface must support endpoint groups for
 user-intent based policy management. The following meta-data driven
 groups are typically used for configuring security polices:

 User-Group: This group identifies a set of users based on a tag or
 on static information. The tag to user information is dynamically
 derived from systems such as Active Directory or LDAP. For
 example, an end-customer may have different user-groups, such as
 HR-users, Finance-users, Engineering-users, to classify a set of
 users in each department.

 Device-Group: This group identifies a set of devices based on a tag
 or on static information. The tag to device information is
 dynamically derived from systems such as CMDB. For example, an
 end-customer may want to classify all machines running one
 operating system into one group and machines running another
 operating system into another group.

 Application-Group: This group identifies a set of applications based
 on a tag or on static information. The tag to application
 information is dynamically derived from systems such as CMDB. For
 example, an end-customer may want to classify all applications
 running in the Legal department into one group and all
 applications running under a specific operating system into
 another group.

 Location-Group: This group identifies a set of locations based on a
 tag or on static information. The tag to location information is
 dynamically derived from systems such as CMDB. For example, an
 end-customer may want to classify all sites/locations in a
 geographic region as one group.

Kumar, et al. Expires February 3, 2017 [Page 12]

Internet-Draft Client Interface Requirements August 2016

4.4. Policy Rules

 The security policy rules can be as simple as specifying a match for
 the user or application specified through "Policy Endpoint Group" and
 take one of the "Policy Actions" or more complicated rules that
 specify how two different "Policy Endpoint Groups" interact with each
 other. The northbound interface must support mechanisms to allow the
 following rule matches.

 Policy Endpoint Groups: The rule must allow a way to match either a
 single or a member of a list of "Policy Endpoint Groups".

 There must also be a way to express whether a group is a source or a
 destination so that the security administrator can apply the rule in
 only one direction of a communication.

 There must also be a way to express a match between two "Policy
 Endpoint Groups" so that a policy can be effective for communication
 between two groups.

 Direction: The rule must allow a way to express whether the security
 administrator wants to match the "Policy Endpoint Group" as the
 source or destination. The default should be to match both
 directions if the direction rule is not specified in the policy.

 Threats: The rule should allow the security administrator to express
 a match for threats that come either in the form of feeds (such as
 botnet feeds, GeoIP feeds, URL feeds, or feeds from a SIEM) or
 speciality security appliances.

 The threat could be from malware and this requires a way to match for
 virus signatures or file hashes.

4.5. Policy Actions

 The security administrator must be able to configure a variety of
 actions within a security policy. Typically, security policy
 specifies a simple action of "deny" or "permit" if a particular rule
 is matched. Although this may be enough for most of the simple
 policies, the I2NSF northbound interface must also provide a more
 comprehensive set of actions so that the interface can be used
 effectively across various security functions.

 Permit: This action means continue processing the next rule or allow
 the packet to pass if this is the last rule.

 Deny: This action means stop further rule processing and drop the
 packet.

Kumar, et al. Expires February 3, 2017 [Page 13]

Internet-Draft Client Interface Requirements August 2016

 Drop connection: This action means stop further rule processing,
 drop the packet, and drop connection (for example, by sending a
 TCP reset).

 Log: This action means create a log entry whenever a rule is
 matched.

 Authenticate connection: This action means that whenever a new
 connection is established it should be authenticated.

 Quarantine/Redirect: This action may be relevant for event driven
 policy where certain events would activate a configured policy
 that quarantines or redirects certain packet flows.

4.6. Third-Party Integration

 The security policies in the end-customer's network may require the
 use of specialty devices such as honeypots, behavioral analytics, or
 SIEM in the network, and may also involve threat feeds, virus
 signatures, and malicious file hashes as part of comprehensive
 security policies.

 The northbound interface must allow the security administrator to
 configure these threat sources and any other information to provide
 integration and fold this into policy management.

4.7. Telemetry Data

 One of the most important aspect of security is to have visibility
 into the networks. As threats become more sophisticated, the
 security administrator must be able to gather different types of
 telemetry data from various devices in the network. The collected
 data could simply be logged or sent to security analysis engines for
 behavioral analysis, policy voilations, and for threat detection.

 The northbound interface must allow the security administrator to
 collect various kinds of data from NSFs. The data source could be
 syslog, flow records, policy violation records, and other available
 data.

5. Operational Requirements for the Client Interface

5.1. API Versioning

 The northbound interface must support a version number for each
 RESTful API. This is very important because the client application
 and the controller application will most likely come from different

Kumar, et al. Expires February 3, 2017 [Page 14]

Internet-Draft Client Interface Requirements August 2016

 vendors. Even if the vendor is same, it is hard to imagine that two
 different applications would be released in lock step.

 Without API versioning, it hard to debug and figure out issues if
 application breaks. Although API versioning does not guarantee that
 applications will always work, it helps in debugging if the problem
 is caused by an API mismatch.

5.2. API Extensiblity

 Abstraction and standardization of the northbound interface is of
 tremendous value to end-customers as it gives them the flexibility of
 deploying any vendors' NSF. However this might also look like as an
 obstacle to innovation.

 If an NSF vendor comes up with new feature or functionality that
 can't be expressed through the currently defined northbound
 interface, there must be a way to extend existing APIs or to create a
 new API that is relevant for that NSF vendor only.

5.3. APIs and Data Model Transport

 The APIs for client interface must be derived from the YANG based
 data model. The YANG data model for client interface must capture
 all the requirements as defined in this document to express a
 security policy. The interface between a client and controller must
 be reliable to ensure robust policy enforcement. Once such transport
 mechanism is RESTCONF that uses HTTP operations to provide necessary
 CRUD operations for YANG data objects, but any other mechanism can be
 used.

5.4. Notification

 The northbound interface must allow the security administrator to
 collect various alarams and events from the NSF in the network. The
 events and alarms may be either related to security policy
 enforcement or NSF operation. The events and alarms could also be
 used as a input to the security policy for autonomous handling.

5.5. Affinity

 The northbound interface must allow the security administrator to
 pass any additional metadata that a user may want to provide for a
 security policy e.g. certain security policy needs to be applied only
 on linux machine or windows machine or that a security policy must be
 applied on the device with Trusted Platform Module chip.

Kumar, et al. Expires February 3, 2017 [Page 15]

Internet-Draft Client Interface Requirements August 2016

5.6. Test Interface

 The northbound interface must allow the security administrator the
 ability to test the security policies before the policies are
 actually applied e.g. a user may want to verify if a policy creates
 potential conflicts with the existing policies or whether a certain
 policy can be implemented. The test interface provides such
 capabilities without actually applying the policies.

6. IANA Considerations

 This document requires no IANA actions. RFC Editor: Please remove
 this section before publication.

7. Acknowledgements

 The editors would like to thank Adrian Farrel for helpful discussions
 and advice.

8. Normative References

 [I-D.ietf-i2nsf-problem-and-use-cases]
 Hares, S., Dunbar, L., Lopez, D., Zarny, M., and C.
 Jacquenet, "I2NSF Problem Statement and Use cases", draft-

ietf-i2nsf-problem-and-use-cases-01 (work in progress),
 July 2016.

Authors' Addresses

 Rakesh Kumar
 Juniper Networks
 1133 Innovation Way
 Sunnyvale, CA 94089
 US

 Email: rkkumar@juniper.net

 Anil Lohiya
 Juniper Networks
 1133 Innovation Way
 Sunnyvale, CA 94089
 US

 Email: alohiya@juniper.net

https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-problem-and-use-cases-01
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-problem-and-use-cases-01

Kumar, et al. Expires February 3, 2017 [Page 16]

Internet-Draft Client Interface Requirements August 2016

 Dave Qi
 Bloomberg
 731 Lexington Avenue
 New York, NY 10022
 US

 Email: DQI@bloomberg.net

 Xiaobo Long
 4 Cottonwood Lane
 Warren, NJ 07059
 US

 Email: long.xiaobo@gmail.com

Kumar, et al. Expires February 3, 2017 [Page 17]

