
I2NSF Working Group R. Kumar
Internet-Draft A. Lohiya
Intended status: Informational Juniper Networks
Expires: April 12, 2017 D. Qi
 Bloomberg
 N. Bitar
 S. Palislamovic
 Nokia
 L. Xia
 Huawei
 October 9, 2016

Requirements for Client-Facing Interface to Security Controller
draft-kumar-i2nsf-client-facing-interface-req-01

Abstract

 This document captures the requirements for the client-facing
 interface to security controller. The interfaces are based on user-
 intent instead of developer-specific or device-centric approaches
 that would require deep knowledge of specific products and their
 security features. The document identifies the requirements needed
 to enforce the user-intent based policies onto network security
 functions (NSFs) irrespective of how those functions are realized.
 The function may be physical or virtual in nature and may be
 implemented in networking or dedicated appliances.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 12, 2017.

Kumar, et al. Expires April 12, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Client Interface Requirements October 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions Used in this Document 4

 3. Guiding principles for definition of Client-Facing Interfaces 5
3.1. User-intent based modeling 5
3.2. Basic rules for interface definition 6
3.3. Independent of deployment models 6

4. Functional Requirements for the Client-Facing Interface . . . 10
4.1. Requirement for Multi-Tenancy 11
4.2. Requirement for Authentication and Authorization 12
4.3. Requirement for Role-Based Access Control (RBAC) 12
4.4. Requirement for Protection from Attacks 12
4.5. Requirement for Protection from Misconfiguration 13
4.6. Requirement for Policy Lifecycle Management 13
4.7. Requirement for Dynamic Policy Endpoint Groups 14
4.8. Requirement for Policy Rules 16
4.9. Requirement for Policy Actions 16
4.10. Requirement for Generic Policy Models 18
4.11. Requirement for Policy Conflict Resolution 18
4.12. Requirement for Backward Compatibility 18
4.13. Requirement for Third-Party Integration 18
4.14. Requirement for Telemetry Data 19

5. Operational Requirements for the Client-Facing Interface . . 19
5.1. API Versioning . 19
5.2. API Extensiblity . 19
5.3. APIs and Data Model Transport 20
5.4. Notification . 20
5.5. Affinity . 20
5.6. Test Interface . 20

6. IANA Considerations . 20
7. Acknowledgements . 21
8. Normative References . 21

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Kumar, et al. Expires April 12, 2017 [Page 2]

Internet-Draft Client Interface Requirements October 2016

 Authors' Addresses . 21

1. Introduction

 Programming security policies in a network has been a fairly complex
 task that often requires very deep knowledge of developers' specific
 devices. This has been the biggest challenge for both service
 providers and enterprises, henceforth named as security administrator
 in this document. The challenge is amplified due to virtualization
 because security appliances come in both physical and virtual forms
 and are supplied by a variety of developers who have their own
 proprietary interfaces to manage and implement the security policies
 on their devices.

 Even if a security administrator deploys a single developer solution
 with a set of one or more security functions across its entire
 network, it is difficult to manage security policies due to the
 complexity of network security features available in the developer
 devices, and the difficulty in mapping the user intent to developer-
 specific configurations. The security administrator may use asset of
 developer-specific APIs or a developer-provided management system
 that gives some abstraction in the form of GUI to help provision and
 manage security policies. However, the single developer approach is
 highly restrictive in today's network for the following reasons:

 o The security administrator cannot rely on a single developer
 because one developer may not be able keep up to date with the
 customer security needs or specific deployment models.

 o A large organization may have a presence across different sites
 and regions; which means, it is not possible to have a complete
 solution from a single developer due to technical, regulatory or
 business reasons.

 o If and when the security administrator migrates from one developer
 to another, it is almost impossible to migrate security policies
 from one management system to another without complex manual work.

 o Security administrators are implementing various security
 functions in virtual forms or physical forms to attain the
 flexibility, elasticity, performance, and operational efficiency
 they require. Practically, that often requires different sources
 (developers and open source) that provide the best of breed for
 any such security function.

 o The security administrator might choose various devices or network
 services (such as routers, switches, firewall devices, and
 overlay-networks) as enforcement points for security policies for

Kumar, et al. Expires April 12, 2017 [Page 3]

Internet-Draft Client Interface Requirements October 2016

 any reason (such as network design simplicity, cost, most-
 effective place, scale and performance).

 In order to ease the deployment of security policies across different
 developers and devices, the Interface to Network Security Functions
 (I2NSF) working group in the IETF is defining a client-facing
 interface from the security controller to clients [I-D. ietf-i2nsf-
 framework] [I-D. ietf-i2nsf-terminology]. The easiness of deployment
 should be agnostic to type of device, be it physical or virtual, or
 type of the policy, be it dynamic or static. Using these interfaces,
 a user can write any application (e.g. GUI portal, template engine,
 etc.) to control the implementation of security policies on security
 functional elements, but this is completely out of scope for the
 I2NSF working group.

 This document captures the requirements for the client-facing
 interface that can be easily used by security administrators without
 knowledge of specific security devices or features. We refer to this
 as "user-intent" based interfaces. To further clarify, in the scope
 of this document, the "user-intent" here does not mean some free-from
 natural language input or an abstract intent such as "I want my
 traffic secure" or "I don't want DDoS attacks in my network"; rather
 the user-intent here means that policies are described using client-
 oriented expressions such as application names, application groups,
 device groups, user groups etc. with a vocabulary of verbs (e.g.,
 drop, tap, throttle), prepositions, conjunctions, conditionals,
 adjectives, and nouns instead of using standard n-tuples from the
 packet header.

2. Conventions Used in this Document

 BSS: Business Support System

 CLI: Command Line Interface

 CMDB: Configuration Management Database

 Controller: Used interchangeably with Service Provider Security
 Controller or management system throughout this document

 CRUD: Create, Retrieve, Update, Delete

 FW: Firewall

 GUI: Graphical User Interface

 IDS: Intrusion Detection System

Kumar, et al. Expires April 12, 2017 [Page 4]

Internet-Draft Client Interface Requirements October 2016

 IPS: Intrusion Protection System

 LDAP: Lightweight Directory Access Protocol

 NSF: Network Security Function, defined by
 [I-D.ietf-i2nsf-problem-and-use-cases]

 OSS: Operation Support System

 RBAC: Role Based Access Control

 SIEM: Security Information and Event Management

 URL: Universal Resource Locator

 vNSF: Refers to NSF being instantiated on Virtual Machines

3. Guiding principles for definition of Client-Facing Interfaces

 The "Client-Facing Interface" ensures that a security administrator
 can deploy any device from any developer and still be able to use
 same consistent interface. In essence, these interfaces provide a
 management framework to manage security administrator's security
 policies. Henceforth in this document, we use "security policy
 management interface" interchangeably when we refer to the client-
 facing interface.

3.1. User-intent based modeling

 Traditionally, security policies have been expressed using
 proprietary interfaces. These interfaces are defined by a developer
 either based on CLI or a GUI system; but more often these interfaces
 are built using developer specific networking construct such IP
 address, protocol and application constructs with L4-L7 information.
 This requires security operators to translate their oragnzational
 business objectives into actionable security policies on security
 device using developers policy constructs. But, this alone is not
 sufficient to render policies in the network as operator also need to
 identify the device where the policy need to be applied in a complex
 network environment with multiple policy enforcement points.

 The User-intent based framework defines constructs such as user-
 group, application-group, device-group and location group. The
 security operator would use these constructs to express a security
 policy instead of proprietary constructs. The policy defined in such
 a manner is referred to user-intent based policies in this draft.
 The idea is to enable security operator to use constructs they knows

Kumar, et al. Expires April 12, 2017 [Page 5]

Internet-Draft Client Interface Requirements October 2016

 best in expressing security policies; which simplify their tasks and
 help in avoiding human errors in complex security provisioing.

3.2. Basic rules for interface definition

 The basic rules in defining the client-facing interfaces are as
 following:

 o Agnostic of network topology and NSF location in the network.

 o Agnostic to the features and capabilities supported in NSFs.

 o Agnostic to the resources available in NSFs or resources available
 for various features/capabilities.

 o Agnostic to the network function type, be it stateful firewall,
 IDP, IDS, Router, Switch.

 o Declarative/Descriptive model instead of Imperative/Prescriptive
 model - What security policies need to enforce (declarative)
 instead of how they would be actually implemented (imperative).

 o Agnostic of developer, implementation and form-factor (physical,
 virtual).

 o Agnostic to how NSF is implemented and its hosting environment.

 o Agnostic to how NSF becomes operational - Network connectivity and
 other hosting requirements

 o Agnostic to NSF control plane implementation (if there is one)
 E.g., cluster of NSF active as one unified service for scale and/
 or resilience.

 o Agnostic to NSF data plane implementation i.e. Encapsulation,
 Service function chains.

3.3. Independent of deployment models

 This document does not describe requirements for NSF-facing
 interface; they are expected to be defined in a separate draft. This
 draft does not mandate a specific deployment model but rather shows
 how client interfaces remain the same and interact with the overall
 security framework from security administrator's perspective.

 Traditionally, medium and larger operators deploy management systems
 to manage their statically-defined security policies. This approach
 may not be suitable nor sufficient for modern automated and dynamic

Kumar, et al. Expires April 12, 2017 [Page 6]

Internet-Draft Client Interface Requirements October 2016

 data centers that are largely virtualized and rely on various
 management systems and controllers to dynamically implement security
 policies over any types of resources.

 There are two different deployment models in which the client-facing
 interface referred to in this document could be implemented. These
 models have no direct impact on the client-facing interface, but
 illustrate the overall security policy and management framework and
 where the various processing functions reside. These models are:

 a. Management without an explicit management system for control of
 devices and NSFs. In this deployment, the security controller
 acts as a NSF policy management system that takes information
 passed over the client security policy interface and translates
 into data on the I2NSF southbound interface. The I2NSF
 interfaces are implemented by security device/function
 developers. This would usually be done by having an I2NSF agent
 embedded in the security device or NSF. This deployment model is
 shown in Figure 1.

Kumar, et al. Expires April 12, 2017 [Page 7]

Internet-Draft Client Interface Requirements October 2016

 RESTful API
 SUPA or I2NSF Policy Management
 ^
 Client-facing |
 Security Policy Interface |
 (Independent of individual |
 NSFs, devices,and developers)|
 |

 | |
 | Security Controller |
 | |

 | ^
 Southbound Security | I2NSF |
 Capability Interface | NSF-facing |
 (Specific to NSFs) | Interface |

 | |
 v |

 ------------- -------------
 | I2NSF Agent | | I2NSF Agent |
 |-------------| |-------------|
 | |---| |
 | NSF | | NSF |
 NSFs | | | |
 (virtual -------------\ /-------------
 and | \ / |
 physical) | X |
 | / \ |
 -------------/ \-------------
 | I2NSF Agent | | I2NSF Agent |
 |-------------| |-------------|
 | |---| |
 | NSF | | NSF |
 | | | |
 ------------- -------------

 Figure 1: Deployment without Management System

 b. Management with an explicit management system for control of
 devices and NSFs. This model is similar to the model above
 except that security controller interacts with a dedicated
 management system which could either proxy I2NSF southbound
 interfaces or could provide a layer where security devices or

Kumar, et al. Expires April 12, 2017 [Page 8]

Internet-Draft Client Interface Requirements October 2016

 NSFs do not support an I2NSF agent to process I2NSF southbound
 interfaces. This deployment model is shown in Figure 2.

 RESTful API
 SUPA or I2NSF Policy Management
 ^
 Client-facing |
 Security Policy Interface |
 (Independent of individual |
 NSFs,devices,and developers) |
 |

 | |
 | Security Controller |
 | |

 | ^
 Southbound Security | I2NSF |
 Capability Interface | NSF-facing |
 (Specific to NSFs) | Interface |

 | |
 v |

 | |
 | I2NSF Proxy Agent / |
 | Management System |
 | |

 | ^
 | Proprietary |
 | Functional |
 | Interface |

 | |
 v |

 ------------- -------------
 | |---| |
 | NSF | | NSF |
 NSFs | | | |
 (virtual -------------\ /-------------
 and | \ / |
 physical) | X |
 | / \ |
 -------------/ \-------------
 | |---| |

Kumar, et al. Expires April 12, 2017 [Page 9]

Internet-Draft Client Interface Requirements October 2016

 | NSF | | NSF |
 | | | |
 ------------- -------------

 Figure 2: Deployment with Management System or I2NSF Proxy Agent

 Although the deployment models discussed here don't necessarily
 affect the client security policy interface, they do give an overall
 context for defining a security policy interface based on
 abstraction.

4. Functional Requirements for the Client-Facing Interface

 As stated in the guiding principles for defining I2NSF client-facing
 interface, the security policies and the client-facing interface
 shall be defined from a user/client perspective and abstracted away
 from the type of NSF, NSF specific implementation, controller
 implementation, NSF topology, NSF interfaces, controller southbound
 interfaces. Thus, the security policy definition shall be
 declarative, expressing the user/client intent, and driven by how
 security administrators view security policies from the definition,
 communication and deployment perspective.

 The security controller's implementation is outside the scope of this
 document and the I2NSF working group.

 At a high level, the requirements for the client-facing interface in
 order to express and build security policies are as follows:

 o Multi-Tenancy

 o Authentication and Authorization

 o Role-Based Access Control (RBAC)

 o Protection from Attacks

 o Protection from Misconfiguration

 o Policy Lifecycle Management

 o Dynamic Policy Endpoint Groups

 o Policy Rules

 o Policy Actions

Kumar, et al. Expires April 12, 2017 [Page 10]

Internet-Draft Client Interface Requirements October 2016

 o Generic Policy Model

 o Policy Conflict Resolution

 o Backward Compatibility

 o Third-Party Integration

 o Telemetry Data

 The above constructs are by no means a complete list and may not be
 sufficient for all use-cases and all operators, but should be a good
 start for a wide variety of use-cases in both Service Provider
 networks and Enterprise networks.

4.1. Requirement for Multi-Tenancy

 A security administrator that uses security policies may have
 internal tenants and would like to have a framework wherein each
 tenant manages its own security policies to provide isolation across
 different tenants.

 An operator may be a cloud service provider with multi-tenant
 deployments where each tenant is a different organization and must
 allow complete isolation across different tenants.

 It should be noted that tenants in turn can have their own tenants,
 so a recursive relation exists. For instance, a tenant in a cloud
 service provider may have multiple departments or organizations that
 need to manage their own security rules.

 Some key concepts are listed below and used throughout the document
 hereafter:

 Policy-Tenant: An entity that owns and manages the security Policies
 applied on itself.

 Policy-Administrator: A user authorized to manage the security
 policies for a Policy-Tenant.

 Policy-User: A user within a Policy-Tenant who is authorized to
 access certain resources of that tenant according to the security
 policies of the Policy-Tenant.

 Policy-User-Group: A collection of Policy-Users. This group
 identifies a set of users based on a policy tag or on static
 information. The tag to identify the user is dynamically derived
 from systems such as Active Directory or LDAP. For example, an

Kumar, et al. Expires April 12, 2017 [Page 11]

Internet-Draft Client Interface Requirements October 2016

 operator may have different user-groups, such as HR-users,
 Finance-users, Engineering-users, to classify a set of users in
 each department.

4.2. Requirement for Authentication and Authorization

 Security administrators MUST authenticate to and be authorized by
 security controller before they are able to issue control commands
 and any policy data exchange commences.

 There must be methods defined for Policy-Administrator be
 authenticated and authorized to use the security controller. There
 are several authentication methods available such as OAuth, XAuth and
 X.509 certificate based. The authentication scheme between Policy-
 Administrator and security controller may also be mutual instead of
 one-way. Any specific method may be determined based on
 organizational and deployment needs and outside the scope of I2NSF.
 In addition, there must be a method to authorize the Policy-
 Administrator for performing certain action. It should be noted
 that, depending on the deployment model, Policy-Administrator
 authentication and authorization to perform actions communicated to
 the controller could be performed as part of a portal or another
 system prior to communication the action to the controller.

4.3. Requirement for Role-Based Access Control (RBAC)

 Policy-Authorization-Role represents a role assigned to a Policy-User
 or Policy-User Group that determines whether the user or the user-
 group has read-write access, read-only access, or no access for
 certain resources. A User or a User-Group can be mapped to a Policy-
 Authorization- Role using an internal or external identity provider
 or mapped statically.

4.4. Requirement for Protection from Attacks

 There Must be protections from attacks, malicious or otherwise, from
 clients or a client impersonator. Potential attacks could come from
 a botnet or a host or hosts infected with virus or some unauthorized
 entity. It is recommended that security controller use adedicated IP
 interface for client-facing communications and those communications
 should be carried over an isolated out-of-band network. In addition,
 it is recommended that traffic between clients and security
 controllers be encrypted. Furthermore, some straightforward traffic/
 session control mechanisms (i.e., Rate-limit, ACL, White/Black list)
 can be employed on the security controller to defend against DDoS
 flooding attacks.

Kumar, et al. Expires April 12, 2017 [Page 12]

Internet-Draft Client Interface Requirements October 2016

4.5. Requirement for Protection from Misconfiguration

 There Must be protections from mis-configured clients, unintentional
 or otherwise. System and policy validations should be implemented.
 Validation may be based on a set of default parameters or custom
 tuned thresholds such as # of policy changes submitted; # of objects
 requested in given time interval, etc.

4.6. Requirement for Policy Lifecycle Management

 In order to provide more sophisticated security framework, there
 should be a mechanism to express that a policy becomes dynamically
 active/enforced or inactive based on either security administrator
 intervention or an event.

 One example of dynamic policy management is when the security
 administrator pre-configures all the security policies, but the
 policies get activated/enforced or deactivated based on dynamic
 threats faced by the security administrator. Basically, a threat
 event may activate certain inactive policies, and once a new event
 indicates that the threat has gone away, the policies become inactive
 again.

 There are four models for dynamically activating policies:

 o The policy may be dynamically activated by the I2NSF client or
 associated management entity, and dynamically communicated over the
 I2NSF client-facing interface to the controller to program I2NSF
 functions using the I2NSF NSF-facing interface

 o The policy may be pulled dynamically by the controller upon
 detecting an event over the I2NSF monitoring interface

 o The policy may be statically pushed to the controller and
 dynamically programmed on the NSFs upon potentially detecting another
 event

 o The policy can be programmed in the N2SFs functions, and activated/
 deactivated upon policy attributes, like time or admin enforced.

 The client-facing interface should support the following policy
 attributes for policy enforcement:

 Admin-Enforced: The policy, once configured, remains active/enforced
 until removed by the security administrator.

Kumar, et al. Expires April 12, 2017 [Page 13]

Internet-Draft Client Interface Requirements October 2016

 Time-Enforced: The policy configuration specifies the time profile
 that determines when policy is activated/enforced. Otherwise, it
 is de-activated.

 Event-Enforced: The policy configuration specifies the event profile
 that determines when policy is activated/enforced. It also
 specifies the duration attribute of that policy once activated
 based on event. For instance, if the policy is activated upon
 detecting an application flow, the policy could be de-activated
 when the corresponding session is closed or the flow becomes
 inactive for certain time.

 A policy could be a composite policy, that is composed of many rules,
 and subject to updates and modification. For policy maintenance
 purposes, enforcement, and auditability, it becomes important to name
 and version the policies. Thus, the policy definition SHALL support
 policy naming and versioning. In addition, the i2NSF client-facing
 interface SHALL support the activation, deactivation,
 programmability, and deletion of policies based on name and version.
 In addition, it Should support reporting on the state of policies by
 name and version. For instance, a client may probe the controller
 about the current policies enforced for a tenant and/or a sub-tenant
 (organization) for auditability or verification purposes.

4.7. Requirement for Dynamic Policy Endpoint Groups

 When the security administrator configures a security policy, the
 intention is to apply this policy to certain subsets of the network.
 The subsets may be identified based on criteria such as users,
 devices, and applications. We refer to such a subset of the network
 as a "Policy Endpoint Group".

 One of the biggest challenges for a security administrator is how to
 make sure that security policies remain effective while constant
 changes are happening to the "Policy Endpoint Group" for various
 reasons (e.g., organizational changes). If the policy is created
 based on static information such as user names, application, or
 network subnets, then every time that this static information changes
 policies would need to be updated. For example, if a policy is
 created that allows access to an application only from the group of
 Human Resource users (the HR-users group), then each time the HR-
 users group changes, the policy needs to be updated.

 Changes to policy could be highly taxing to the security
 administrator for various operational reasons. The policy management
 framework must allow "Policy Endpoint Group" to be dynamic in nature
 so that changes to the group (HR-users in our example) automatically
 result in updates to its content.

Kumar, et al. Expires April 12, 2017 [Page 14]

Internet-Draft Client Interface Requirements October 2016

 We call these dynamic Policy Endpoint Groups "Meta-data Driven
 Groups". The meta-data is a tag associated with endpoint information
 such as users, applications, and devices. The mapping from meta-data
 to dynamic content could come either from standards-based or
 proprietary tools. The security controller could use any available
 mechanisms to derive this mapping and to make automatic updates to
 the policy content if the mapping information changes. The system
 SHOULD allow for multiple, or sets of tags to be applied to a single
 network object.

 The client-facing policy interface must support endpoint groups for
 user-intent based policy management. The following meta-data driven
 groups MAY be used for configuring security polices:

 User-Group: This group identifies a set of users based on a tag or
 on static information. The tag to identify user is dynamically
 derived from systems such as Active Directory or LDAP. For
 example, an operator may have different user-groups, such as HR-
 users, Finance-users, Engineering-users, to classify a set of
 users in each department.

 Device-Group: This group identifies a set of devices based on a tag
 or on static information. The tag to identify device is
 dynamically derived from systems such as configuration mannagement
 database (CMDB). For example, a security administrator may want
 to classify all machines running one operating system into one
 group and machines running another operating system into another
 group.

 Application-Group: This group identifies a set of applications based
 on a tag or on static information. The tag to identify
 application is dynamically derived from systems such as CMDB. For
 example, a security administrator may want to classify all
 applications running in the Legal department into one group and
 all applications running under a specific operating system into
 another group. In some cases, the application can semantically
 associated with a VM or a device. However, in other cases, the
 application may need to be associated with a set of identifiers
 (e.g., transport numbers, signature in the application packet
 payload) that identify the application in the corresponding
 packets. The mapping of application names/tags to signatures in
 the associated application packets should be defined and
 communicated to the NSF. The client-facing Interface shall
 support the communication of this information.

 Location-Group: This group identifies a set of location tags. Tag
 may correspond 1:1 to location. The tag to identify location is
 either statically defined or dynamically derived from systems such

Kumar, et al. Expires April 12, 2017 [Page 15]

Internet-Draft Client Interface Requirements October 2016

 as CMDB. For example, a security administrator may want to
 classify all sites/locations in a geographic region as one group.

4.8. Requirement for Policy Rules

 The security policy rules can be as simple as specifying a match for
 the user or application specified through "Policy Endpoint Group" and
 take one of the "Policy Actions" or more complicated rules that
 specify how two different "Policy Endpoint Groups" interact with each
 other. The client-facing interface must support mechanisms to allow
 the following rule matches.

 Policy Endpoint Groups: The rule must allow a way to match either a
 single or a member of a list of "Policy Endpoint Groups".

 There must be a way to express a match between two "Policy Endpoint
 Groups" so that a policy can be effective for communication between
 two groups.

 Direction: The rule must allow a way to express whether the security
 administrator wants to match the "Policy Endpoint Group" as the
 source or destination. The default should be to match both
 directions if the direction rule is not specified in the policy.

 Threats: The rule should allow the security administrator to express
 a match for threats that come either in the form of feeds (such as
 botnet feeds, GeoIP feeds, URL feeds, or feeds from a SIEM) or
 speciality security appliances. Threats could be identified by
 Tags/names in policy rules. The tag is a label of one or more
 event types that may be detected by a threat detection system.

 The threat could be from malware and this requires a way to match for
 virus signatures or file hashes.

4.9. Requirement for Policy Actions

 The security administrator must be able to configure a variety of
 actions within a security policy. Typically, security policy
 specifies a simple action of "deny" or "permit" if a particular
 condition is matched. Although this may be enough for most of the
 simple policies, the I2NSF client-facing interface must also provide
 a more comprehensive set of actions so that the interface can be used
 effectively across various security functions.

 Policy action MUST be extensible so that additional policy action
 specifications can easily be added.

 The following list of actions SHALL be supported:

Kumar, et al. Expires April 12, 2017 [Page 16]

Internet-Draft Client Interface Requirements October 2016

 Permit: This action means continue processing the next rule or allow
 the packet to pass if this is the last rule. This is often a
 default action.

 Deny: This action means stop further packet processing and drop the
 packet.

 Drop connection: This action means stop further packet processing,
 drop the packet, and drop connection (for example, by sending a
 TCP reset).

 Log: This action means create a log entry whenever a rule is
 matched.

 Authenticate connection: This action means that whenever a new
 connection is established it should be authenticated.

 Quarantine/Redirect: This action may be relevant for event driven
 policy where certain events would activate a configured policy
 that quarantines or redirects certain packets or flows. The
 redirect action must specify whether the packet is to be tunneled
 and in that case specify the tunnel or encapsulation method and
 destination identifier.

 Netflow: This action creates a Netflow record; Need to define
 Netflow server or local file and version of Netflow.

 Count: This action counts the packets that meet the rule condition.

 Encrypt: This action encrypts the packets on an identified flow.
 The flow could be over an Ipsec tunnel, or TLS session for
 instance.

 Decrypt: This action decrypts the packets on an identified flow.
 The flow could be over an Ipsec tunnel, or TLS session for
 instance.

 Throttle: This action defines shaping a flow or a group of flows
 that match the rule condition to a designated traffic profile.

 Mark: This action defines traffic that matches the rule condition by
 a designated DSCP value and/or VLAN 802.1p Tag value.

 Instantiate-NSF: Instantiate a NSF with predefined profile. A NSF
 can be any of FW, LB, IPS, IDS, honeypot, or VPN, etc.

 WAN-Accelerate: This action optimize packet delivery using a set of
 predefined packet optimization methods.

Kumar, et al. Expires April 12, 2017 [Page 17]

Internet-Draft Client Interface Requirements October 2016

 Load-Balance: This action load balance connections based on
 predefined LB schemes or profiles.

 The policy actions should support combination of terminating actions
 and non-terminating actions. For example, Syslog and then Permit;
 Count and then Redirect.

 Policy actions SHALL support any L2, L3, L4-L7 policy actions.

4.10. Requirement for Generic Policy Models

 Client-facing interface SHALL provide a generic metadata model that
 defines once and then be used by appropriate model elements any
 times, regardless of where they are located in the class hierarchy,
 as necessary.

 Client-facing interface SHALL provide a generic context model that
 enables the context of an entity, and its surrounding environment, to
 be measured, calculated, and/or inferred.

 Client-facing interface SHALL provide a generic policy model that
 enables context-aware policy rules to be defined to change the
 configuration and monitoring of resources and services as context
 changes.

4.11. Requirement for Policy Conflict Resolution

 Client-facing interface SHALL be able to detect policy "conflicts",
 and SHALL specify methods on how to resolve these "conflicts"

 For example: two clients issues conflicting set of security policies
 to be applied to the same Policy Endpoint Group.

4.12. Requirement for Backward Compatibility

 It MUST be possible to add new capabilities to client-facing
 interface in a backward compatible fashion.

4.13. Requirement for Third-Party Integration

 The security policies in the security administrator's network may
 require the use of specialty devices such as honeypots, behavioral
 analytics, or SIEM in the network, and may also involve threat feeds,
 virus signatures, and malicious file hashes as part of comprehensive
 security policies.

Kumar, et al. Expires April 12, 2017 [Page 18]

Internet-Draft Client Interface Requirements October 2016

 The client-facing interface must allow the security administrator to
 configure these threat sources and any other information to provide
 integration and fold this into policy management.

4.14. Requirement for Telemetry Data

 One of the most important aspect of security is to have visibility
 into the networks. As threats become more sophisticated, the
 security administrator must be able to gather different types of
 telemetry data from various devices in the network. The collected
 data could simply be logged or sent to security analysis engines for
 behavioral analysis, policy violations, and for threat detection.

 The client-facing interface MUST allow the security administrator to
 collect various kinds of data from NSFs. The data source could be
 syslog, flow records, policy violation records, and other available
 data.

 Detailed client-facing interface telemetry data should be available
 between clients and security controllers. Clients should be able to
 subscribe and receive these telemetry data.

 client should be able to receive notifications when a policy is
 dynamically updated.

5. Operational Requirements for the Client-Facing Interface

5.1. API Versioning

 The client-facing interface must support a version number for each
 RESTful API. This is very important because the client application
 and the controller application will most likely come from different
 developers. Even if the developer is same, it is hard to imagine
 that two different applications would be released in lock step.

 Without API versioning, it is hard to debug and figure out issues if
 application breaks. Although API versioning does not guarantee that
 applications will always work, it helps in debugging if the problem
 is caused by an API mismatch.

5.2. API Extensiblity

 Abstraction and standardization of the client-facing interface is of
 tremendous value to security administrators as it gives them the
 flexibility of deploying any developers' NSF without needing to
 redefine their policies or change the client interface. However this
 might also look like as an obstacle to innovation.

Kumar, et al. Expires April 12, 2017 [Page 19]

Internet-Draft Client Interface Requirements October 2016

 If an NSF developer comes up with new feature or functionality that
 can't be expressed through the currently defined client-facing
 interface, there must be a way to extend existing APIs or to create a
 new API that is relevant for that NSF developer only.

5.3. APIs and Data Model Transport

 The APIs for client interface must be derived from the YANG based
 data model. The YANG data model for client interface must capture
 all the requirements as defined in this document to express a
 security policy. The interface between a client and controller must
 be reliable to ensure robust policy enforcement. One such transport
 mechanism is RESTCONF that uses HTTP operations to provide necessary
 CRUD operations for YANG data objects, but any other mechanism can be
 used.

5.4. Notification

 The client-facing interface must allow the security administrator to
 collect various alarms and events from the NSF in the network. The
 events and alarms may be either related to security policy
 enforcement or NSF operation. The events and alarms could also be
 used as a input to the security policy for autonomous handling.

5.5. Affinity

 The client-facing interface must allow the security administrator to
 pass any additional metadata that a user may want to provide for a
 security policy e.g. certain security policy needs to be applied only
 on linux machine or windows machine or that a security policy must be
 applied on the device with Trusted Platform Module chip.

5.6. Test Interface

 The client-facing interface must allow the security administrator the
 ability to test the security policies before the policies are
 actually applied e.g. a user may want to verify if a policy creates
 potential conflicts with the existing policies or whether a certain
 policy can be implemented. The test interface provides such
 capabilities without actually applying the policies.

6. IANA Considerations

 This document requires no IANA actions. RFC Editor: Please remove
 this section before publication.

Kumar, et al. Expires April 12, 2017 [Page 20]

Internet-Draft Client Interface Requirements October 2016

7. Acknowledgements

 The editors would like to thank Adrian Farrel for helpful discussions
 and advice.

8. Normative References

 [I-D.ietf-i2nsf-problem-and-use-cases]
 Hares, S., Dunbar, L., Lopez, D., Zarny, M., and C.
 Jacquenet, "I2NSF Problem Statement and Use cases", draft-

ietf-i2nsf-problem-and-use-cases-02 (work in progress),
 October 2016.

Authors' Addresses

 Rakesh Kumar
 Juniper Networks
 1133 Innovation Way
 Sunnyvale, CA 94089
 US

 Email: rkkumar@juniper.net

 Anil Lohiya
 Juniper Networks
 1133 Innovation Way
 Sunnyvale, CA 94089
 US

 Email: alohiya@juniper.net

 Dave Qi
 Bloomberg
 731 Lexington Avenue
 New York, NY 10022
 US

 Email: DQI@bloomberg.net

https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-problem-and-use-cases-02
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-problem-and-use-cases-02

Kumar, et al. Expires April 12, 2017 [Page 21]

Internet-Draft Client Interface Requirements October 2016

 Nabil Bitar
 Nokia
 755 Ravendale Drive
 Mountain View, CA 94043
 US

 Email: nabil.bitar@nokia.com

 Senad Palislamovic
 Nokia
 755 Ravendale Drive
 Mountain View, CA 94043
 US

 Email: senad.palislamovic@nokia.com

 Liang Xia
 Huawei
 101 Software Avenue
 Nanjing, Jiangsu 210012
 China

 Email: Frank.Xialiang@huawei.com

Kumar, et al. Expires April 12, 2017 [Page 22]

