
Service Function Chaining S. Kumar
Internet-Draft J. Guichard
Intended status: Standards Track P. Quinn
Expires: April 23, 2017 Cisco Systems, Inc.
 J. Halpern
 Ericsson
 S. Majee
 F5 Networks
 October 20, 2016

Service Function Simple Offloads
draft-kumar-sfc-offloads-03

Abstract

 Service Function Chaining (SFC) enables services to be delivered by
 selective traffic steering through an ordered set of service
 functions. Once classified into an SFC, the traffic for a given flow
 is steered through all the service functions of the SFC for the life
 of the traffic flow even though this is often not necessary.
 Steering traffic to service functions only while required and not
 otherwise, leads to shorter SFC forwarding paths with improved
 latencies, reduced resource consumption and better user experience.

 This document describes the rationale, techniques and necessary
 protocol extensions to achieve such optimization, with focus on one
 such technique termed "simple offloads".

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 23, 2017.

Kumar, et al. Expires April 23, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft SFC SF Offloads October 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Language 3

2. Definition Of Terms . 3
3. Service Function Path Reduction 4
3.1. Bypass . 4
3.2. Simple Offload . 5
3.2.1. Stateful SFF . 7
3.2.2. Packet Re-ordering 7
3.2.3. Race Conditions 8
3.2.4. Policy Implications 8
3.2.5. Capabilities Exchange 8

4. Methods For SFP Reduction 9
4.1. SFP In-band Offload 9
4.1.1. Progression Of SFP Reduction 11

4.2. Service Controller Offload 12
5. Simple Offload Data-plane Signaling 13
5.1. Offload Flags Definition 14

6. Acknowledgements . 15
7. IANA Considerations . 15
7.1. Standard Class Registry 15
7.1.1. Simple Offloads TLV 15

8. Security Considerations 16
9. References . 16
9.1. Normative References 16
9.2. Informative References 16

 Authors' Addresses . 16

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Kumar, et al. Expires April 23, 2017 [Page 2]

Internet-Draft SFC SF Offloads October 2016

1. Introduction

 Service function chaining involves steering traffic flows through a
 set of service functions in a specific order. Such an ordered list
 of service functions is called a Service Function Chain (SFC). The
 actual forwarding path used to realize an SFC is called the Service
 Function Path (SFP).

 Service functions forming an SFC are hosted at different points in
 the network, often co-located with different types of service
 functions to form logical groupings. Applying a SFC thus requires
 traffic steering by the SFC infrastructure from one service function
 to the next until all the service functions of the SFC are applied.
 Service functions know best what type of traffic they can service and
 how much traffic needs to be delivered to them to achieve complete
 delivery of service. As a consequence any service function may
 potentially request, within its policy constraints, traffic no longer
 be delivered to it or its function be performed by the SFC
 infrastructure, if such a mechanism is available.

 While there are several possible means to achieve this, one of the
 most flexible, directly connected to functional semantics, is based
 on allowing service functions themselves to evaluate a particular
 flow and reflect the result of this evaluation back to the SFC
 infrastructure.

 This document outlines the "simple offloads" mechanism that avoids
 steering traffic to service functions on flow boundary, on request
 from the service functions, while still ensuring compliance to the
 instantiated policy that mandates the SFC.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Definition Of Terms

 This document uses the following terms. Additional terms are defined
 in [RFC7498], [I-D.ietf-sfc-architecture] and [I-D.ietf-sfc-nsh].

 Service Controller (SC): The entity responsible for managing the
 service chains, including create/read/update/delete actions as
 well as programming the service forwarding state in the network -
 SFP distribution.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7498

Kumar, et al. Expires April 23, 2017 [Page 3]

Internet-Draft SFC SF Offloads October 2016

 Classifier (CF): The entity, responsible for selecting traffic as
 well as SFP, based on policy, and forwarding the selected traffic
 on the SFP after adding the necessary encapsulation. Classifier
 is implicitly an SFF.

 Offload: A request or a directive from the SF to alter the SFP so as
 to remove the requesting SF from the SFP while maintaining the
 effect of the removed SF on the offloaded flow.

3. Service Function Path Reduction

 The packet forwarding path of a SFP involves the classifier, one or
 more SFFs and all the SFs that are part of the SFP. Packets of a
 flow are forwarded along this path to each of the SFs, for the life
 of the flow, whether SFs perform the full function in treating the
 packet or reapply the cached result, from the last application of the
 function, on the residual packets of the flow. In other words, every
 packet on the flow incurs the same latency and the end-to-end SFP
 latency remains more or less constant subject to the nature of the
 SFs involved. If an SF can be removed from the SFP, for a specific
 flow, traffic steering to the SF is avoided for that flow; thus
 leading to a shorter SFP for the flow. When multiple SFs in a SFP
 are removed, the SFP starts to converge towards the optimum path,
 incurring a fraction of the latency associated with traversing the
 SFP.

 Although SFs are removed from the SFP, the corresponding SFC is not
 changed - this is subtle but an important characteristic of this
 mechanism. In other words, this mechanism does not alter the SFC and
 still uses the SFP associated with the SFC.

 There are two primary approaches to removing an SF from the SFP.
 Namely,

 o Bypass: Mechanism that alters the SFC. Described in this draft
 for completeness.

 o Simple Offload: Mechanism that alters the SFP alone, does not
 affect the SFC. This is the primary focus of this draft.

3.1. Bypass

 Many service functions do not deliver service to certain types of
 traffic. For instance, typical WAN optimization service functions
 are geared towards optimizing TCP traffic and add no value to non-TCP
 traffic. Non-TCP traffic thus can bypass such a service function.
 Even in the case of TCP, a WAN optimization SF may not be able to
 service the traffic if the corresponding TCP flow is not seen by it

Kumar, et al. Expires April 23, 2017 [Page 4]

Internet-Draft SFC SF Offloads October 2016

 from inception. In such a situation a WAN optimization SF can avoid
 the overhead of processing such a flow or reserving resources for it,
 if it had the ability to request such flows not be steered to it. In
 other words such service functions need the ability to request they
 be bypassed for a specified flow from a certain time in the life of
 that flow.

 A seemingly simple alternative is to require service functions pre
 specify the traffic flow types they add value to, such as the one-
 tuple: IP protocol-type described above. A classifier built to use
 such data exposed by SFs, may thus enable bypassing such SFs for
 specific flows by way of selecting a different SFC that does not
 contain the SF being removed.

 Although knowledge of detailed SF profiles helps SFC selection at the
 classifier starting the SFC, it leads to shortcomings.

 o It adds to the overhead of classification at that classifier as
 all SF classification requirements have to be met by the
 classifier.

 o It leads to conflicts in classification requirements between the
 classifier and the SFs. Classification needs of different SFs in
 the same SFC may vary. A classifier thus cannot classify traffic
 based on the classification of one of the SFs in the chain. For
 instance, even though a flow is uninteresting to one SF on an SFC,
 it may be interesting to another SF in the same SFC.

 o The trigger for bypassing an SF may be dynamic as opposed to the
 static classification at the classifier - it may originate at the
 SFs themselves and involve the control and policy planes. The
 policy and control planes may react to such a trigger by
 instructing the classifier to select a different SFC for the flow,
 thereby achieving SF bypass.

3.2. Simple Offload

 Service delivery by a class of service functions involves inspecting
 the initial portion of the traffic and determining whether traffic
 should be permitted or dropped. In some service functions, such an
 inspection may be limited to just the five tuple, in some others it
 may involve protocol headers, and in yet others it may involve
 inspection of the byte stream or application content based on the
 policy specified. Firewall service functions fall into such a class,
 for example. In all such instances, servicing involves determining
 whether to permit the traffic to proceed onwards or to deny the
 traffic from proceeding onwards and drop the traffic. In some cases,
 dropping of the traffic may be accompanied with the generation of a

Kumar, et al. Expires April 23, 2017 [Page 5]

Internet-Draft SFC SF Offloads October 2016

 response to the originator of traffic or to the destination or both.
 Once the service function determines the result - permit or deny (or
 drop), it simply applies the same result to the residual packets of
 the flow by caching the result in the flow state.

 In essence, the effect of service delivery is a PERMIT or a DENY
 action on the traffic of a flow. This class of service functions can
 avoid all the overhead of processing such traffic at the SF, by
 simply requesting another entity in the SFP, to assume the function
 of performing the action determined by the service function. Since
 PERMIT and DENY are very simple actions, other entities in the SFP
 are very likely to be able to perform them on behalf of the
 requesting SF. A service function can thus offload simple functions
 to other entities in the SFP.

 As with PERMIT and DENY actions, there are others which are simple
 enough to be supported. Some are listed here for illustration.

 Unidirectional Offload: Client-Server communication, typical of HTTP
 request-response transactions, imposes higher cost on SFs in one
 direction. Reponses often carry more bytes, sometimes orders of
 mangnitude more, as compared to requests. SFs could avoid the
 cost of moving the bits in the response direction to which it may
 add no value, once the policy is satisfied, if the response flow
 can be offloaded. Hence Offloads must be requestable on a
 unidirectional flow boundary.

 TCP Control Exception Offload: Most SFs maintain flow state and
 would like to know when a flow terminates, so SFs can cleanup the
 flow state and associated resources. Such SFs need to receive
 the TCP control packets, the ones with control flags [RFC0793]
 set, on the flow even when the flow itself is offloaded, in order
 to perform such activity. Hence Offloads must be predicatable to
 offload all but the TCP control packets of a flow.

 Time Limited Offload: SF policy may dictate flows be limited to
 certain period of time among other reasons to optimize SF load.
 SFs can request a flow be offloaded for a specific time duration
 after which, all traffic on that flow gets redirected to the SF
 as was done before the offload was initiated. Hence Offloads
 must be requestable on a time limit.

 Volume Limited Offload: As with time limited offlaods, SF policy may
 dictate flows be limited to certain volume of data. SFs can
 request a flow be offloaded until a specified number of bytes
 traverse the flow. Hence Offloads must be requestable on a
 volume limit.

https://datatracker.ietf.org/doc/html/rfc0793

Kumar, et al. Expires April 23, 2017 [Page 6]

Internet-Draft SFC SF Offloads October 2016

 Since SFF is the one steering traffic to the SFs and hence is on the
 SFP, it is a natural entity to assume the offload function. A SF not
 interested in traffic being steered to it can simply perform a simple
 offload by indicating a PERMIT action along with an OFFLOAD request.
 The SFF responsible for steering the traffic to the SF takes note of
 the ACTION and offload request. The OFFLOAD directive and the ACTION
 received from the requesting SF are cached against the SF for that
 flow. Once cached, residual packets on the flow are serviced by the
 cached directive and action as if being serviced by the corresponding
 SF.

3.2.1. Stateful SFF

 SFFs are the closest SFC infrastructure entities to the service
 functions. SFFs may be state-full and hence can cache the offload
 and action in both of the unidirectional flows of a connection. As a
 consequence, action and offload become effective on both the flows
 simultaneously and remain so until cancelled or the flow terminates.

 SFFs may not always honor the offload requests received from SFs.
 This does not affect the correctness of the SFP in any way. It
 implies that the SFs can expect traffic to arrive on a flow, which it
 offloaded, and hence must service them, which may involve requesting
 an offload again. It is natural to think of an acknowledgement
 mechanism to provide offload guarantees to the SFs but such a
 mechanism just adds to the overhead while not providing significant
 benefit. Offload serves as a best effort mechanism.

3.2.2. Packet Re-ordering

 The simple offload mechanism creates short time-windows where packet
 re-ordering may occur. While SFs request flows be offloaded to SFFs,
 packets may still be in flight at various points along the SFP,
 including some between the SFF and the SF. Once the offload decision
 is received and committed into the flow entry at the SFF, any packets
 arriving after and destined to the offloading SF are treated to the
 offload decision and forwarded along (if it is a PERMIT action).
 Inflight packets to the offloading SF may arrive at the SFF after one
 or more packets are already treated to the offload decision and
 forwarded along.

 This is a transitional effect and may not occur in all cases. For
 instance, if the decision to offload a flow by an SF is based on the
 first packet of TCP flow, a reasonable time window exists between the
 offload action being committed into the SFF and arrival of subsequent
 packet of the same flow at that SFF. Likewise, request/response
 based protocols such as HTTP may not always be subject to the re-
 ordering effects.

Kumar, et al. Expires April 23, 2017 [Page 7]

Internet-Draft SFC SF Offloads October 2016

3.2.3. Race Conditions

 The tuple that make up an end-to-end flow or connection, such as a
 five tuple TCP connection, may be reused in a very short span of time
 when very high performing end points are involved. A very remote
 manifestation of this behavior may involve the wrong incarnation of a
 flow at the SFF receiving the flow offload request from a SF.

 Implementations of simple offloads must thus be aware of such a
 possibility and include appropriate measures to address it. It is
 important to note that a SFF must maintain correctness and hence it
 is acceptable to not honor a simple offloads request to resolve such
 an occurrence. After all SFs exist with right security posture to
 protect against malicious traffic.

 A simple and widely used method to serialize reuse of tuples is to
 use an incarnation number in addition to the five-tuple. The
 steering SFF can pass an opaque cookie, which in its simplest form
 could be the incarnation number, that is preserved by the SF and
 passed along with the simple offload request. SFF can thus correctly
 identify the right incarnation of the flow. SYN detection at the SFF
 to take corrective action is another option. The SFF implementations
 may employ any technique deemed appropriate.

3.2.4. Policy Implications

 Offload mechanism may be controlled by the policy layer. The SFs
 themselves may have a static policy to utilize the capability offered
 by the SFC infrastructure. They could also be dynamic and controlled
 by the specific policy layer under which the SFs operate.

 Similarly, the SFC infrastructure, specifically the classifiers and
 the SFFs, may be under the SFC infrastructure control plane policy
 controlling the decision to honor offloads from an SF. This policy
 in turn may be coarse-grain, at the SF level, and hence static. It
 can also be fine grain and hence dynamic but it adds to the overhead
 of policy distribution.

 Policy model related to offloads is out of scope of this document.

3.2.5. Capabilities Exchange

 Simple offloads can be exposed and negotiated a priori as a
 capability between the SFFs and the SFs or the corresponding control
 layers. In the simplest of the implementations, this is provided by
 the SFC infrastructure and the SFs are statically configured to
 utilize them without capabilities negotiation, within the constraints
 of the SF specific policies.

Kumar, et al. Expires April 23, 2017 [Page 8]

Internet-Draft SFC SF Offloads October 2016

 Capabilities exchange is outside the scope of this document.

4. Methods For SFP Reduction

 There are a number of different models that may be used to facilitate
 SFP shortening.

 The methods discussed in the following sections require signaling
 among the participant components to communicate offload and permit/
 deny actions. The signaling may be performed in the data-plane or in
 the control plane.

 a. Data-plane: A SFC specific communication channel is needed for
 SFs to communicate the offload request along with the SF treated
 packet. [NSH] defines a header specifically for carrying SFP
 along with metadata and provides such a channel for use with
 offloads. Necessary bits need to be allocated in NSH to convey
 the action as well as the offload directive. This signaling may
 be limited to SF and SFF or may continue from one SFF to another
 SFF or the classifier. It may also involve signaling directly
 from the SF to the classifier.

 b. Control-plane: Messages are required between the SF and the
 service controller as well as between the SFF and the service
 controller. Service controller messaging is out of scope of this
 document and it is assumed to be service controller specific,
 which may include open or standard interfaces.

4.1. SFP In-band Offload

 SFs receive traffic on an overlay from the SFF. SFs service the
 traffic and turn them back to the SFF on an overlay or forward the
 traffic on the underlay. In the former case, along with returning
 the traffic to SFF, they can perform simple offload by signaling
 OFFLOAD and ACTION to the SFF. SFF caches the OFFLOAD and ACTION
 while forwarding the serviced packet onwards to the next service hop
 on the SFP or dropping it as per the ACTION. This may continue from
 one hop to the next on the SFP. SFF can now enforce the OFFLOAD and
 ACTION on the residual packets of the flow.

 By performing such hop-by-hop offloads, SFP can be reduced from its
 original length, steering traffic to only the SFFs and the SFs that
 really need to see the traffic.

 Figure 1 to Figure 3 show an example of SF and SFF performing offload
 operations, with PERMIT action, and the effect thereafter on the SFP.

Kumar, et al. Expires April 23, 2017 [Page 9]

Internet-Draft SFC SF Offloads October 2016

 SFID(1) SFID(2) SFID(3)
 +------+ +------+ +------+
 | SF1 |.... | SF2 |.... | SF3 |....
 . +------+ . . +------+ . . +------+ .
 . | . . | . . | .
 . | . . | . . | .
 . | . . | . . | .
 . | . . | . . | .
 . | . . | . . | .
 +----+ . +------+ . . +------+ . . +------+ .
 | CF |------| SFF1 |-----------| SFF2 |-----------| SFF3 |------ Net
 +----+ . +------+ . . +------+ . . +------+ .

 SFP1 >

 SFC1 = {SF1, SF2, SF3}
 SFC1 -> SFP1

 Where,
 SFC1 is a service function chain
 SF1, SF2 and SF3 are three service functions
 SFP1 is the servcie function path for SFC1
 CF is the classifier starting SFP1 based on policy

 Note: Network forwarders are omitted from the figure for simplicity

 Figure 1: SFC1 with corresponding SFP1

Kumar, et al. Expires April 23, 2017 [Page 10]

Internet-Draft SFC SF Offloads October 2016

 O
 f
 SFID(1) f +- SFID(2) SFID(3)
 +------+ l | +------+ +------+
 | SF1 |.... o | | SF2 | | SF3 |....
 . +------+ . a | +------+ . +------+ .
 . | . d | | . | .
 . | . | | . | .
 . | . | | . | .
 . | . v | . | .
 . | . | . | .
 +----+ . +------+ . +------+ . +------+ .
 | CF |------| SFF1 |-----------| SFF2 |-----------| SFF3 |----- Net
 +----+ . +------+ . +------+ . +------+ .

 SFP1 >

 Figure 2: SFP1 after SFID(2) performs an Offload

 O O
 f f
 f +- SFID(1) SFID(2) f +- SFID(3)
 l | +------+ +------+ l | +------+
 o | | SF1 | | SF2 | o | | SF3 |
 a | +------+ +------+ a | +------+
 d | | | d | |
 | | | | |
 | | | | |
 v | | v |
 | | |
 +----+ +------+ +------+ +------+
 | CF |------| SFF1 |-----------| SFF2 |-----------| SFF3 |----- Net
 +----+ +------+ +------+ +------+
 SFP1 .. >

 Figure 3: SFP1 after SFID(1) and SFID(3) perform Offloads

4.1.1. Progression Of SFP Reduction

 SFP reduction happens one SFF at a time: by collapsing the SFF-to-SF
 hops into the SFF or the SFC infrastructure.

Kumar, et al. Expires April 23, 2017 [Page 11]

Internet-Draft SFC SF Offloads October 2016

 Figure 1 to Figure 3 show one sequence of offload events that lead to
 a shorter SFP.

 Corresponding transformation of the actual forwarding path is
 captured by the states below.

 Stage-1: Prior to any offloads, service function path SFP1
 (corresponding to SFC1) has the following actual forwarding path
 as shown in Figure 1:
 CF ->
 SFF1 -> SF1 -> SFF1 ->
 SFF2 -> SF2 -> SFF2 ->
 SFF3 -> SF3 -> SFF3 ->

 Stage-2: After SF2 performs a simple offload, service function path
 SFP1 changes to the one represented below, as also shown in
 Figure 2:
 CF ->
 SFF1 -> SF1 -> SFF1 ->
 SFF2 ->
 SFF3 -> SF3 -> SFF3 ->

 Stage-3: After SF1 and SF3 both perform simple offloads, service
 function path SFP1 changes to the one represented below, as also
 show in Figure 3:
 CF ->
 SFF1 ->
 SFF2 ->
 SFF3 ->

 When all the SFs in a SFP perform offloads the forwarding path is
 reduced to pass through just the SFFs.

4.2. Service Controller Offload

 Each SF signals the service controller of the OFFLOAD and ACTION via
 control plane messaging for a specific flow. The service controller
 then signals the appropriate SFFs to offload the requested SFs, there
 by achieving the hop-by-hop offload behavior.

 The service controller has full knowledge of all the SFs of the SFP
 offloading the flow and hence can determine the optimum SFP within
 the Service Controller and program the appropriate SFFs to achieve
 SFP optimization.

Kumar, et al. Expires April 23, 2017 [Page 12]

Internet-Draft SFC SF Offloads October 2016

5. Simple Offload Data-plane Signaling

 Since Offload and action are signaled at the time of returning the
 traffic to SFF, post servicing the traffic, such signaling can be
 integrated into the SFC service header of the packet.

 Figure 4 and Figure 5 show the bits necessary to achieve the
 signaling using the SFC encapsulation as described in
 [I-D.ietf-sfc-nsh]. In particular, for NSH MD-Type1 header format,
 the offload bits are communicated via the flags field in the very
 first byte of the fixed context headers. For NSH MD-Type2 header
 format, the offload bits are communicated via a new standard TLV -
 Simple Offload TLV. The standard TLV is requested to be allocated
 from the TLV Class, "Standard Class", from the IANA.

 By integrating the signaling with the packets, the simple offloads
 scale with the traffic in the data plane.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |D| F |X| Context Header 1 |
 +-+
 |B|U|T|D|R|R|R|R| Context Header 2 |
 +-+
 | Context Header 3 |
 +-+
 | Context Header 4 |
 +-+

 X : Extend flags into first byte of "Context Header 2"
 B : Bidirectional Offload
 U : Unidirectional Offload
 T : TCP-control Exception Offload
 D : Drop Offload

 Figure 4: NSH Type-1 Offload Bits shown for DC Allocation

Kumar, et al. Expires April 23, 2017 [Page 13]

Internet-Draft SFC SF Offloads October 2016

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | STANDARD CLASS | SimpleOffload |0|0|0| 0x2 |
 +-+
 |B|U|T|D|S|V|R|R|R|R|R|R| Offload-data |
 +-+

 B : Bidirectional Offload
 U : Unidirectional Offload
 T : TCP-control Exception Offload
 D : Drop Offload
 S : Time Limited Offload
 V : Volume Limited Offload

 Figure 5: NSH Type-2 Offload Bits

5.1. Offload Flags Definition

 Offload Control Flags:

 B, Bidirectional Offload: SF requests both flows in the connection,
 described by the payload, be offloaded, by setting B=1. B=0
 otherwise.

 U, Unidirectional Offload: SF requests only the current flow in the
 connection, described by the payload, be offloaded, by setting
 U=1. U=0 otherwise.

 One and only one of 'B' and 'U' MUST be specified to indicate
 offload. In the event a NSH encapsulated packet is received with
 both 'B' and 'U' offload flags set to 1, 'B' MUST take precedence.

 Offload Function Flags:

 B|U, Permit Offload: When either B=1 or U=1, the implicit function
 is to PERMIT or allow all packets on the flow(s) to traverse
 along the SFP, unless over-ridden by other functional flags.

 D, Drop Offload: Setting D=1, requests packets on the offloaded
 flow(s) be dropped; D MUST be set to 0 otherwise. D=1 modifies
 the default PERMIT behavior of 'B' and 'U' flags.

 T, TCP-control Exception Offload: Setting T=1 requests TCP control
 packets to be exempted from Offload behavior. TCP control
 packets MUST continue to be forwarded to the SF while the rest of
 the packets must be allowed to bypass the SF contingent upon the

Kumar, et al. Expires April 23, 2017 [Page 14]

Internet-Draft SFC SF Offloads October 2016

 application of other offload flags. T MUST be set to 0
 otherwise.

 S, Time Limited Offload: Setting S=1 requests the flow(s) to be
 offloaded for the duration specified, in seconds, in offload-data
 field. After that duration, offload behavior must be cancelled
 and affected flow(s) MUST be redirected to the SF. S MUST be set
 to 0 otherwise.

 V, Volume Limited Offload: Setting V=1 requests the flow(s) to be
 offloaded until the volume of data specified, in Kilo Bytes, in
 offload-data field has traversed the flow(s). After that volume
 of data has traversed, offload behavior must be cancelled and
 affected flow(s) MUST be redirected to the SF. V MUST be set to
 0 otherwise.

6. Acknowledgements

 The authors would like to thank Abhjit Patra, Nagaraj Bagepalli, Kent
 Leung, Erik Nordmark, Diego Lopez for their comments, thoughtful
 questions and suggestions, review, etc.

7. IANA Considerations

7.1. Standard Class Registry

 IANA is requested to allocate a "STANDARD" class from the TLV Class
 registry. Allocation of the registry values under this class shall
 follow the "IETF Review" policy defined in RFC 5226 [RFC5226].

7.1.1. Simple Offloads TLV

 IANA is requested to allocate TLV type with value 0x1 from the
 STANDARD TLV class registry. The format of the "Simple Offloads" TLV
 is as defined in this draft.

 +------+-----------------+------------------------+---------------+
 | TLV# | Name | Description | Reference |
 +------+-----------------+------------------------+---------------+
 | 1 | Simple Offloads | SF Flow Offload to SFF | This document |
 +------+-----------------+------------------------+---------------+

 Table 1: Standard Class Registry

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Kumar, et al. Expires April 23, 2017 [Page 15]

Internet-Draft SFC SF Offloads October 2016

8. Security Considerations

 Security of the offload signaling mechanism is very important. This
 document does not advocate any additional security mechanisms beyond
 the data plane and control plane signaling security mechanisms.

9. References

9.1. Normative References

 [I-D.ietf-sfc-architecture]
 Halpern, J. and C. Pignataro, "Service Function Chaining
 (SFC) Architecture", draft-ietf-sfc-architecture-11 (work
 in progress), July 2015.

 [I-D.ietf-sfc-nsh]
 Quinn, P. and U. Elzur, "Network Service Header", draft-

ietf-sfc-nsh-10 (work in progress), September 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

9.2. Informative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC7498] Quinn, P., Ed. and T. Nadeau, Ed., "Problem Statement for
 Service Function Chaining", RFC 7498,
 DOI 10.17487/RFC7498, April 2015,
 <http://www.rfc-editor.org/info/rfc7498>.

Authors' Addresses

 Surendra Kumar
 Cisco Systems, Inc.
 170 W. Tasman Dr.
 San Jose, CA 95134

 Email: smkumar@cisco.com

https://datatracker.ietf.org/doc/html/draft-ietf-sfc-architecture-11
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-nsh-10
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-nsh-10
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc7498
http://www.rfc-editor.org/info/rfc7498

Kumar, et al. Expires April 23, 2017 [Page 16]

Internet-Draft SFC SF Offloads October 2016

 Jim Guichard
 Cisco Systems, Inc.

 Email: jguichar@cisco.com

 Paul Quinn
 Cisco Systems, Inc.

 Email: paulq@cisco.com

 Joel Halpern
 Ericsson

 Email: joel.halpern@ericsson.com

 Sumandra Majee
 F5 Networks
 90 Rio Robles
 San Jose, CA
 US

 Email: S.Majee@F5.com

Kumar, et al. Expires April 23, 2017 [Page 17]

