
Network Working Group HT Kung
Internet-Draft Scott Bradner
Expires May 2002 Harvard University
 November 2001

A Framework for an Anonymizing Packet Forwarder

 <draft-kung-annfwd-framework-00.txt>

Status of This Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC 2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 There are a number of situations in the Internet where it would be
 useful to be able to have an application be able to send traffic to a
 destination without revealing the IP address of the destination to
 the source, or the IP address of the source to the destination, or
 both. One way to do this is to have a network resident set of
 servers which can forward packets, with encryption and decryption
 applied to their source and destination addresses when appropriate.
 We will call this server an anonymizing forwarder. The anonymizing
 forwarding server intends to contribute to the goal of supporting
 anonymity at the IP layer [NymIP].

 This memo describes several aspects of such an infrastructure based
 on stateless anonymizing packet forwarders. These include (1) usage
 examples of the forwarding infrastructure, (2) target servers'
 registration that receives their encrypted addresses from the

Kung & Bradner [Page 1]

https://datatracker.ietf.org/doc/html/draft-kung-annfwd-framework-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Anonymizing Forwarder Framework November 2001

 infrastructure and sends them to clients' initialization servers, (3)
 multi-hop forwarding and the associated registration, and (4) threat
 analysis for the infrastructure and countermeasure strategies.

 The framework discussions here provide background information on the
 requirements for an anonymizing packet forwarder described in a
 companion document [RQM-DRAFT].

1. Usage Examples

Notations and Assumptions

 C: Client

 S: Target Server

 S has generated an asymmetric key pair of public and private
 keys, and holds the private key.

 I: Initialization Server

 F: Anonymizing Forwarder

 F is assumed to be outside of firewalls or NATs of C, S and I,
 should these firewalls or NATs exist.

 For forwarding purposes, F can use either a symmetric key, or an
 asymmetric key pair of public and private keys. In this document
 we assume that F uses a symmetric key for all its forwarding
 operations. F will encrypt an address and later decrypt it, so
 only F will need to know the symmetric key, and will keep it
 secret.

 To support target servers' registration, F uses an asymmetric key
 pair of public and private keys, and holds the private key.

 The forwarders of the same anycast address ([RFC1546] and
 [ANYCAST]) all have the same keys.

 [X]: IP address of X

 If X is a client behind a firewall or NAT, [X] is the IP address
 as seen from the outside of the organization.

https://datatracker.ietf.org/doc/html/rfc1546

Kung & Bradner [Page 2]

Internet-Draft Anonymizing Forwarder Framework November 2001

 If X is a forwarder, [X] may be its unicast or anycast address.

 [X]{payload}[Y]

 A packet with its source and destination IP addresses being [X]
 and [Y], respectively.

 (z)r, where r is a symmetric key

 It is the content z encrypted in r.

 If r happens to be the lower case letter of the name of a
 forwarder or server, then r is the symmetric key of the forwarder
 or server. For example, (z)f means z encrypted in the symmetric
 key of forwarder F.

 (z)A, where A is the name of a forwarder or a server

 It is the content z signed in A's private or encrypted in A's
 public key. In the former case A does the signing, whereas in
 the latter case another entity does the encryption.

 A's ctf

 A's certificate providing A's public key and vouching for it.

 X->Y: [X]{payload}[Y]

 X sends packet [X]{payload}[Y] to Y.

 X: operation

 X performs operation.

Six Forwarding Operations of a Forwarder

 Depending on the application, a forwarder may perform one of the
 following six forwarding operations listed below for a given input
 packet. Subsequent usage examples will illustrate the use of these
 operations.

Kung & Bradner [Page 3]

Internet-Draft Anonymizing Forwarder Framework November 2001

 FWD-INC ("forward and include"):
 Input packet: [X]{msg, [Y]}[F]
 Output packet: [F]{msg, [X]}[Y]

 FWD-CLR ("forward and clear"):
 Input packet: [X]{msg, [Y]}[F]
 Output packet: [F]{msg}[Y]

 FWD-ENC ("forward and encrypt"):
 Input packet: [X]{msg, [Y]}[F]
 Output packet: [F]{msg, ([X])f}[Y]

 DEC-FWD-INC ("decrypt, forward and include"):
 Input packet: [X]{msg, ([Y])f}[F]
 Output packet: [F]{msg, [X]}[Y]

 DEC-FWD-CLR ("decrypt, forward and clear"):
 Input packet: [X]{msg, ([Y])f}[F]
 Output packet: [F]{msg}[Y]

 DEC-FWD-ENC ("decrypt, forward and encrypt"):
 Input packet: [X]{msg, ([Y])f}[F]
 Output packet: [F]{msg, ([X])f}[Y]

 In addition to these forwarding operations, a forwarder may also
 support management operations such as target servers' registration
 (see below).

Baseline Usage Example: Hide [S]

 This example illustrates the use of the anonymizing infrastructure to
 satisfy the following two properties:

 (P1) A client C sends request to a target server S without knowing
 S's address.

 (P2) C receives reply from S without knowing S's address.

 The client C first interacts with an initialization server I, which
 may be a local application or a network-based service. In its
 message to I, C expresses its wish to access a target server S. Then
 the initialization server I securely sends C a message containing the
 following three items:

 - [F], which is the unicast address of a forwarder F, or the
 anycast address of a set of forwarders, also denoted by F.

Kung & Bradner [Page 4]

Internet-Draft Anonymizing Forwarder Framework November 2001

 - ([S])f

 - S's ctf

 When the client wishes to send a request to S, it builds a packet
 containing the following contents, and sends it to [F]:

 - (req, ck)S, where req is C's request to S, and ck is a cookie
 associated with the packet. (req, ck)S is (req, ck) encrypted by
 S's public key. The purpose of ck is to identify the request.

 - ([S])f

 After the packet is sent, C will need to keep ck and S's ctf around
 for a while, so that they can be used later to verify the reply from
 S.

 When F receives the packet, it decrypts the packet, forwards it to
 [S], with the source address of the original packet, [C], as seen by
 F included in the packet payload. That is, F performs the operation
 DEC-FWD-INC.

 When S receives the packet, it builds a reply packet containing the
 following contents, and sends it to [F]:

 - (rep, ck)S: reply and cookie encrypted in the private key of S.

 - [C]: the source address of the original packet as seen by F.

 When F receives the packet, it forwards it to [C] without including
 [S] in the packet payload, so [S] will not be revealed. That is, F
 performs the operation FWD-CLR.

 When C receives the packet, it decrypts the reply and cookie using
 S's public key. By comparing the decrypted cookie with the original
 cookie stored at C, C decides whether or not the received reply is
 the one corresponding to its original request.

 The following summarizes the description above.

 Baseline Usage Example: Hide [S]

 C->F: [C]{(req, ck)S, ([S])f}[F]

Kung & Bradner [Page 5]

Internet-Draft Anonymizing Forwarder Framework November 2001

 F: DEC-FWD-INC

 F->S: [F]{(req, ck)S, [C]}[S]

 S: reply

 S->F: [S]{(rep, ck)S, [C]}[F]

 F: FWD-CLR

 F->C: [F]{(rep, ck)S}[C]

 C: decrypt reply and cookie to verify the reply

Usage Example 1.1: Hide [S]

 This example is an enhanced version of Baseline Usage Example above.
 It is designed to defend against a type of replay attacks. Suppose
 that an adversary repetitively submits C's request:

 C->F: [C]{(req, ck)S, ([S])f}[F]

 while monitoring packets on links that could be on the path from F to
 S and vice versa. If the adversary can identify these packets a
 priori, then he or she will be able to learn [S] by examining
 destination or source addresses of these packets. It is therefore
 important to avoid invariant bit strings, such as [C], (req, ck)S and
 (rep, ck)S in the Baseline Usage Example above, that could be used to
 identify these packets.

 Usage Example 1.1, summarized below, ensures that all these packets
 will likely have different payloads. Thus it would be difficult to
 isolate these packets.

 Usage Example 1.1: Hide [S]

 C->F: [C]{(req, ck, C's ctf)S, S's ctf, ([S])f}[F]

 F: DEC-FWD-ENC

 F->S: [F]{((req, ck, C's ctf)S, [C])r1, (r1)S, ([C])r2,
 (r2)f}[S]

 S: reply

 S->F: [S]{(rep, ck)r3, (r3)C, ([C])r2, (r2)f}[F]

 F: DEC-FWD-CLR

Kung & Bradner [Page 6]

Internet-Draft Anonymizing Forwarder Framework November 2001

 F->C: [F]{(rep, ck)r3, (r3)C}[C]

 C: decrypt reply and cookie to verify the reply

 In the above, r1 and r2 are symmetrical session keys randomly
 selected by F for an each packet, while r3 is a key selected by S.
 This means that each resubmitted request

 C->F: [C]{(req, ck, C's ctf)S, S's ctf, ([S])f}[F]

 will likely result in an entirely different payload in the message
 from F->S, S->F or F->C.

Usage Example 1.2: Hide [C]

 This example illustrates the use of the anonymizing infrastructure to
 satisfy the following two properties:

 (P3) S receives request from C without knowing C's address.

 (P4) S sends reply to C without knowing C's address

 C will obtain the following two items from the initialization server:

 - [F]

 - [S]

 We summarize Usage Example 1.2 as follows:

 Usage Example 1.2: Hide [C]

 C->F: [C]{req, C's ctf, [S]}[F]

 F: FWD-ENC

 F->S: [F]{req, C's ctf, ([C])f}[S]

 S: reply

 S->F: [S]{rep, C's ctf, ([C])f}[F]

 F: DEC-FWD-INC

 F->C: [F]{(rep, [S])r, (r)C}[C]

Kung & Bradner [Page 7]

Internet-Draft Anonymizing Forwarder Framework November 2001

 C: decrypt reply and verify the reply

 Note that in the packet from F to C, F randomly selects a symmetrical
 session key r for each packet to defend against replay attacks. In
 such an attack, an adversary would repetitively resend the same
 message from S to F, while monitoring links from F to C. If those
 packets from F to C that are triggered by these repeated resends can
 be isolated, then their destination addresses will reveal [C]. By
 dynamically changing their payloads, these packets from F to C can
 not be isolated easily.

Usage Example 1.3: Hide Both [C] and [S]

 This example illustrates the use of the anonymizing infrastructure to
 satisfy all the following four properties:

 (P1) A client C sends request to a target server S without knowing
 S's address.

 (P2) C receives reply from S without knowing S's address.

 (P3) S receives request from C without knowing C's address.

 (P4) S sends reply to C without knowing C's address.

 Thus, this usage intends to hide both addresses of C and S.

 The procedure summarized below for Usage Example 1.3 is a combination
 of procedures for Usage Example 1.1 and 1.2 above. Usage Example 1.3
 has the properties of both Usage Example 1.1 and 1.2.

 Usage Example 1.3: Hide Both [C] and [S]

 C->F: [C]{(req, ck, C's ctf)S, C's ctf, S's ctf, ([S])f}[F]

 F: DEC-FWD-ENC

 F->S: [F]{((req, ck, C's ctf)S, ([C], C's ctf)r2, (r2)f)r1,
 (r1)S}[S]

 S: reply

 S->F: [S]{(rep, ck)r3, (r3)C, ([C], C's ctf)r2, (r2)f}[F]

 F: DEC-FWD-CLR

 F->C: [F]{((rep, ck)r3, (r3)C)r4, (r4)C}[C]

Kung & Bradner [Page 8]

Internet-Draft Anonymizing Forwarder Framework November 2001

 C: decrypt reply and cookie to verify the reply

2. Target Server's Registration

 A target server S interested in hiding its address [S] by using an
 anonymizing forwarder F may register itself to an initialization
 server I. The registration will involve S first sending an
 encryption request to F asking for ([S])f, and then sending the
 received ([S])f to I via F. After receiving this information from I,
 C can send its requests to S via F, as described in the Baseline
 Usage Example earlier. It is instructive to consider a target
 server's registration as a process for an initialization server to
 receive an "access ticket", which consists of information such as [F]
 and [S])f, that allows clients' requests to reach S via F.

 Target Server's Registration to I on Use of Forwarder F:

 S->F: [S]{S's ctf, ([S])S}[F]

 F: decrypt ([S])S to validate [S]'s authenticity, and
 encrypt [S] in F's symmetric key

 F->S: [F]{(([S])f, [F])S}[S]

 S: decrypt (([S])f)S using S's private key to recover [F]
 and ([S])f

 optionally, S may send test messages to F using ([S])f
 to check if F will forward the messages back to S

 sign (([S])f, [F]) in S's private key

 S->F: [S]{S's ctf, (([S])f, [F])S, [I]}[F]

 F: FWD-CLR

 F->I: [F]{S's ctf, (([S])f, [F])S}[I]

 I: decrypt ([S])f, [F])S to validate the authenticity of
 [S])f and [F] using S's public key, and then receive
 [F], ([S])f, and S's ctf

 This registration method has three properties worth mentioning.
 First, it does not require S to know F's symmetric key. Second, S
 may change to a new forwarder F' it wants to use for a given I by
 obtaining ([S])f' from F' and sending it to I. Third, S may use
 different Fs for different Is, for balancing loads or meeting

Kung & Bradner [Page 9]

Internet-Draft Anonymizing Forwarder Framework November 2001

 different security requirements.

 Note that F encrypts [S] using that from ([S])S, rather than that
 extracted from the source address of S's message. This is to defend
 against possible impersonation of S by an adversary. Suppose that an
 adversary S1 sends an encryption request [S1](S's ctf, [S1])[F] to F,
 and S1 receives from F reply [F]{(([S1])f)S}[S1]. If S1 can manage
 to send the packet [F]{(([S1])f)S}[S] to S, then S would mistakenly
 use ([S1])f instead of ([S])f in the registration.

3. Multi-hop Registration and Forwarding

 In multi-hop forwarding, a sequence of two or more forwarders are
 used in forwarding a client's packet. These forwarders together are
 sufficient in decrypting the address of the target server, but any
 proper subset of them are not.

 Multi-hop forwarding can provide additional protection against an
 adversary who may attempt to compromise a forwarder or monitor its
 output links. For example, by employing forwarders protected under
 strong but different security measures, the adversary would need to
 defeat all these security measures in order to succeed.

Multi-hop Registration

 During its registration, a target server S will obtain a sequence of
 forwarders to use. First, S chooses an F that S trusts, and sends it
 a request asking for ([S])f. When receiving the request from S, F
 may find an another forwarder G that F trusts. G may be under a
 different jurisdiction, so that compromising both F and G would be
 harder than compromising forwarders in the same jurisdiction. In
 turn, G may find yet another forwarder H that G trusts, and so on.
 Finally, the last forwarder will send S the necessary information
 required by S's registration.

 We illustrate below the multi-hop registration, using a three-hop
 example involving three forwarders F1, F2 and F3 corresponding to F,
 G and F, respectively. We assume here that the Fs each use a public
 and private key pair, and hold the private key.

 Target Server's Three-hop Registration to I on Use of
 Forwarders F1, F2 and F3:

 S->F1: [S]{S's ctf, ([S])S}[F1]

 F1: decrypt ([S])S to validate [S]' authenticity using S's
 public key, encrypt the [S] in F1's symmetric key, and
 sign [F1] in F1's private key

Kung & Bradner [Page 10]

Internet-Draft Anonymizing Forwarder Framework November 2001

 F1->F2: [F1]{S's ctf, F1's ctf, ([S])f1, ([F1])F1}[F2]

 F2: decrypt ([F1])F1 to validate [F1]'s authenticity using
 F1's public key, encrypt (([S])f1, [F1]) in F2's
 symmetric key, and sign [F2] in F2's private key

 F2->F3: [F2]{S's ctf, F2's ctf, (([S])f1, [F1])f2,
 ([F2])F2}[F3]

 F3: decrypt ([F2])F2 to validate [F2]'s authenticity using
 F2's public key, encrypt (([S])f1, [F1])f2, [F2]) in
 F3's symmetric key, sign [F3] in F3's private key, and
 encrypt ((([S])f1, [F1])f2, [F2])f3, ([F3])F3 in S's
 public key

 F3->S: [F3]{F3's ctf, (((([S])f1, [F1])f2, [F2])f3,
 ([F3])F3)S}[S]

 S: decrypt ([F3])F3 to validate [F3]'s authenticity using
 F3's public key, and sign ((([S])f1, [F1])f2, [F2])f3,
 [F3] in S's private key

 S->F3: [S]{S's ctf, (((([S])f1, [F1])f2, [F2])f3, [F3])S,
 [I]}[F3]

 F3: FWD-CLR

 F3->I: [F3]{S's ctf, (((([S])f1, [F1])f2, [F2])f3, [F3])S}[I]

 I: receive ((([S])f1, [F1])f2, [F2])f3, [F3]

Multi-hop Forwarding

 We illustrate below multi-hop forwarding with a simple usage example,
 that corresponds to the single-hop Baseline Usage Example earlier.

 Multi-hop Baseline Usage Example: Hide [S]

 C->F3: [C]{(req, ck)S, ((([S])f1, [F1])f2, [F2])f3}[F3]

 F3: DEC-FWD-INC

 F3->F2: [F3]{(req, ck)S, (([S])f1, [F1])f2, [C]}[F2]

 F2: DEC-FWD-INC

 F2->F1: [F2]{(req, ck)S, ([S])f1, [C], [F3]}[F1]

Kung & Bradner [Page 11]

Internet-Draft Anonymizing Forwarder Framework November 2001

 F1: DEC-FWD-INC

 F1->S: [F1]{(req, ck)S, [C], [F3], [F2]}[S]

 S: reply

 S->F1: [S]{(rep, ck)S, [C], [F3], [F2]}[F1]

 F1: FWD-CLR

 F1->F2: [F1]{(rep, ck)S, [C], [F3]}[F2]

 F2: FWD-CLR

 F2->F3: [F2]{(rep, ck)S, [C]}[F3]

 F3: FWD-CLR

 F3->C: [F3]{(rep, ck)S}[C]

 C: decrypt reply and cookie to verify the reply

 The nested encryption is similar to that in onion routing [ONION].

 Note that schemes similar to those of Usage Example 1.1 can be
 applied to prevent replay attacks that exploit the fact that (req,
 ck)S or (rep, ck)S remains an invariant in all the packets.

4. Threat Analysis and Counter Measure Strategies

Types of Treats

 There are various types of threats regarding anonymizing forwarders.
 We consider the following three types:

 Type 1 threat: The forwarding infrastructure leaks address
 information that it is supposed to hide.

 Type 2 treat: The forwarding infrastructure is itself subject to
 DoS Attacks.

 Type 3 threat: The forwarding infrastructure is used as a conduit
 for DoS attacks.

Countermeasure Strategies

 The forwarding infrastructure itself should provide the bulk of the

Kung & Bradner [Page 12]

Internet-Draft Anonymizing Forwarder Framework November 2001

 means of protection against these threats. The methods should not
 involve clients, initialization servers, and target servers, since
 they are outside management authorities of the infrastructure.
 Moreover, the infrastructure should not attempt to protect itself
 through user authentication, since the infrastructure is supposed
 to support authentication infrastructure, not vice versa.

 Multi-hop forwarding can help defend Type 1 threats, in the sense
 that it will make an adversary work harder in order to learn the
 address of a target server. This is especially true if the
 forwarders in the multi-hop sequence are under different
 administrative authorities, because in this case the attacker will
 need to compromise all the authorities in order to succeed.

 To defend against Type 2 threats concerning DoS attacks on the
 forwarding infrastructure, one can have first-hop forwarders
 provide high-volume, light-weight filtering of requests with
 spoofed source IP addresses. These servers working at the wire
 speed could send challenges to the requestors, so that only those
 with legitimate IP addresses will be able to respond. Forwarders
 behind the first-hop ones will have their addresses hidden from
 users. In addition, via registrations, target servers may change
 the forwarders they use from time to time.

 To defend against Type 3 threats concerning the forwarding
 infrastructure being used as conduit for DoS attacks, the
 infrastructure could reject requests from spoofed source IPs. In
 addition, a forwarder could rate limit its output on a per link,
 per source, or per destination basis.

References

 [RQM-DRAFT] Bradner, S., and Kung, H. T., "Requirements for an
 Anonymizing Packet Forwarder" <draft-bradner-annfwd-req.txt>, Draft,
 November 2001

 [ANYCAST] Katabi, D., and Wroclawski, J., "A Framework for Global IP-
 Anycast (GIA)," Proceedings of ACM SIGCOMM 2000, Stockholm, Sweden,
 2000.

 [NymIP] The NymIP Effort, http://nymip.velvet.com.

 [ONION] Reed, M., Syverson, P., and Goldschlag, D., "Anonymous
 Connections and Onion Routing," IEEE Journal on Selected Areas in
 Communications, vol. 16 no. 4, May 1998, pp. 482-494.

https://datatracker.ietf.org/doc/html/draft-bradner-annfwd-req.txt
http://nymip.velvet.com

Kung & Bradner [Page 13]

Internet-Draft Anonymizing Forwarder Framework November 2001

 [RFC1546] Milliken, W., Partridge C., and Mendez, T., "Host
 anycasting service," RFC 1546, November 1993.

8. Authors' Addresses

 HT Kung
 Harvard University
 33 Oxford St.
 Cambridge MA 02138

 Email: kung@harvard.edu
 Phone: +1-617-496-6211

 Scott Bradner
 Harvard University
 29 Oxford St.
 Cambridge MA 02138

 Email: sob@harvard.edu
 Phone: +1-617-495-3864

https://datatracker.ietf.org/doc/html/rfc1546

Kung & Bradner [Page 14]

