
Network Working Group J. Kunze
Internet-Draft California Digital Library
Expires: July 29, 2016 J. Littman
 George Washington University
 Libraries
 L. Madden
 Library of Congress
 E. Summers
 University of Maryland
 A. Boyko
 B. Vargas
 January 26, 2016

The BagIt File Packaging Format (V0.97)
draft-kunze-bagit-13.txt

Abstract

 This document specifies BagIt, a hierarchical file packaging format
 for storage and transfer of arbitrary digital content. A "bag" has
 just enough structure to enclose descriptive "tags" and a "payload"
 but does not require knowledge of the payload's internal semantics.
 This BagIt format should be suitable for disk-based or network-based
 storage and transfer. BagIt is widely used in the practice of
 digital preservation.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 29, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Kunze, et al. Expires July 29, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft BagIt January 2016

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Purpose . 4
1.2. Requirements . 4
1.3. Terminology . 4

2. Structure . 6
2.1. Required Elements . 6
2.1.1. Bag Declaration: bagit.txt 6
2.1.2. Payload Directory: data/ 6
2.1.3. Payload Manifest: manifest-<alg>.txt 7

2.2. Optional Elements . 7
2.2.1. Tag Manifest: tagmanifest-<alg>.txt 7
2.2.2. Bag Metadata: bag-info.txt 8
2.2.3. Fetch File: fetch.txt 10
2.2.4. Other Tag Files 11

2.3. Text Tag File Format 11
2.4. Bag Checksum Algorithms 11

3. Complete, Incomplete, and Valid bags 12
4. Serialization . 13
5. Examples . 14
5.1. Example of a basic bag 14
5.2. Another example bag 14

6. Security Considerations 16
6.1. Special directory characters 16
6.2. Control of URLs in fetch.txt 16
6.3. File sizes in fetch.txt 16

7. Practical Considerations (non-normative) 17
7.1. Disk and network transfer 17
7.2. Interoperability . 17
7.2.1. Checksum tools . 17
7.2.2. Windows and Unix file naming 18

8. Acknowledgements . 19
9. IANA Considerations . 20
10. References . 21
10.1. Normative References 21
10.2. Informative References 21

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Kunze, et al. Expires July 29, 2016 [Page 2]

Internet-Draft BagIt January 2016

 Authors' Addresses . 22

Kunze, et al. Expires July 29, 2016 [Page 3]

Internet-Draft BagIt January 2016

1. Introduction

1.1. Purpose

 BagIt is a hierarchical file packaging format designed to support
 disk-based or network-based storage and transfer of arbitrary digital
 content. A bag consists of a "payload" and "tags". The content of
 the payload is the custodial focus of the bag and is treated as
 semantically opaque. The "tags" are metadata files intended to
 facilitate and document the storage and transfer of the bag. The
 name, BagIt, is inspired by the "enclose and deposit" method
 [ENCDEP], sometimes referred to as "bag it and tag it".

 BagIt is widely used for preserving digital assets originating from a
 different domains. Organizations involved in digital preservation
 with BagIt include the Library of Congress, Dryad Data Repository,
 NSF DataONE, and the Rockefeller Archive Center. Software
 implementations have been written in Python, Ruby, Java, Perl, and
 PHP. It is also used in the libraries of many universities, such as
 Cornell, Purdue, Stanford, Ghent University, New York University, and
 the University of California.

 Implementors of BagIt tools should consider interoperability between
 different platforms, operating systems, toolsets, and languages.
 Differences in path separators, newline characters, reserved file
 names, and maximum path lengths are all possible barriers to moving
 bags between different systems. Discussion of these issues may be
 found in the Interoperability section of this document.

1.2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 An implementation is not compliant if it fails to satisfy one or more
 of the MUST or REQUIRED level requirements for the protocols it
 implements. An implementation that satisfies all the MUST or
 REQUIRED level and all the SHOULD level requirements for its
 protocols is said to be "unconditionally compliant"; one that
 satisfies all the MUST level requirements but not all the SHOULD
 level requirements for its protocols is said to be "conditionally
 compliant."

1.3. Terminology

 This specification uses a number of terms to describe BagIt, some of
 which are in common use, some of which are newly defined by this

https://datatracker.ietf.org/doc/html/rfc2119

Kunze, et al. Expires July 29, 2016 [Page 4]

Internet-Draft BagIt January 2016

 specification, and others which may have meanings obvious only to
 those in the community from which this spec arose. Terms defined in
 this section are intended to clarify any ambiguity.

 bag A set of opaque data contained within the structure defined by
 this specification.

 bag declaration The tag file required to be in all bags conforming
 to this specification. Contains tags necessary for bootstrapping
 the reading and processing of the rest of a bag. See

Section 2.1.1.

 bag checksum algorithm A reference to a cryptographic checksum
 algorithm, such as MD5 or SHA-1, with its name normalized for use
 in a manifest or tag manifest file name. See Section 2.4.

 complete A bag which comprises all elements required by this
 specification, with all files listed in all payload and tag
 manifests present, all payload files present listed in at least
 one manifest. See Section 3.

 payload The data encapsulated by the bag. The contents of the
 payload are opaque to this specification, and are always
 considered as a set of octet streams. See Section 2.1.2.

 serialized bag A bag that has been serialized into a single,
 monolithic file. See Section 4.

 tag directory A directory that contains one or more tag files.

 tag file A file that contains metadata intended to facilitate and
 document the storage and transfer of the bag.

 valid A complete bag wherein every checksum in every payload
 manifest and tag manifest can be successfully verified against the
 corresponding payload file. See Section 2.1.2.

Kunze, et al. Expires July 29, 2016 [Page 5]

Internet-Draft BagIt January 2016

2. Structure

 A bag consists of a base directory containing (1) a set of required
 and optional tag files; (2) a sub-directory named "data", called the
 payload directory; and (3) a set of optional tag directories. The
 payload files in the payload directory are an arbitrary file
 hierarchy (see Section 2.1.2). The tag files in the base directory
 consist of one or more files named "manifest-_algorithm_.txt" (see

Section 2.1.3), a file named "bagit.txt" (see Section 2.1.1), and
 zero or more additional tag files (see Section 2.2). The tag files
 in the optional tag directories are arbitrary file hierarchies and
 the tag directories MAY have any name that is not reserved for a file
 or directory in this specification.

 The base directory MAY have any name.

 <base directory>/
 | bagit.txt
 | manifest-<algorithm>.txt
 | [optional additional tag files]
 \--- data/
 | [payload files]
 \--- [optional tag directories]/
 | [optional tag files]

2.1. Required Elements

2.1.1. Bag Declaration: bagit.txt

 The "bagit.txt" tag file MUST consist of exactly two lines:

 BagIt-Version: M.N
 Tag-File-Character-Encoding: UTF-8

 where M.N identifies the BagIt major (M) and minor (N) version
 numbers, and UTF-8 identifies the character set encoding of tag
 files. The bag declaration MUST be encoded in UTF-8, and MUST NOT
 contain a byte-order mark (BOM). [RFC3629]

 The appropriate version for a bag that conforms to this version of
 the specification is "0.97".

2.1.2. Payload Directory: data/

 The base directory MUST contain a sub-directory named "data", called
 the payload directory.

 The payload directory contains the custodial content within the bag.

https://datatracker.ietf.org/doc/html/rfc3629

Kunze, et al. Expires July 29, 2016 [Page 6]

Internet-Draft BagIt January 2016

 The files under the payload directory are called payload files, or
 the payload. The payload is treated as octet streams for all
 purposes relating to this specification, and is not otherwise
 prescribed.

2.1.3. Payload Manifest: manifest-<alg>.txt

 A payload manifest is a tag file that lists payload files and
 checksums for those payload files generated using a particular bag
 checksum algorithm. Every bag MUST contain one payload manifest
 file, and MAY contain more than one. A payload manifest file MUST
 have a name of the form manifest-_algorithm_.txt, where _algorithm_
 is a string specifying the bag checksum algorithm used in that
 manifest, such as:

 manifest-md5.txt
 manifest-sha1.txt

 A bag MUST NOT contain more than one payload manifest for a
 particular bag checksum algorithm.

 Each line of a payload manifest file MUST be of the form:

 CHECKSUM FILENAME

 where FILENAME is the pathname of a file relative to the base
 directory and CHECKSUM is a hex-encoded checksum calculated according
 to _algorithm_ over every octet in the file. The hex-encoded
 checksum MAY use uppercase and/or lowercase letters. The slash
 character ('/') MUST be used as a path separator in FILENAME. One or
 more linear whitespace characters (spaces or tabs) MUST separate
 CHECKSUM from FILENAME. An asterisk ('*') MAY preceed FILENAME for
 interoperability on some platforms (see Section 7.2.1). There is no
 limitation on the length of a pathname. The payload manifest MUST
 NOT reference files outside the payload directory.

 Payload manifests only include the pathnames of files. Because of
 this, a payload manifest cannot reference empty directories. To
 account for an empty directory, a bag creator may wish to include at
 least one file in that directory; it suffices, for example, to
 include a zero-length file named ".keep".

2.2. Optional Elements

2.2.1. Tag Manifest: tagmanifest-<alg>.txt

 A tag manifest is a tag file that lists other tag files and checksums
 for those tag files generated using a particular bag checksum

Kunze, et al. Expires July 29, 2016 [Page 7]

Internet-Draft BagIt January 2016

 algorithm. A bag MAY contain one or more tag manifests. A tag
 manifest file MUST have a name of the form "tagmanifest-
 algorithm.txt", where _algorithm_ is a string specifying the bag
 checksum algorithm used in that manifest, such as:

 tagmanifest-md5.txt
 tagmanifest-sha1.txt

 A tag manifest file has the same form as the payload file manifest
 file described in Section 2.1.3, but MUST NOT list any payload files.
 As a result, no FILENAME listed in a tag manifest begins "data/".

2.2.2. Bag Metadata: bag-info.txt

 The "bag-info.txt" file is a tag file that contains metadata elements
 describing the bag and the payload. The metadata elements contained
 in the "bag-info.txt" file are intended primarily for human
 readability. All metadata elements are optional and MAY be repeated.
 Implementations SHOULD assume that the ordering is significant and
 provide access to the metadata elements in the order they are given
 in the "bag-info.txt" file.

 A metadata element MUST consist of a label, a colon, and a value,
 each separated by optional whitespace. It is RECOMMENDED that lines
 not exceed 79 characters in length. Long values may be continued
 onto the next line by inserting a newline (LF), a carriage return
 (CR), or carriage return plus newline (CRLF) and indenting the next
 line with linear white space (spaces or tabs).

 Reserved metadata element names are case-insensitive and defined as
 follows.

 Source-Organization Organization transferring the content.

 Organization-Address Mailing address of the organization.

 Contact-Name Person at the source organization who is responsible
 for the content transfer.

 Contact-Phone International format telephone number of person or
 position responsible.

 Contact-Email Fully qualified email address of person or position
 responsible.

Kunze, et al. Expires July 29, 2016 [Page 8]

Internet-Draft BagIt January 2016

 External-Description A brief explanation of the contents and
 provenance.

 Bagging-Date Date (YYYY-MM-DD) that the content was prepared for
 delivery.

 External-Identifier A sender-supplied identifier for the bag.

 Bag-Size Size or approximate size of the bag being transferred,
 followed by an abbreviation such as MB (megabytes), GB, or TB; for
 example, 42600 MB, 42.6 GB, or .043 TB. Compared to Payload-Oxum
 (described next), Bag-Size is intended for human consumption.

 Payload-Oxum The "octetstream sum" of the payload, namely, a two-
 part number of the form "OctetCount.StreamCount", where OctetCount
 is the total number of octets (8-bit bytes) across all payload
 file content and StreamCount is the total number of payload files.
 Payload-Oxum should be included in "bag-info.txt" if at all
 possible. Compared to Bag-Size (above), Payload-Oxum is intended
 for machine consumption.

 Bag-Group-Identifier A sender-supplied identifier for the set, if
 any, of bags to which it logically belongs. This identifier must
 be unique across the sender's content, and if recognizable as
 belonging to a globally unique scheme, the receiver should make an
 effort to honor reference to it.

 Bag-Count Two numbers separated by "of", in particular, "N of T",
 where T is the total number of bags in a group of bags and N is
 the ordinal number within the group; if T is not known, specify it
 as "?" (question mark). Examples: 1 of 2, 4 of 4, 3 of ?, 89 of
 145.

 Internal-Sender-Identifier An alternate sender-specific identifier
 for the content and/or bag.

 Internal-Sender-Description A sender-local prose description of the
 contents of the bag.

 In addition to these metadata elements, other arbitrary metadata
 elements may also be present.

 Here is an example "bag-info.txt" file.

Kunze, et al. Expires July 29, 2016 [Page 9]

Internet-Draft BagIt January 2016

 Source-Organization: Spengler University
 Organization-Address: 1400 Elm St., Cupertino, California, 95014
 Contact-Name: Edna Janssen
 Contact-Phone: +1 408-555-1212
 Contact-Email: ej@spengler.edu
 External-Description: Uncompressed greyscale TIFF images from the
 Yoshimuri papers colle...
 Bagging-Date: 2008-01-15
 External-Identifier: spengler_yoshimuri_001
 Bag-Size: 260 GB
 Payload-Oxum: 279164409832.1198
 Bag-Group-Identifier: spengler_yoshimuri
 Bag-Count: 1 of 15
 Internal-Sender-Identifier: /storage/images/yoshimuri
 Internal-Sender-Description: Uncompressed greyscale TIFFs created
 from microfilm and are...

2.2.3. Fetch File: fetch.txt

 For reasons of efficiency, a bag MAY be sent with a list of files to
 be fetched and added to the payload before it can meaningfully be
 checked for completeness. An OPTIONAL tag file named "fetch.txt"
 contains such a list. Each line of "fetch.txt" has the form

 URL LENGTH FILENAME

 where URL identifies the file to be fetched, LENGTH is the number of
 octets in the file (or "-", to leave it unspecified), and FILENAME
 identifies the corresponding payload file, relative to the base
 directory. The slash character ('/') MUST be used as a path
 separator in FILENAME. If FILENAME begins with a slash character,
 the destination MUST still be treated as relative to the bag base
 directory. One or more linear whitespace characters (spaces or tabs)
 MUST separate these three values, and any such characters in the URL
 MUST be percent-encoded [RFC3986]. There is no limitation on the
 length of any of the fields in the "fetch.txt".

 The "fetch.txt" file allows a bag to be transmitted with "holes" in
 it, which can be practical for several reasons. For example, it
 obviates the need for the sender to stage a large serialized copy of
 the content while the bag is transferred to the receiver. Also, this
 method allows a sender to construct a bag from components that are
 either a subset of logically related components (e.g., the localized
 logical object could be much larger than what is intended for export)
 or assembled from logically distributed sources (e.g., the object
 components for export are not stored locally under one filesystem
 tree).

https://datatracker.ietf.org/doc/html/rfc3986

Kunze, et al. Expires July 29, 2016 [Page 10]

Internet-Draft BagIt January 2016

2.2.4. Other Tag Files

 A bag MAY contain other tag files that are not defined by this
 specification. Implementations SHOULD ignore the content of any
 unexpected tag files, except when they are listed in a tag manifest.
 When unexpected tag files are listed in a tag manifest,
 implementations MUST only treat the content of those tag files as
 octet streams for the purpose of checksum verification.

2.3. Text Tag File Format

 All tag files specifically described in this specification MUST
 adhere to the text tag file format described below. Other tag files
 MAY adhere to the text tag file format described below.

 Text tag files are line-oriented, and each line MUST be terminated by
 a newline (LF), a carriage return (CR), or carriage return plus
 newline (CRLF). Text tag files MUST end in the extension ".txt".

 In all text tag files except for the bag declaration file, text MUST
 be encoded in the character encoding specified in the "bagit.txt" bag
 declaration file. Text tag files except for the bag declaration file
 MAY include a byte-order mark (BOM) only if the specified encoding
 requires it for proper decoding. (Note that UTF-8 does not.)

 As specified in Section 2.1.1, the bag declaration file must be
 encoded in UTF-8 and must not include a byte-order mark.

2.4. Bag Checksum Algorithms

 The payload manifest and tag manifests assert integrity of the
 payload and tags in a bag using checksum algorithms. The operation
 of those algorithms, and the formatting of their output within a
 manifest file, are generally beyond the scope of this specification,
 except that the output format MUST be able to fit in the manifest
 format specified in Section 2.1.3.

 The name of the checksum algorithm MUST be normalized for use in the
 manifest's filename by lowercasing the common name of the algorithm
 and removing all non-alphanumeric characters.

 Implementors of tools that create and validate bags SHOULD support at
 least two widely implemented checksum algorithms: "md5" [RFC1321] and
 "sha1" [RFC3174]. The authors recognize that these two algorithms
 now have well-known vulnerabilities that render them inadequate for
 applications requiring secure change detection.

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc3174

Kunze, et al. Expires July 29, 2016 [Page 11]

Internet-Draft BagIt January 2016

3. Complete, Incomplete, and Valid bags

 A _complete_ bag MUST have the following attributes:

 1. Every required element MUST be present (Section 2.1).

 2. Every file in every payload manifest MUST be present.

 3. Every file in every tag manifest MUST be present. Tag files not
 listed in a tag manifest MAY be present.

 4. Every payload file MUST be listed in at least one manifest.
 Payload files MAY be listed in more than one payload manifest.

 5. Every element present MUST comply with this specification.

 A bag is _incomplete_ when it exhibits any of the following
 exceptions to the attributes of a complete bag:

 1. One or more files in any payload manifest are absent.

 2. One or more files in any tag manifest are absent.

 3. A fetch.txt is present. Any files listed in any payload manifest
 or any tag manifest which are absent MUST be listed in the
 fetch.txt.

 A _valid_ bag must have the following attributes:

 1. The bag MUST be complete.

 2. Every CHECKSUM in every payload manifest and tag manifest can be
 sucessfully verified against the contents of its corresponding
 FILENAME.

 If a bag is neither valid, complete, nor incomplete, it is _invalid_.
 Definitions for the various ways a bag may be invalid are not covered
 by this specification.

 Tag files that do not appear in a tag manifest can be modified, added
 to, or removed from a bag without impacting the completeness or
 validity of the bag.

Kunze, et al. Expires July 29, 2016 [Page 12]

Internet-Draft BagIt January 2016

4. Serialization

 In some scenarios, it may be convenient to serialize the bag's
 filesystem hierarchy (i.e., the base directory) into a single-file
 archive format such as TAR or ZIP (the serialization) and then later
 deserialize the serialization to recreate the filesystem hierarchy.
 Several rules govern the serialization of a bag and apply equally to
 all types of archive files:

 1. The top-level directory of a serialization MUST contain only one
 bag.

 2. The serialization SHOULD have the same name as the bag's base
 directory, but MUST have an extension added to identify the
 format. For example, the receiver of "mybag.tar.gz" expects the
 corresponding base directory to be created as "mybag".

 3. A bag MUST NOT be serialized from within its base directory, but
 from the parent of the base directory (where the base directory
 appears as an entry). Thus, after a bag is deserialized in an
 empty directory, a listing of that directory shows exactly one
 entry. For example, deserializing "mybag.zip" in an empty
 directory causes the creation of the base directory "mybag" and,
 beneath "mybag", the creation of all payload and tag files.

 4. The deserialization of a bag MUST produce a single base directory
 bag with the top-level structure as described in this
 specification without requiring any additional un-archiving step.
 For example, after one un-archiving step it would be an error for
 the "data/" directory to appear as "data.tar.gz". TAR and ZIP
 files may appear inside the payload beneath the "data/"
 directory, where they would be treated as any other payload file.

 When serializing a bag, care must be taken to ensure that the archive
 format's restrictions on file naming, such as allowable characters,
 length, or character encoding, will support the requirements of the
 systems on which it will be used. See Section 7.2.

Kunze, et al. Expires July 29, 2016 [Page 13]

Internet-Draft BagIt January 2016

5. Examples

5.1. Example of a basic bag

 This is the layout of a basic bag containing an image and a companion
 OCR file. Lines of file content are shown in parentheses beneath the
 file name.

 myfirstbag/
 |
 | manifest-md5.txt
 | (49afbd86a1ca9f34b677a3f09655eae9 data/27613-h/images/q172.png)
 | (408ad21d50cef31da4df6d9ed81b01a7 data/27613-h/images/q172.txt)
 |
 | bagit.txt
 | (BagIt-version: 0.96)
 | (Tag-File-Character-Encoding: UTF-8)
 |
 \--- data/
 |
 | 27613-h/images/q172.png
 | (... image bytes ...)
 |
 | 27613-h/images/q172.txt
 | (... OCR text ...)

5.2. Another example bag

 The following example bag contains content from a web crawler. As
 before, lines of file content are shown in parentheses beneath the
 file name, with long lines continued indented on subsequent lines.
 This bag is not complete until every component listed in the
 "fetch.txt" file is retrieved.

Kunze, et al. Expires July 29, 2016 [Page 14]

Internet-Draft BagIt January 2016

 mysecondbag/
 |
 | manifest-md5.txt
 | (93c53193ef96732c76e00b3fdd8f9dd3 data/Collection Overview.txt)
 | (e9c5753d65b1ef5aeb281c0bb880c6c8 data/Seed List.txt)
 | (61c96810788283dc7be157b340e4eff4 data/gov-20060601-050019.arc.gz)
 | (55c7c80c6635d5a4c8fe76a940bf353e data/gov-20060601-100002.arc.gz)
 |
 | fetch.txt
 | (http://WB20.Stanford.Edu/gov-06-2006/gov-20060601-050019.arc.gz
 | 26583985 data/gov-20060601-050019.arc.gz)
 | (http://WB20.Stanford.Edu/gov-06-2006/gov-20060601-100002.arc.gz
 | 99509720 data/gov-20060601-100002.arc.gz)
 | (...)
 |
 | bag-info.txt
 | (Source-organization: California Digital Library)
 | (Organization-address: 415 20th St, 4th Floor, Oakland, CA 94612)
 | (Contact-name: A. E. Newman)
 | (Contact-phone: +1 510-555-1234)
 | (Contact-email: alfred@ucop.edu)
 | (External-Description: The collection "Local Davis Flood Control)
 | Collection" includes captured California State and local)
 | websites containing information on flood control resources for)
 | the Davis and Sacramento area. Sites were captured by UC Davis)
 | curator Wrigley Spyder using the Web Archiving Service in)
 | February 2007 and October 2007.)
 | (Bag-date: 2008.04.15)
 | (External-identifier: ark:/13030/fk4jm2bcp)
 | (Bag-size: about 22Gb)
 | (Payload-Oxum: 21836794142.831)
 | (Internal-sender-identifier: UCDL)
 | (Internal-sender-description: UC Davis Libraries)
 |
 | bagit.txt
 | (BagIt-version: 0.96)
 | (Tag-File-Character-Encoding: UTF-8)
 |
 \--- data/
 |
 | Collection Overview.txt
 | (... narrative description ...)
 |
 | Seed List.txt
 | (... list of crawler starting point URLs ...)

http://WB20.Stanford.Edu/gov-06-2006/gov-20060601-050019.arc.gz
http://WB20.Stanford.Edu/gov-06-2006/gov-20060601-100002.arc.gz

Kunze, et al. Expires July 29, 2016 [Page 15]

Internet-Draft BagIt January 2016

6. Security Considerations

6.1. Special directory characters

 The paths specified in the payload manifest, tag manifest, and
 "fetch.txt" file do not prohibit special directory characters which
 might be significant on implementing systems. Implementors SHOULD
 take care that files outside the bag directory structure are not
 accessed when reading or writing files based on paths specified in a
 bag.

 For example, path characters such as ".." or "~" in a maliciously
 crafted "fetch.txt" file might cause a naive implementation to
 overwrite critical system files.

6.2. Control of URLs in fetch.txt

 Implementors of tools that complete bags by retrieving URLs listed in
 a "fetch.txt" file need to be aware that some of those URLs may point
 to hosts, intentionally or unintentionally, that are not under
 control of the bag's sender. Checksums are intended as a reasonable
 guarantee against corruption during transit, not a strong
 cryptographic protection against intentional spoofing.

6.3. File sizes in fetch.txt

 The size of files, as optionally reported in the "fetch.txt" file,
 cannot be guaranteed to match the actual file size to be downloaded.
 Implementors SHOULD take care to appropriately handle cases where the
 actual file size does not match the file size reported in the
 fetch.txt. Implementors SHOULD NOT use the file size in the
 "fetch.txt" file for critical resource allocation, such as buffer
 sizing or storage requisitioning.

Kunze, et al. Expires July 29, 2016 [Page 16]

Internet-Draft BagIt January 2016

7. Practical Considerations (non-normative)

7.1. Disk and network transfer

 When creating a bag on physical media (such as hard disk, CD-ROM, or
 DVD) for transfer to another organization, the sender should select
 and format the media in a manner compatible with both the content
 requirements (e.g., file names and sizes) and the receiver's
 technical infrastructure. If the receiver's infrastructure is not
 known or the media needs to be compatible with a range of potential
 receivers, consideration should be given to portability and common
 usage. For example, a "lowest common denominator" for some potential
 receivers could be USB disk drives formatted with the FAT32
 filesystem.

 Although overall bag size is unlimited in principle, network-based
 transfers may involve constraints on the amount of bag data that a
 receiver can receive at one time. It may be practical to split a
 large bag into several smaller bags.

 Transmitting a whole bag in serialized form as a single file will
 tend to be the most straightforward mode of transfer. When
 throughput is a priority, use of "fetch.txt" lends itself to an easy,
 application-level parallelism in which the list of URL-addressed
 items to fetch is divided among multiple processes. The mechanics of
 sending and receiving bags over networks is otherwise out of scope of
 the present document and may be facilitated by protocols such as
 [GRABIT] and [SWORD].

7.2. Interoperability

 This section is not part of the BagIt specification. It describes
 some practical considerations for bag creators and receivers circa
 2010.

7.2.1. Checksum tools

 Some cautions regarding bag interchange arise in regard to the
 commonly available checksum tools distributed with the GNU Coreutils
 package (md5sum, sha1sum, etc.), collectively referred to here as
 "md5sum". First, md5sum can be run in binary or text mode; text mode
 sometimes normalizes line-endings. While these modes appear to
 produce the same checksums under Unix-like systems, they can produce
 different checksums under Windows. When using md5sum, it may be
 safest to run it in binary mode, with one caveat: a side-effect of
 binary mode is that md5sum requires a space and an asterisk ('*'),
 compared to two spaces in text mode, between the CHECKSUM and
 FILENAME in its manifest format.

Kunze, et al. Expires July 29, 2016 [Page 17]

Internet-Draft BagIt January 2016

 Due to the widespread use of md5sum (and its relatives), it is not
 unexpected for bag receivers to see manifests in which CHECKSUM and
 FILENAME are separated by a space followed by an asterisk.
 Implementors creating or processing bags with md5sum should be aware
 of these subtle differences, and ensure compliance with the manifest
 specification in this document. Implementors creating and processing
 bags with other tools may wish to be tolerant of asterisks found in
 the manifests.

 A final note about md5sum-generated manifests is that for a FILENAME
 containing a backslash ('\'), the manifest line will have a backslash
 inserted in front of the CHECKSUM and, under Windows, the backslashes
 inside FILENAME may be doubled.

7.2.2. Windows and Unix file naming

 As specified above, only the Unix-based path separator ('/') may be
 used inside filenames listed in BagIt manifests and "fetch.txt"
 files. When bags are exchanged between Windows and Unix platforms,
 care should be taken to translate the path separator as needed.
 Receivers of bags on physical media should be prepared for
 filesystems created under either Windows or Unix. Besides the
 fundamental difference between path separators ('\' and '/'),
 generally, Windows filesystems have more limitations than Unix
 filesystems. Windows path names have a maximum of 255 characters,
 and none of these characters may be used in a path component:

 < > : " / | ? *

 Windows also reserves the following names: CON, PRN, AUX, NUL, COM1,
 COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9, LPT1, LPT2, LPT3,
 LPT4, LPT5, LPT6, LPT7, LPT8, and LPT9. See [MSFNAM] for more
 information.

Kunze, et al. Expires July 29, 2016 [Page 18]

Internet-Draft BagIt January 2016

8. Acknowledgements

 BagIt owes much to many thoughtful contributers and reviewers,
 including Stephen Abrams, Mike Ashenfelder, Dan Chudnov, Brad Hards,
 Scott Fisher, Keith Johnson, Erik Hetzner, Leslie Johnston, David
 Loy, Mark Phillips, Tracy Seneca, Brian Tingle, Adam Turoff, and Jim
 Tuttle.

Kunze, et al. Expires July 29, 2016 [Page 19]

Internet-Draft BagIt January 2016

9. IANA Considerations

 This draft does not request any action from IANA.

Kunze, et al. Expires July 29, 2016 [Page 20]

Internet-Draft BagIt January 2016

10. References

10.1. Normative References

 [MSFNAM] Microsoft, "Naming a File", 2008,
 <http://msdn2.microsoft.com/en-us/library/aa365247.aspx>.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <http://www.rfc-editor.org/info/rfc1321>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3174] Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, DOI 10.17487/RFC3174, September 2001,
 <http://www.rfc-editor.org/info/rfc3174>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629,
 November 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

10.2. Informative References

 [ENCDEP] Tabata, K., "A Collaboration Model between Archival
 Systems to Enhance the Reliability of Preservation by an
 Enclose-and-Deposit Method", 2005,
 <http://www.iwaw.net/05/papers/iwaw05-tabata.pdf>.

 [GRABIT] NDIIPP/CDL, "The GrabIt File Exchange Protocol", 2008,
 <http://www.escholarship.org/uc/item/8t2639xb>.

 [SWORD] UKOLN/JISC CETIS, "Simple Web-service Offering Repository
 Deposit (SWORD)", 2008,
 <http://www.ukoln.ac.uk/repositories/digirep/index/SWORD>.

http://msdn2.microsoft.com/en-us/library/aa365247.aspx
https://datatracker.ietf.org/doc/html/rfc1321
http://www.rfc-editor.org/info/rfc1321
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3174
http://www.rfc-editor.org/info/rfc3174
https://datatracker.ietf.org/doc/html/rfc3629
http://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
http://www.iwaw.net/05/papers/iwaw05-tabata.pdf
http://www.escholarship.org/uc/item/8t2639xb
http://www.ukoln.ac.uk/repositories/digirep/index/SWORD

Kunze, et al. Expires July 29, 2016 [Page 21]

Internet-Draft BagIt January 2016

Authors' Addresses

 John A. Kunze
 California Digital Library
 415 20th St, 4th Floor
 Oakland, CA 94612
 US

 Email: jak@ucop.edu

 Justin Littman
 George Washington University Libraries
 2130 H Street, NW
 Washington, DC 20052
 USA

 Email: justinlittman@gmail.com

 Liz Madden
 Library of Congress
 101 Independence Avenue SE
 Washington, DC 20540
 USA

 Email: emad@loc.gov

 Ed Summers
 University of Maryland
 0301 Hornbake Library
 College Park, MD 20742-7011
 USA

 Email: ehs@pobox.com

 Andy Boyko
 1538 Winding Way
 Belmont, CA 94002
 USA

 Email: andrew@boyko.net

Kunze, et al. Expires July 29, 2016 [Page 22]

Internet-Draft BagIt January 2016

 Brian Vargas
 1354 Quincy St. NW
 Washington, DC 20011
 USA

 Email: brian@ardvaark.net

Kunze, et al. Expires July 29, 2016 [Page 23]

