
Network Working Group J. Kunze
Internet-Draft M. Haye
Expires: May 29, 2009 E. Hetzner
 M. Reyes
 California Digital Library
 C. Snavely
 University of Michigan Library IT
 Core Services
 November 25, 2008

Pairtrees for Object Storage (V0.1)
http://www.ietf.org/internet-drafts/draft-kunze-pairtree-01.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 29, 2009.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Kunze, et al. Expires May 29, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Pairtree November 2008

Abstract

 This document specifies Pairtree, a filesystem hierarchy for holding
 objects that are located within that hierarchy by mapping identifier
 strings to object directory (or folder) paths two characters at a
 time. If an object directory (folder) holds all the files, and
 nothing but the files, that comprise the object, a "pairtree" can be
 imported by a system that knows nothing about the nature or structure
 of the objects but can still deliver any object's files by requested
 identifier. The mapping is reversible, so the importing system can
 also walk the pairtree and reliably enumerate all the contained
 object identifiers. To the extent that object dependencies are
 stored inside the pairtree (e.g., fast indexes stored outside contain
 only derivative data), simple or complex collections built on top of
 pairtrees can recover from index failures and reconstruct a
 collection view simply by walking the trees. Pairtrees have the
 advantage that many object operations, including backup and restore,
 can be performed with native operating system tools.

Kunze, et al. Expires May 29, 2009 [Page 2]

Internet-Draft Pairtree November 2008

1. The basic pairtree algorithm

 The pairtree algorithm maps an arbitrary UTF-8 [RFC3629] encoded
 identifier string into a filesystem directory path based on
 successive pairs of characters, and also defines the reverse mapping
 (from pathname to identifier).

 In this document the word "directory" is used interchangeably with
 the word "folder" and all examples conform to Unix-based filesystem
 conventions which should tranlate easily to Windows conventions after
 substituting the path separator ('\' instead of '/'). Pairtree
 places no limitations on file and path lengths, so implementors
 thinking about maximal interoperation may wish to consider the issues
 listed in the Interoperability section of this document.

 The mapping from identifier string to path has two parts. First, the
 string is cleaned by converting characters that would be illegal or
 especially problemmatic in Unix or Windows filesystems. The cleaned
 string is then split into pairs of characters, each of which becomes
 a directory name in a filesystem path: successive pairs map to
 successive path components until there are no characters left, with
 the last component being either a 1- or 2-character directory name.
 The resulting path is known as a _pairpath_, or _ppath_.

 abcd -> ab/cd/
 abcdefg -> ab/cd/ef/g/
 12-986xy4 -> 12/-9/86/xy/4/

 Armed with specific knowledge of a given namespace's identifier
 distribution, one might achieve more balanced or efficient trees by
 mapping to paths from character groupings other than successive
 pairs. Pairtree assumes that this sort of optimization, however,
 being tailored to individual and transient namespace conditions, is
 often less important than having a single generalized and shareable
 mapping. It uses pairs of characters to achieve hierarchies that
 exhibit a reasonable balance of path length and fanout (number of
 probable entries in any component directory).

https://datatracker.ietf.org/doc/html/rfc3629

Kunze, et al. Expires May 29, 2009 [Page 3]

Internet-Draft Pairtree November 2008

2. Pairpath termination and object encapsulation

 A ppath (pairpath) terminates when it reaches an object. A little
 jargon helps explain this. A _shorty_ is a 1- or 2-character
 directory name, or any file or directory name that begins with
 "pairtree" (these are reserved for future use). A ppath consists of
 a sequence of "shorties" ending in a non-shorty, such as a
 3-character directory name or the 2-character file name "xy". The
 pairtree below contains two objects with identifiers "abcd" and
 "abcde".

 ab/
 |
 \--- cd/
 |
 |--- foo/
 | | README.txt
 | | thumbnail.gif
 | |
 | |--- master_images/
 | | | ...
 | | ...
 | |
 | \--- gh/
 |
 \--- e/
 |
 \--- bar/
 | metadata
 | 54321.wav
 | index.html

 An object is reached when a non-shorty is detected. An object is
 properly encapsulated if it is entirely contained in a non-shorty
 directory that is the immediate child of a shorty directory, in other
 words, if the 1- or 2-char directory name ending the object's ppath
 contains exactly one non-shorty directory that holds all the object's
 descendants. The two objects "abcd" and "abcde" above are properly
 encapsulated. Any shorty directory found at the same level as the
 non-shorty extends the pairtree. So while the "foo/" directory above
 does not subsume "e/" at the same level, by encapsulation, it does
 subsume the "gh/" underneath it (i.e., "gh/" is invisible to the
 pairtree algorithm, at least on a first pass).

 Practice will vary according to local custom as to how to name the
 encapsulating object directory beneath that last shorty. Its name is
 completely independent of the object identifier. For example, every
 object directory in a pairtree could have the uniform name "thingy".

Kunze, et al. Expires May 29, 2009 [Page 4]

Internet-Draft Pairtree November 2008

 It is common for the directory name to be a terminal substring of the
 object identifier, as in:

 id: 13030_45xqv_793842495
 ppath: 13/03/0_/45/xq/v_/79/38/42/49/5/793842495

 All objects should be properly encapsulated. If an object is
 detected that is _improperly encapsulated_, that is, when a ppath
 ends with a shorty directory that contains more than one non-shorty,
 the detecting system should take corrective action. In this
 situation, also known as a "split end", all those non-shorties
 (directories and files) are considered to belong to one object (not
 properly encapsulated) identified by the containing ppath. Excluding
 shorties from the object permits one identifier to be a substring of
 another (e.g., "abcd" and "abcde" can co-exist in a pairtree), and
 defining ppath termination in this way prevents "hidden riders", or
 data residing in a pairtree that is not contained or accounted for in
 any object. Here is an example of an improperly encapsulated object
 named "bent".

 be/
 |
 \--- nt/ [split end: two files, no encapsulation]
 | README.txt
 | report.pdf
 |
 \--- ef/
 | ...

 If a "split end" is encountered, an importing system is encouraged to
 normalize it by creating a single object directory called "obj" and
 pushing the non-shorties in question underneath it, as in:

 be/
 |
 \--- nt/
 |
 |--- obj/ [split end repaired with "obj" directory]
 | | README.txt
 | | report.pdf
 |
 \--- ef/
 | ...

Kunze, et al. Expires May 29, 2009 [Page 5]

Internet-Draft Pairtree November 2008

3. Identifier string cleaning

 Prior to splitting into character pairs, identifier strings are
 cleaned in two separate steps. One step would be simpler, but
 pairtree is designed so that commonly used characters in reasonably
 opaque identifiers (e.g., not containing natural language words,
 phrases, or hints) result in reasonably short and familiar-looking
 paths. For completeness, the pairtree algorithm specifies what to do
 with all possible UTF-8 characters, and relies for this on a kind of
 URL hex-encoding. To avoid conflict with URLs, pairtree hex-encoding
 is introduced with the '^' character instead of '%'.

 First, the identifier string is cleaned of characters that are
 expected to occur rarely in object identifiers but that would cause
 certain known problems for file systems. In this step, every UTF-8
 octet outside the range of visible ASCII (94 characters with
 hexadecimal codes 21-7e) [ASCII], as well as the following visible
 ASCII characters,

 " hex 22 < hex 3c \ hex 5c
 * hex 2a = hex 3d ^ hex 5e
 + hex 2b > hex 3e | hex 7c
 , hex 2c ? hex 3f

 must be converted to their corresponding 3-character hexadecimal
 encoding, ^hh, where ^ is a circumflex and hh is two hex digits. For
 example, ' ' (space) is converted to ^20 and '*' to ^2a.

 In the second step, the following single-character to single-
 character conversions must be done.

 / -> =
 : -> +
 . -> ,

 These are characters that occur quite commonly in opaque identifiers
 but present special problems for filesystems. This step avoids
 requiring them to be hex encoded (hence expanded to three
 characters), which keeps the typical ppath reasonably short. Here
 are examples of identifier strings after cleaning and after ppath
 mapping.

Kunze, et al. Expires May 29, 2009 [Page 6]

Internet-Draft Pairtree November 2008

 id: ark:/13030/xt12t3
 -> ark+=13030=xt12t3
 -> ar/k+/=1/30/30/=x/t1/2t/3/
 id: http://n2t.info/urn:nbn:se:kb:repos-1
 -> http+==n2t,info=urn+nbn+se+kb+repos-1
 -> ht/tp/+=/=n/2t/,i/nf/o=/ur/n+/nb/n+/se/+k/b+/re/po/s-/1/
 id: what-the-*@?#!^!?
 -> what-the-^2a@^3f#!^5e!^3f
 -> wh/at/-t/he/-^/2a/@^/3f/#!/^5/e!/^3/f/

 After this character cleaning procedure, directory names resulting
 from splitting the string into character pairs will be legal and not
 terribly inconvenient for mainstream Unix and Windows systems, for
 their command interpreters, and as web-exposed URL paths.

http://n2t.info/urn:nbn:se:kb:repos-1

Kunze, et al. Expires May 29, 2009 [Page 7]

Internet-Draft Pairtree November 2008

4. Pairpath initiation

 The top of a pairtree hierarchy is signaled by the presence of a
 directory called "pairtree_root". There may be other filenames
 beginning with "pairtree" accompanying it, as in the example below.
 Lines of file content, when shown, appear in parentheses beneath the
 file name.

 current_directory/
 | pairtree_version0_1 [which version of pairtree]
 | (This directory conforms to Pairtree Version 0.1. Updated spec:)
 | (http://www.cdlib.org/inside/diglib/pairtree/pairtreespec.html)
 |
 | pairtree_prefix
 | (http://n2t.info/ark:/13030/xt2)
 |
 \--- pairtree_root/
 |--- aa/
 | |--- cd/
 | | |--- foo/
 | | | | README.txt
 | | | | thumbnail.gif
 | | ...
 | |--- ab/ ...
 | |--- af/ ...
 | |--- ag/ ...
 | ...
 |--- ab/ ...
 ...
 \--- zz/ ...
 | ...

 The "pairtree_prefix" contains a string that should be prepended to
 every identifier inferred from the pairtree rooted at
 "pairtree_root". This may be used to reduce path lengths when every
 identifier in a given pairtree shares the same initial substring. In
 the example above, the pairpath "/aa/cd/" would thus correspond to
 the identifier "http://n2t.info/ark:/13030/xt2aacd".

http://www.cdlib.org/inside/diglib/pairtree/pairtreespec.html
http://n2t.info/ark:/13030/xt2

Kunze, et al. Expires May 29, 2009 [Page 8]

Internet-Draft Pairtree November 2008

5. Pairtree benefits

 Pairtree can be used with any object identifier, but its real
 strength comes when two main assumptions are also in effect. The
 first assumption is that every component on which an object depends
 will be stored in the filesystem. Increasingly, digital library
 systems recognize that the risk of scattering components among
 databases and files can be reduced when all primary data is kept in
 non-volatile storage that can be backed up and manipulated using
 core, ubiquitous operating system tools. While database indexes are
 important for supporting fast or complex query execution, this pre-
 condition merely requires that those indexes hold secondary copies of
 object components (e.g., metadata).

 The second assumption is that all the components of an object, and
 only the components of that object, are stored in an object's
 directory. Thus an object's directory contains no components
 belonging to another object. Of course complex objects will still
 contain other objects, and possibly other pairtrees, but such object
 containment is not visible to the pairtree algorithm except with a
 recursive pass.

 With these two pre-conditions met, a pairtree can be imported by a
 system that knows nothing about the nature or structure of the
 objects but can still deliver any object's files by requested
 identifier. The mapping is reversible, so the importing system can
 also walk the pairtree and reliably enumerate all the contained
 object identifiers. To the extent that object dependencies are
 stored inside the pairtree, simple or complex collections built on
 top of pairtrees can recover from index failures and reconstruct a
 collection catalog simply by walking the trees. Finally, pairtrees
 have the advantage that many object operations, including backup and
 restore, can be performed with native operating system tools.

Kunze, et al. Expires May 29, 2009 [Page 9]

Internet-Draft Pairtree November 2008

6. Interoperability: Windows and Unix File Naming

 Besides the fundamental difference between path separators ('\' and
 '/'), generally, Windows filesystems have more limitations than Unix
 filesystems. Windows path names have a maximum of 255 characters,
 and none of these characters may be used in a path component:

 < > : " / | ? *

 Windows also reserves the following names: CON, PRN, AUX, NUL, COM1,
 COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9, LPT1, LPT2, LPT3,
 LPT4, LPT5, LPT6, LPT7, LPT8, and LPT9. See [MSFNAM] for more
 information.

Kunze, et al. Expires May 29, 2009 [Page 10]

Internet-Draft Pairtree November 2008

7. Security Considerations

 Pairtree poses no direct risk to computers and networks. As a
 filesystem format, pairtree is capable of holding files that might
 contain malicious executable content, but it is no more vulnerable in
 this regard than formats such as TAR and ZIP.

Kunze, et al. Expires May 29, 2009 [Page 11]

Internet-Draft Pairtree November 2008

Appendix A. Sample Implementation

 There is a [PAIRTREE] Perl module at CPAN the implements two
 mappings. The routine, id2ppath, maps an identifier to a pairpath,
 and another routine, ppath2id, performs the inverse mapping. The
 usage synopsis follows.

 use File::Pairtree; # imports routines into a Perl script

 id2ppath($id); # returns pairpath corresponding to $id
 ppath2id($path); # returns id corresponding to $path

Kunze, et al. Expires May 29, 2009 [Page 12]

Internet-Draft Pairtree November 2008

8. References

 [ASCII] "Coded Character Set -- 7-bit American Standard Code for
 Information Interchange, ANSI X3.4", 1986.

 [MSFNAM] Microsoft, "Naming a File", 2008,
 <http://msdn2.microsoft.com/en-us/library/aa365247.aspx>.

 [PAIRTREE]
 Kunze, "File::Pairtree Perl Module", November 2008, <http:
 //search.cpan.org/~jak/Pairtree-0.2/lib/File/Pairtree.pm>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

http://msdn2.microsoft.com/en-us/library/aa365247.aspx
https://datatracker.ietf.org/doc/html/rfc3629

Kunze, et al. Expires May 29, 2009 [Page 13]

Internet-Draft Pairtree November 2008

Authors' Addresses

 John A. Kunze
 California Digital Library
 415 20th St, 4th Floor
 Oakland, CA 94612
 US

 Fax: +1 510-893-5212
 Email: jak@ucop.edu

 Martin Haye
 California Digital Library
 415 20th St, 4th Floor
 Oakland, CA 94612
 US

 Fax: +1 503-234-3581
 Email: martin.haye@ucop.edu

 Erik Hetzner
 California Digital Library
 415 20th St, 4th Floor
 Oakland, CA 94612
 US

 Fax: +1 503-234-3581
 Email: erik.hetzner@ucop.edu

 Mark Reyes
 California Digital Library
 415 20th St, 4th Floor
 Oakland, CA 94612
 US

 Fax: +1 503-234-3581
 Email: mark.reyes@ucop.edu

Kunze, et al. Expires May 29, 2009 [Page 14]

Internet-Draft Pairtree November 2008

 Cory Snavely
 University of Michigan Library IT Core Services
 920 N University Ave, 300D Hatcher Library N
 Ann Arbor, MI 48109
 US

 Fax: +1 734-647-6897
 Email: csnavely@umich.edu

Kunze, et al. Expires May 29, 2009 [Page 15]

Internet-Draft Pairtree November 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Kunze, et al. Expires May 29, 2009 [Page 16]

