
Internet-Draft: draft-kunze-thump-02.txt K. Gamiel
THUMP Retrieval Protocol Renaissance Computing Inst.
Expires 24 August 2007 J. Kunze
 University of California
 N. Nassar
 Etymon Systems
 24 February 2007

THUMP -- The HTTP URL Mapping Protocol

 (http://www.ietf.org/internet-drafts/draft-kunze-thump-02.txt)

Status of this Document

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 Distribution of this document is unlimited. Please send comments to
 jak@ucop.edu

 Copyright (C) The IETF Trust (2007). All Rights Reserved.

Abstract

 The HTTP URL Mapping Protocol (THUMP) is a set of URL-based
 conventions for retrieving information and conducting searches.
 THUMP can be used for focused retrievals or for broad database
 queries. A THUMP request is a URL containing a query string that
 starts with a `?', and can contain one or more THUMP commands.
 Returned records are formatted with kernel metadata as Electronic
 Resource Citations, which are similar to blocks of email headers.

https://datatracker.ietf.org/doc/html/draft-kunze-thump-02.txt
http://www.ietf.org/internet-drafts/draft-kunze-thump-02.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

J. Kunze [Page 1]

Internet Draft THUMP Retrieval Protocol February 2007

1. Overview

 This document specifies The HTTP URL Mapping Protocol (THUMP), a set
 of URL-based conventions for retrieving information and conducting
 searches. THUMP can be used for focused retrievals; e.g., for a
 given known-item, asking that a specifically formatted subset of
 information about it be returned. It can also be used for broad
 database queries, such as finding all records matching the word,
 "monitor".

 A THUMP request is a URL containing a query string that starts with a
 `?', and can contain one or more THUMP commands. A request is passed
 to a server with HTTP GET (or POST if desired). The shortest request
 is a URL ending in `?', as in,

http://example.foo.com/object321?

 which asks the server to return a metadata record describing the
 information item identified by the URL. This is a shorthand for the
 common request for a short description of a known-item; the
 completely spelled out equivalent in this case would be

http://example.foo.com/object321?show(brief)as(anvl/erc)

 An example of a broad database search is,

http://example.foo.com/?db(books)find(war and peace)show(full)

 Query strings and responses are UTF8-encoded [RFC3629]. A THUMP
 response is an HTTP message body containing one or more records.
 Records contain Kernel metadata [KERNEL] formatted as Electronic
 Resource Citations (ERC), which are similar to blocks of email
 headers. In an ERC each element consists of a label, colon, and
 value; long values are continued on indented lines and empty lines
 separate records. It will be possible in a future version of THUMP
 to request ERC records formatted in XML.

2. A Sample THUMP Session

 THUMP is very simple and follows the classical stateless HTTP
 communication model. This section contains a complete annotated
 example of a request and response exchange. To summarize, the
 requester sets up a TCP/HTTP session with the server system, sends a
 THUMP request inside an HTTP request, receives an answer inside an
 HTTP response, and closes the session.

 In the following example THUMP session, each line has been annotated
 to include a line number and whether it was the client or server that
 sent it. Without going into depth, the session has four pieces

http://example.foo.com/object321?
http://example.foo
http://example.foo
https://datatracker.ietf.org/doc/html/rfc3629

 separated by blank lines: the client's piece (lines 1-3), the
 server's HTTP/THUMP response headers (4-7), and the body of the

J. Kunze 2. Sample THUMP Session [Page 2]

Internet Draft THUMP Retrieval Protocol February 2007

 server's response (8-18). The first and last lines (1 and 18)
 correspond to the client's steps to start the TCP session and the
 server's steps to end it, respectively. The heart of the request is
 the known-item metadata request indicated by the URL ending in a
 single `?' on line 2.

 1 C: [opens session]
 C: GET http://ark.cdlib.org/ark:/13030/ft167nb0vq? HTTP/1.1
 C:
 S: HTTP/1.1 200 OK
 5 S: Content-Type: text/plain
 S: THUMP-Status: 0.5 200 OK
 S:
 S: set-start: California Digital Library | THUMP 0.5 | 20060606161407
 S: | http://ark.cdlib.org/ark:/13030/ft167nb0vq?
 10 S: | http://dublincore.org/groups/kernel/erc
 S: here: 1 | 1 | 1
 S:
 S: erc:
 S: who: Stanton A. Glantz and Edith D. Balbach
 15 S: what: Tobacco War: Inside the California Battles
 S: when: 20000510
 S: where: http://ark.cdlib.org/ark:/13030/ft167nb0vq
 S: [closes session]

 The first two server response lines (4-5) above are typical with
 HTTP. The next line (6) is peculiar to THUMP, and indicates the
 THUMP version and a normal return status. The balance of the
 response consists of a record set header (lines 8-11) and a single
 metadata record (13-17) that comprises the service response.

 The record set header identifies (8-11) who created the set, what
 created it, when it was created, where an automated process can re-
 access the set, and where to look up the meaning of metadata
 elements; it ends in a line (11) whose respective sub-elements
 indicate that here in this communication the recipient can expect to
 find 1 record, starting at the record numbered 1, from a set
 consisting of a total of 1 record (i.e., here is the entire set,
 consisting of exactly one record).

 The returned record (13-17) is in the ERC format. It contains four
 elements that answer high priority questions regarding an expression
 of the object: who played a major role in expressing it, what the
 expression was called, when is was created, and where the expression
 may be found.

3. Keys and Citations

http://ark.cdlib.org/ark:/13030/ft167nb0vq?
http://ark.cdlib.org/ark:/13030/ft167nb0vq?
http://dublincore.org/groups/kernel/erc
http://ark.cdlib.org/ark:/13030/ft167nb0vq

 A THUMP request is a command sequence operating on a Key, which is a
 base URL for a service point that supports THUMP. It is expected,

J. Kunze 3. Keys and Citations [Page 3]

Internet Draft THUMP Retrieval Protocol February 2007

 however, that the Key may generalize to service points in client-
 server computation contexts other than today's WWW.

 The Key uses a "citation-centered" system of reference. This means
 that data elements are addressed relative to an abstract object
 surrogate, or "citation".

 While some systems have stored metadata-based surrogates (e.g.,
 library catalog records for books), many other systems do not. This
 is not an obstacle to using THUMP. The latter usually support the
 display or delivery of dynamically generated object citations, each
 consisting of such things as an access URL, a size, a date, a title,
 a snippet of relevant text (e.g., matching a query), plus links to
 related materials.

 Non-surrogate information objects in this model are, loosely
 speaking, the priority objects for end users, and include documents,
 articles, books, films, recordings, etc. Surrogates, whether static
 or dynamically generated, are important temporary stand-ins during
 discovery, filtering, and selection processes. They are easy to
 manipulate in large numbers because they are much more homogeneous
 than the objects they represent. Those objects are often too large,
 unwieldy, or rights-encumbered to be dealt with directly during
 discovery. Surrogates are also valuable in preservation since they
 can provide useful information about the original context,
 dependencies, and provenance of an object.

4. Key-Request Dualism

 Although THUMP does not specify anything about the structure of the
 Key, it is possible for a given Key string to express, often in an ad
 hoc manner, information similar to that expressed in the Request
 query string. The more intuitive the Key structure, the greater the
 chance for it to carry information that might appear to repeat or
 even contradict commands in the Request. For example, one server's
 conventions might consider

http://example.foo.com/?db(books)find(war and peace)show(full)

 to be equivalent to

http://example.foo.com/db=books/find=war+and+peace?show(full)

 There is a natural duality that servers may exploit by permitting or
 proposing (e.g., by returning) such semantically-laden Keys. Any
 conventions for re-expressing THUMP commands within the Key or for
 resolving apparent contradictions, however, are up to individual
 servers and are out of scope for this document.

http://example.foo
http://example.foo

J. Kunze 4. Key-Request Dualism [Page 4]

Internet Draft THUMP Retrieval Protocol February 2007

 This document recognizes the duality but does not constrain it except
 to say that for a given Key, a server that declares THUMP support
 MUST respond to the "help" command by listing all the commands
 (methods) valid for that Key. As a foundation requirement, the
 "help" command is a common way to ping a THUMP server to see if it is
 alive.

 At one extreme of the duality, when the request is completely absent
 (no `?' at all), a service may return a THUMP response. This might
 make sense for an entire service or only for certain specific Keys.

 There are cases when a server may wish to generate a temporary Key as
 a stand-in for a long or complex request and return it along with a
 subset of found records. For example, the request,

http://example.foo.com/?db(books)find(war and peace)list(10|1)

 might return the first 10 records along with a Key that could be used
 in subsequent requests to return the next 10 records:

http://example.foo.com/req98765?list(10|11)

 Note that this document makes no assumption about the dynamicity of
 queries, whether expressed partially or entirely in the Key or in the
 request. In either form, returned records might come from cached
 results or from results freshly computed upon each access. THUMP
 support does not constrain servers in this regard.

5. Request Summary

 There are several request forms described below, with output formats
 listed in a later section. Spaces have been inserted for readability
 in the forms below; usually, inter-command spaces would not be
 present. It is normal to formulate THUMP queries using only a subset
 of the commands specified. With a few important exceptions, this
 document is silent on how servers supply defaults or whether they
 signal errors for missing commands. All default actions and server-
 side request modifications SHOULD be reported back to the client.

5.1. Key ? help

 This form is required. A server that declares THUMP support MUST
 respond to the "help" command by listing all the commands (methods)
 valid for that Key. As a foundation requirement, the "help" command
 is a common way to ping a THUMP server to see if it is alive.

5.2. Key ? was(DESCRIPTION) when(DATE) resync

http://example.foo
http://example.foo

 This "metadata" command form provides nothing more than a way to
 carry a Key along with its description. The form is a "no-op"

J. Kunze 5.2. ? was() when() resync [Page 5]

Internet Draft THUMP Retrieval Protocol February 2007

 (except when "resync" is present) in the sense that the Key is
 treated as an adorned URL (as if no THUMP request were present).
 This form is designed as a passive data structrue that pairs a
 hyperlink with its metadata so that a formatted description might be
 surfaced by a client-side trigger event such as a "mouse-over". It
 is passive in the sense that selecting ("clicking on") the URL should
 result in ordinary access via the Key-as-pure-link as if no THUMP
 request were present. The form is effectively a metadata cache, and
 the DATE of last extraction tells how fresh it is.

 The "was" pseudo-command takes multiple arguments separated by "|",
 the first argument identifying the kind of DESCRIPTION that follows,
 e.g,

 was(erc|Tolstoy, L|War and Peace|1863|http://www.gutenberg.org/etext/2600)

 The "when" pseudo-command (optional) takes one argument that is the
 date that the immediately DESCRIPTION was extracted. The date,
 conforming to the [TEMPER] specification, looks like YYYYMMDDhhmmss.
 The "was" and "when" pseudo-commands can harmlessly accompany any
 THUMP request.

 The "resync" command, however, is a request to update the metadata.
 It returns a "metadata" form similar to the one submitted, but with
 refreshed metadata and no "resync" at the end.

5.3. Key ? in(DB) find(QUERY) list(RANGE) show(ELEMS) as(FORMAT)

 This form is used for generalized queries. The server is permitted
 to modify commands, such as by supplying missing commands (defaults),
 but SHOULD report the resulting filled-out command xxx.

 The "in" command specifies one or more database names separated by
 "|". If no "in" command is present, the server picks a suitable
 default database or returns an error. If no other commands are
 present, the server may treat the database as a result set or return
 an error.

 The "find" command specifies a QUERY that should produce a result set
 of matching records or an error. The result set is modeled as a
 numbered sequence of records that is returned "by reference" with a
 generated Key (see the "results" tag later) or as one or more
 returned subsequences of records, known as returned sets. If no
 "find" command is present, Key is expected to imply either a single
 record or a set of records. THUMP distinguishes between a result set
 and a returned set, which is a subsequence of the result set included
 in a given response.

 The QUERY consists of free text words separated by spaces. Reserved

 words begin with a ":" (colon), such as the :and, :or, and :not
 boolean operators. Parentheses can be used for grouping. Prepending

J. Kunze 5.3. ? in() find() list() show() as() [Page 6]

Internet Draft THUMP Retrieval Protocol February 2007

 "+" ("-") to a word is done when the requester desires that the word
 be present (absent) from search results. The double-quote character
 can be used to join words in a phrase or to turn off the special
 meanings of parentheses or ":+-" in front of words.

 The "list" command is used to request that a specific subsequence or
 RANGE of records be returned. The server should always use the
 starting point of the requested RANGE, but is free to return fewer
 records (or a partial record). In all cases the server must report
 what records or record fragment it has returned. If no "list"
 command is present, it is up to the server whether to return records,
 and if so, which records.

 RANGE is a pair of arguments, "LENGTH|START", indicating the number
 of records and starting record in the requested sequence. For
 example, a RANGE of "10I81" requests 10 records beginning with result
 set record 81. If both arguments are missing, as in "list()", it is
 considered a request for all records. If given as just "list(0)", it
 is a request that no records be returned directly, but a that the
 result set be returned by reference to a generated Key listed in the
 "results" tag of the returned set header. If LENGTH is positive and
 START is 0, the server should send LENGTH randomly selected result
 set records. If START is missing it defaults to 1; if LENGTH is
 missing, it is considered a request for all records starting from
 START.

 RANGE may also be used to request record fragments. A returned
 record set consists of either one or more entire (whole) records, or
 of exactly one fragment of one record. When a fragment is returned,
 the start position in the set header (described later) is indicated
 with S_F, where S is the record number and F is the fragment sequence
 number. To request the next fragment, a START is formulated by
 adding 1 to F. For example, "10|45_3" requests 10 records starting
 at fragment 3 of record 45 (only one fragment can be returned).

 The "show" command is used request that returned records be
 constituted with ELEMS elements. ELEMS is one or more element or
 element subset names separated by "|". Common element subset names
 are "brief", "full", and "support" (a record that is complete enough
 to show the server's commitment to the object. If no "show" command
 is present, it is up to the server which elements to return.

 The "as" command is used to request that returned records be
 formatted according to FORMAT. Common format names are "anvl/erc",
 "anvl/qdc", and "xml/marc". If no "as" command is present, the
 default format is usually "anvl/erc" (a plain text format that is
 eye-readable and machine-readable).

J. Kunze 5.3. ? in() find() list() show() as() [Page 7]

Internet Draft THUMP Retrieval Protocol February 2007

5.4. Key ?

 This is a shorthand for

 Key ? show(brief) as(anvl/erc)

 which returns a brief object (identified by Key) description.
 Support for this shorthand is required.

5.5. Key ??

 This is a shorthand for

 Key ? show(support) as(anvl/erc)

 which returns an object description full enough to contain the server
 provider's commitment statement. Support for this shorthand is
 required.

5.6. Key ? get() put() group() sort() apply()

 These commands are currently undefined and reserved by THUMP for
 future use.

6. Response Summary

 A THUMP response consists of a block of HTTP and extension headers, a
 blank line, and, if the THUMP-Status extension header was 200, a
 returned set of records. The Content-Type HTTP header is normally
 returned as

 Content-Type: text/plain

 so that the results will display correctly on a web browser's
 display. The THUMP content types "text/xml" and "text/html" are
 being considered.

 The rest of this section describes the THUMP extension headers and
 the structure of the returned record set. Extension headers are
 inserted in the block of HTTP response headers, usually near the end.
 Currently, one extension header, THUMP-Status, is defined, and it is
 required:

 THUMP-Status: THUMPVersion StatusCode ReasonPhrase

 It includes the version, a short human-readable phrase, and a 3-digit
 integer result code indicating the status of the attempt to execute
 the request. Defined StatusCodes and ReasonPhrases for THUMPVersion

 0.5 are:

J. Kunze 6. Response Summary [Page 8]

Internet Draft THUMP Retrieval Protocol February 2007

 200: OK
 400: Bad Request
 402: Payment Required
 403: Forbidden
 404: Not Found
 405: Method Not Allowed
 408: Request Time-out

 If the status code other than 200, no record set should be sent. If
 the server wishes to convey any more detailed diagnostic or error
 information than may be expressed by the above status codes, it MUST
 set the code to 200 and use "error" or "warning" element tags within
 the returned record set.

 A blank line separates the HTTP response and THUMP-Status headers
 from the returned set that is the body of the response. The returned
 record set consists of a set-start header record followed by a
 sequence of records, each separated by one ore more blank lines,
 until end of stream (file) is reached. A set-end header record is
 optional.

 The format of the records is normally "anvl/erc", which specifies a
 serialization syntax [ANVL] with ERC semantics [KERNEL]. In a future
 version of THUMP it will be possible to request ERC semantics with
 "xml/erc". The next sections describe the special ANVL record used
 to introduce a record set and then the ERC records.

7. Returned Record Set Header

 What follows is a description of the anvl/erc returned record set
 encoding. The first record is a header record of the form,

 set-start: WHO_GENERATED | WHAT_SET | WHEN_GENERATED
 | WHERE_TO_RERUN
 | HOW_TO_INTERPRET
 here: NUM_RETURNED_SET | START_POSITION | NUM_RESULT_SET
 results: RESULT_SET_URI <optional>
 error: FATAL_ERROR_MESSAGE <optional>
 warning: CAUTIONARY_MESSAGE <optional>

 where the upper-cased tokens will be replaced by server-supplied
 values. Apart from the "set-start" element, which must appeart
 first, the other elements may appear in any order. Just as for an
 ordinary record, a blank line ends a set header record.

 The last three element tags are optional. If the "error" element is
 present, the supplied free-text message indicates a fatal error, and
 no usable returned records should be expected. If the "warning"

 element is present, the supplied message indicates a non-fatal error,
 and usable records may be returned.

J. Kunze 7. Returned Record Set Header [Page 9]

Internet Draft THUMP Retrieval Protocol February 2007

7.1. "set-start" tag (required)

 The "set-start" element must be first in the record. Its associated
 values are:

 WHO_GENERATED
 The name or URI of the organization generating the set.

 WHAT_GENERATED
 The origin of the set, which might be simply "THUMP 0.5" or
 perhaps the name of an including collection or database.

 WHEN_GENERATED
 The date in [TEMPER] format when the set was generated.

 WHERE_TO_RERUN
 A URI containing a THUMP request that can be used to rerun the
 originating request (although it need not be a verbatim copy of the
 original request), and with differing results not unexpected in cases
 where the underlying collection is evolving.

 HOW_TO_INTERPRET
 The URI of a document defining the semantics of the element tags
 used in the returned record set.

 Note that for WHERE_TO_RERUN, the server may mirror the original
 THUMP request or may include a revision instead to indicate name
 remapping, defaults, interpretations, and corrections. An original
 request of

 find(vacuum tube)show(short)

 might come back "normalized", for example, as in

 find(vacuum%20tube)list(20|1)show(brief)

7.2. "here" tag (required)

 The "here" element is required, and has the form,

 here: NUM_RETURNED_SET | START_POSITION | NUM_RESULT_SET

 Its associated values are:

 NUM_RETURNED_SET
 The number of records in this returned set matching the request.
 A 0 (zero) indicates that no records were returned. If the result
 set is non-empty, the "results" tag may contain a URI that can be

 used as Key in subsequent THUMP requests. The special composite
 number, "0_1" indicates a set consisting of exactly one internal

J. Kunze 7.2. [Page 10]

Internet Draft THUMP Retrieval Protocol February 2007

 record fragment, with the final fragment indicated by "1_1". By
 concatenating all the fragments in the correct order, the client can
 reconstruct the whole record.

 START_POSITION
 The starting position of the first returned record relative to
 result set. If this number is 0 (zero), it indicates that the order
 of the returned records is undefined. If this number has the special
 composite form, "S_F", it indicates the record number S and sequence
 number F of the one record fragment in the returned set. The final
 fragment of a record is indicated when the server returns "1_1" for
 NUM_RETURNED_SET.

 Fragments should be requested in sequence by incrementing the
 sequence number, e.g., if 45_2 is returned (fragment 2 of record 45),
 the next fragment request from the client could be "list(10|45_3)",
 which request 10 records (the server unilaterally cuts this down to a
 single fragment) starting from fragment 3 of record 45.

 NUM_RESULT_SET
 The number of records in the result set. If this number is
 followed by a plus (e.g., 345+), it indicates that a minimum number
 that is still subject to growth. If followed by a tilda (e.g.,
 30000~), it indicates an approximate result set size.

 Examples of client/server exchanges that show how "list" commands
 might trigger server responses expressed in "here" returned set
 header tags.

 list(10|1) -> here: 10 | 1 | 27
 list(10|11) -> here: 10 | 11 | 27
 list(10|21) -> here: 7 | 21 | 27

 list(20|1) -> here: 4 | 1 | 7
 list(20|5) -> here: 0_1 | 5_1 | 7
 list(20|5_2) -> here: 0_1 | 5_2 | 7
 list(20|5_3) -> here: 1_1 | 5_3 | 7
 list(20|6) -> here: 2 | 6 | 7

7.3. "results" tag (optional)

 The "results" element is optional, and has the form,

 results: RESULT_SET_URI

 Its associated value is a URI that can be used to refer to the
 results in a subsequent THUMP request, e.g.,

 RESULT_SET_URI ? list(20|41)

J. Kunze 7.3. [Page 11]

Internet Draft THUMP Retrieval Protocol February 2007

 or

 Key ? find(:uri:RESULT_SET_URI :and parklands)

7.4. End of a record set

 The end of a record set is detected when the end of stream (or file)
 is encountered or, optionally, when a record beginning with the "set-
 end" element tag is encountered. This record has the form,

 set-end: OPTIONAL_COMMENT

 The OPTIONAL_COMMENT may contain arbitrary free text and may be
 absent. If a "set-end" is encountered, it is considered to close the
 most recently encountered "set-start". As usual, the record ends
 with a blank line.

8. Returned Records

 This section describes how a record in the sequence of returned
 records is encoded in the anvl/erc format. ANVL (A Name Value
 Language) defines the syntax and the ERC (Electronic Resource
 Citation) defines semantics. The URI for the ERC [KERNEL] reference
 should be included in the record set header. While a comprehensive
 description of the ERC record is out of scope for this document, some
 details are give below that may suffice for simple implementations.

 An ERC record is a sequence of tagged elements. It has the form,

 erc:
 who: WHO_EXPRESSED_THIS_ITEM
 what: WHAT_THE_EXPRESSION_WAS_CALLED
 when: WHEN_IT_WAS_EXPRESSED
 where: WHERE_THE_EXPRESSION_CAN_BE_FOUND
 how: DESCRIPTION_OR_SUMMARY_OF_ITEM <optional>
 why: COPYRIGHT_DISCLAIMER_AUDIENCE_STATEMENT <optional>
 note: ANY_TEXT <optional>

 <any other tagged elements> <optional>

 The first five tagged elements are required. The required elements
 may be thought to answer questions about an "expression" of a
 resource (an item).

 All other elements are optional. The next ERC element shown above
 ("how") is concerned with the content of an item and the element
 after that ("why") with any high priority information that comes from

 the lawyerly domain -- the really hard questions.

J. Kunze 8. Returned Records [Page 12]

Internet Draft THUMP Retrieval Protocol February 2007

 A short form of the ERC is also possible that the above ordering for
 the first 6 elements. It has the form,

 erc: WHO | WHAT | WHEN
 | WHERE
 | HOW <optional>
 | WHY <optional>
 note: ANY_TEXT <optional>

 <any other tagged elements> <optional>

 The line breaks among the first 6 elements are arbitrary. Together
 they are considered to be part of one long value for the "erc:" as
 long as they are continued on indented lines. In either form of the
 ERC, arbitrary additional elements are possible.

8.1. Empty values for required elements

 Although they are required, if no suitable element value can be
 found, a controlled code value for "empty" of the form

 (:ccode)

 should be used, drawing from the following reserved values:

 (:unkn) A null element term explaining that the value is unknown.
 Compared to :unav, this explanation carries a high degree of
 authority regarding the object described. Anonymous
 authorship is an example.

 (:unav) A null element term explaining that the value is unavailable
 indefinitely. Compared to :unkn, this explanation is
 intended for intermediary systems that know less about the
 object described and have to rely on the best metadata
 received.

 (:unac) A null element term explaining that the value is temporarily
 inaccessible. This might be due, for example, to a system
 outage.

 (:unap) A null element term explaining that the value is not
 applicable or makes no sense.

 (:unas) A null element term explaining that a value was never
 assigned. An untitled painting is an example.

 (:none) A null element term explaining that the element never had a
 value and never will.

 (:null) A null element term explaining that the value is explicitly
 empty.

J. Kunze 8.1. Empty values for required elements [Page 13]

Internet Draft THUMP Retrieval Protocol February 2007

 (:unal) A null element term explaining that the value is unallowed
 or suppressed intentionally.

 (:tba) A null element term explaining that the value is to be
 assigned or announced later.

9. FAQ -- Frequently Asked Questions

9.1. What's the difference between THUMP, OpenSearch, SRU/SRW, and
OpenURL?

 All of these protocols are capable of expressing a parameter package
 on the right-hand side of a URL, and all of them reserve specific
 parameter names as having defined meanings. In theory, these
 packages can be extended arbitrarily to express any functionality
 with any level of complexity. There's no syntactic limitation to
 these protocols' expressiveness. The difference lies in how.

 THUMP uses a classic parenthesized argument list syntax while the
 others use the flat argument-value list syntax traditional on the web
 since 1995. OpenSearch and SRU/SRW are logical descendants of the
 complex Z39.50 search and retrieve protocol, but with restricted
 functionality and a text-based syntax. SRW and OpenURL define an
 XML-encoding for request parameters. OpenURL tends to be used for
 known-item linking. THUMP aims to be a more concise specification
 for key-based requests.

10. Appendix -- Motivation for Electronic Resource Citations (ERCs)

 An Electronic Resource Citation (or ERC, pronounced e-r-c) is a
 simple, compact, and printable record designed to hold data
 associated with an information resource. By design, the ERC is a
 metadata format that balances the needs for expressive power, very
 simple machine processing, and direct human manipulation.

 A founding principle of the ERC is that direct human contact with
 metadata will be a necessary and sufficient condition for the near
 term rapid development of metadata standards, systems, and services.
 Thus the machine-processable ERC format must only minimally strain
 people's ability to read, understand, change, and transmit ERCs
 without their relying on intermediation with specialized software
 tools. The basic ERC needs to be succinct, transparent, and
 trivially parseable by software.

 Borrowing from the data structuring format that underlies the
 successful spread of email and web services, the ERC format uses
 [ANVL], which is based on email and HTTP headers [RFC822]. There is

https://datatracker.ietf.org/doc/html/rfc822

 a naturalness to ANVL's label-colon-value format (seen in the
 previous section) that barely needs explanation to a person beginning

J. Kunze 10. Electronic Resource Citations (ERCs) [Page 14]

Internet Draft THUMP Retrieval Protocol February 2007

 to enter ERC metadata.

 Besides simplicity of ERC system implementation and data entry
 mechanics, ERC semantics (what the record and its constituent parts
 mean) must also be easy to explain. ERC semantics are based on a
 reformulation and extension of the Dublin Core [DCORE] hypothesis,
 which suggests that the fifteen Dublin Core metadata elements have a
 key role to play in cross-domain resource description. The ERC
 design recognizes that the Dublin Core's primary contribution is the
 international, interdisciplinary consensus that identified fifteen
 semantic buckets (element categories), regardless of how they are
 labeled. The ERC then adds a definition for a record and some
 minimal compliance rules. In pursuing the limits of simplicity, the
 ERC design combines and relabels some Dublin Core buckets to isolate
 a tiny kernel (subset) of four elements for basic cross-domain
 resource description.

 For the cross-domain kernel, the ERC uses the four basic elements -
 who, what, when, and where - to pretend that every object in the
 universe can have a uniform minimal description. Each has a name or
 other identifier, a location, some responsible person or party, and a
 date. It doesn't matter what type of object it is, or whether one
 plans to read it, interact with it, smoke it, wear it, or navigate
 it. Of course, this approach is flawed because uniformity of
 description for some object types requires more semantic contortion
 and sacrifice than for others. That is why at the beginning of this
 document, the ARK was said to be suited to objects that accommodate
 reasonably regular electronic description.

 While insisting on uniformity at the most basic level provides
 powerful cross-domain leverage, the semantic sacrifice is great for
 many applications. So the ERC also permits a semantically rich and
 nuanced description to co-exist in a record along with a basic
 description. In that way both sophisticated and naive recipients of
 the record can extract the level of meaning from it that best suits
 their needs and abilities. Key to unlocking the richer description
 is a controlled vocabulary of ERC record types (not explained in this
 document) that permit knowledgeable recipients to apply defined sets
 of additional assumptions to the record.

10.1. ERC Syntax

 An ERC record is a sequence of metadata elements ending in a blank
 line. An element consists of a label, a colon, and an optional
 value. Here is an example of a record with five elements.

J. Kunze 10.1. ERC Syntax [Page 15]

Internet Draft THUMP Retrieval Protocol February 2007

 erc:
 who: Gibbon, Edward
 what: The Decline and Fall of the Roman Empire
 when: 1781
 where: http://www.ccel.org/g/gibbon/decline/

 A long value may be folded (continued) onto the next line by
 inserting a newline and indenting the next line. A value can be thus
 folded across multiple lines. Here are two example elements, each
 folded across four lines.

 who/created: University of California, San Francisco, AIDS
 Program at San Francisco General Hospital | University
 of California, San Francisco, Center for AIDS Prevention
 Studies
 what/Topic:
 Heart Attack | Heart Failure
 | Heart
 Diseases

 An element value folded across several lines is treated as if the
 lines were joined together on one long line. For example, the second
 element from the previous example is considered equivalent to

 what/Topic: Heart Attack | Heart Failure | Heart Diseases

 An element value may contain multiple values, each one separated from
 the next by a `|' (pipe) character. The element from the previous
 example contains three values.

 For annotation purposes, any line beginning with a `#' (hash)
 character is treated as if it were not present; this is a "comment"
 line (a feature not available in email or HTTP headers). For
 example, the following element is spread across four lines and
 contains two values:

 what/Topic:
 Heart Attack
 # | Heart Failure -- hold off until next review cycle
 | Heart Diseases

11. Security Considerations

 The THUMP protocol poses no direct risk to computers and networks.
 Implementors of THUMP services need to be aware of security issues
 when querying networks and filesystems, and the concomitant risks
 from spoofing and obtaining incorrect information. These risks are
 no greater for THUMP than for any other kind of HTTP-based

http://www.ccel.org/g/gibbon/decline/

 application. For example, recipients of a URL with embedded THUMP
 commands should treat it like a URL and be aware that the identified

J. Kunze 11. Security Considerations [Page 16]

Internet Draft THUMP Retrieval Protocol February 2007

 service may no longer be operational.

 THUMP clients and servers subject themselves to all the risks that
 accompany normal operation of the protocols underlying mapping
 services (e.g., HTTP, Z39.50). As specializations of such protocols,
 a THUMP service may limit exposure to the usual risks. Indeed, THUMP
 services may enhance a kind of security by helping users identify
 long-term reliable references to information objects.

12. Authors' Addresses

 Kevin Gamiel
 Renaissance Computing Institute (RENCI)
 University of North Carolina at Chapel Hill
 Duke University
 North Carolina State University

 Fax: +1 919-445-9669
 EMail: kgamiel@renci.org

 John A. Kunze
 California Digital Library
 University of California, Office of the President
 415 20th St, 4th Floor
 Oakland, CA 94612-3550, USA

 Fax: +1 510-893-5212
 EMail: jak@ucop.edu

 Nassib Nassar
 Etymon Systems
 P.O. Box 12484
 Research Triangle Park, NC 27709, USA

 EMail: nassar@etymon.com

13. Informative References

 [ANVL] J. Kunze, B. Kahle, et al, "A Name-Value Language", work
 in progress,

http://www.cdlib.org/inside/diglib/ark/anvlspec.pdf

 [ARK] J. Kunze, "Towards Electronic Persistence Using ARK
 Identifiers", Proceedings of the 3rd ECDL Workshop on Web
 Archives, August 2003, (PDF)

http://bibnum.bnf.fr/ecdl/2003/proceedings.php?f=kunze

 [DCORE] Dublin Core Metadata Initiative, "DCMI Terms", December

http://www.cdlib.org/inside/diglib/ark/anvlspec.pdf
http://bibnum.bnf.fr/ecdl/2003/proceedings.php?f=kunze

 2006, http://dublincore.org/documents/dcmi-terms/.

J. Kunze 13. Informative References [Page 17]

http://dublincore.org/documents/dcmi-terms/

Internet Draft THUMP Retrieval Protocol February 2007

 [KERNEL] Dublin Kernel Metadata, work in progress within the Dublin
 Core Metadata Initiative (DCMI) Kernel Working Group,

http://dublincore.org/groups/kernel/

 [RFC822] D. Crocker, "Format of ARPA Internet Text Messages",
 August 1982, http://www.ietf.org/rfc/rfc822.txt

 [RFC3629] F. Yergeau, "UTF-8, a Transformation Format of ISO 10646",
 November 2003, http://www.ietf.org/rfc/rfc3629.txt

14. Copyright Notice

 Copyright (C) The IETF Trust (2007). This document is subject to the
 rights, licenses and restrictions contained in BCP 78, and except as
 set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Expires 24 August 2007

http://dublincore.org/groups/kernel/
http://www.ietf.org/rfc/rfc822.txt
http://www.ietf.org/rfc/rfc3629.txt
https://datatracker.ietf.org/doc/html/bcp78

J. Kunze 14. Copyright Notice [Page 18]

Internet Draft THUMP Retrieval Protocol February 2007

 Table of Contents

Status of this Document . 1
Abstract . 1
1. Overview . 2
2. A Sample THUMP Session . 2
3. Keys and Citations . 3
4. Key-Request Dualism . 4
5. Request Summary . 5
5.1. Key ? help . 5
5.2. Key ? was(DESCRIPTION) when(DATE) resync 5
5.3. Key ? in(DB) find(QUERY) list(RANGE) show(ELEMS) as(FOR-
MAT) . 6
5.4. Key ? . 8
5.5. Key ?? . 8
5.6. Key ? get() put() group() sort() apply() 8
6. Response Summary . 8
7. Returned Record Set Header 9
7.1. "set-start" tag (required) 10
7.2. "here" tag (required) . 10
7.3. "results" tag (optional) 11
7.4. End of a record set . 12
8. Returned Records . 12
8.1. Empty values for required elements 13
9. FAQ -- Frequently Asked Questions 14
9.1. What's the difference between THUMP, OpenSearch, SRU/SRW,
and OpenURL? . 14
10. Appendix -- Motivation for Electronic Resource Citations
(ERCs) . 14
10.1. ERC Syntax . 15
11. Security Considerations . 16
12. Authors' Addresses . 17
13. Informative References . 17
14. Copyright Notice . 18

J. Kunze 14. Copyright Notice [Page 2]

