
Internet Engineering

Task Force
D.K. Kuptsov

Internet-Draft A.G. Gurtov

Intended status:

Informational

Helsinki Institute for Information

Technology, Aalto University

Expires: September 15,

2011
D.Z. Zhang

Huawei Technologies Co.,Ltd

March 14, 2011

Hierarchical Host Identity Tags (HHIT) Verification Architecture

draft-kuptsov-hhit-05

Abstract

This document describes the architecture for hierarchical host identity

tags (HHIT) vrification for HIP protocol.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on September 15, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction*

2. Structure of HHIT

3. Use case

4. Experimental observations

5. Security Considerations

6. References

Authors' Addresses

1. Introduction

This document describes the architecture for hierarchical host identity

tags (HHIT) vrification for Host Identity Protocol (HIP) RFC 5201

[RFC5201].

The purpose of HHIT architecture is to enable online verification of

flat identifiers (in a scalable way), such as Host Identity Tags (HIT),

by corresponding organizations that are responsible for clients holding

such identifiers. While one way of verifying whether HIT belongs to a

client that is affiliated with some organization (or unit within

organization) is to use certificates; such approach can be undesired

because it (i) introduces high cost for certificate verification, and

(ii) does not directly allow certificate status verification (consider

the situation when private key of a particular host was stolen and

firewall enforcing certificate verification does not check the

revocation status of host's certificate).

2. Structure of HHIT

The following are the goals of HHIT: (i) allow any on the path security

gateway to distinguish to which authority the identifier belongs, and

later ask corresponding authority whether given HHIT is valid; (ii)

prevent misuse of HHIT by attackers (specifically, the design allows to

prevent replaying and constructing "fake" HHITs that will enable

attackers to bypass the security gateways).

*

*

*

*

*

*

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| OID |

+-+

| HHIT |

+ |

| |

+ +

| |

+-+

+-+

| Type |C| Length |

+-+

| ENC_HHIT_TIMESTAMP |

+ +

| |

+ +

| |

+ +

| |

+-+

| Padding (4 bytes) |

+-+

The structure of hierarchical HHIT:

OID is organization identifier that depending of the application

of HHIT can be globally unique (e.g., assigned by Internet

Assigned Numbers Authority (IANA)), or unique within certain

scope (e.g., within organization and assigned on per department

or unit granularity). Length of OID is 32 bits.

HHIT is an output of a pseudo-random function (PRF) under one-

time secret key and input taken as a concatenation of OID and

flat identifier (HIT): HHIT=PRF(OID || HIT, secret) The length of

HHIT field is 96 bits to guarantee sufficient level of security.

ENC_HHIT_TIMESTAMP parameter guarantees freshness of HHIT, it

contains the timestamp when particular HHIT was generated. This

field is encrypted (using symmetric encryption function) under

the same one-time secret as HHIT: ENC_HHIT_TIMESTAMP = ENC(HHIT

|| #epoch || padding (96 bits), secret), where HHIT is as

described above, #epoch is a timestamp indicating the time when

HHIT was constructed, and secret is the next yet unused secret

key from a key pull, assigned to a client by its authority.

*

*

*

Because the usage of block cipher is assumed for encryption, the

length of ENC_HHIT_TIMESTAMP field is a multiple of the block

size of a particular encryption algorithm. Length of #epoch is 64

bits to allow encode timestamp in microseconds. As a result, the

length of ENC_HHIT_TIMESTAMP when used together with AES-CBC

algorithm, is 2*128 bits.

Because total length of OID||HHIT||ENC_HHIT_TIMESTAMP exceeds reserved

128 bits for source address in HIP protocol, the Sender's Host Identity

Tag should contain only OID||HHIT, while ENC_HHIT_TIMESTAMP should be

carried as mandatory HIP parameter in I1 packet.

3. Use case

 Register HHIT (offline)

+----------------------+------------------>+-------------+

| | | Domain 1 |

|Client (from domain 1)| Secret keys | authority |

+----------------------+<------------------+-------+-----+

 | HHIT /\ | OK

 | | v

 | I1 +---+---------+

 +------------------>| Security |-->...

 +------------------>| gateway |

 | I1 +---+---+-----+

 | HHIT | /\

 | Register HHIT v | Ok

+----------------------+------------------>+-------------+

|Client (from domain 2)| | Domain 2 |

| | Secret keys | authority |

+----------------------+<------------------+-------+-----+

Next we describe a possible use case - access control with HHIT:

Each end-host that belongs to some organization, or

organizational unit, constructs its HIT (using the procedure

described in RFC 5201 [RFC5201]), and registers it in an offline

manner in its organizational repository. Depending on the

application, the registration itself can involve authentication,

e.g. using passwords, certificates, biometric information,

passport, etc. Upon verification, domain authority generates set

of one-time-passwords (the number of such passwords again depends

on the application needs), and for each secret s populates its

database with the following records: HHIT = PRF(OID || HIT, s)

Domain authority then returns list of secrets to client over

secure channel (how this is achieved is out of scope).

*

When a client wants to access the service that is behind security

gateway, it chooses next unused one-time secret "unused secret"

and constructs the HHIT as PRF(OID || HIT, "unused secret"), it

also takes the current #epoch "now" and constructs

ENC_HHIT_TIMESTAMP parameter as ENC(HHIT || "now", "unused

secret").

Every I1 packet then contains: sender's Host Identity Tag field

as (OID || HHIT), also parameter ENC_HHIT_TIMESTAMP is added such

that domain authority can verify the freshness of HHIT.

When security gateway receives such I1 packet, it will look-up

the domain authority using OID found in the sender's Host

Identity Tag, and submit OID, HHIT, and ENC_HHIT_TIMESTAMP to

corresponding domain authority. Security gateway will buffer I1

until it will receive (positive or negative) response from

corresponding domain authority.

Last, when domain authority receives OID, HHIT, and

ENC_HHIT_TIMESTAMP for verification it looks up for the proper

secret using HHIT as index. If the record was not found, the

domain authority immediately responds to a gateway that

information is not valid. Else, domain authority attempts to

decrypt ENC_HHIT_TIMESTAMP field to find #epoch. It also

retrieves the last registered I1 timestamp (if any) -- "#epoch

last". To mitigate possible replays, for every received I1 packet

domain authority should check the timestamp found in

ENC_HHIT_TIMESTAMP, and the timestamp of previously seen I1

packet for the same source. Optimally, timestamp found in

received I1 packet should be grater then the last registered

timestamp, i.e., the timestamps for the same source should be

monotonically increasing #epoch > "#epoch last". However,

consecutive I1s can be reordered, i.e., #epoch < "#epoch last".

In this case if "#epoch last" - #epoch > Delta, the HHIT will be

considered as invalid, and negative response will be sent to

security gateway.

Security gateway will make a forwarding decision regarding

particular buffered I1 packet based on the response it receives

from domain authority: if the response is negative I1 packet is

dropped, otherwise the state will be created and I1 will be

forwarded. Note, for consequent R1, I2, R2 packets the forwarding

decisions by security gateway are done solely based on the stored

internal state: if it exists the packets are forwarded, otherwise

dropped.

4. Experimental observations

*

*

*

*

*

+-+

| Experimental results (mean/median) |

+-+

| Parameter | lambda=1 | lambda=10 | lambda=100| lambda=1000 |

+-+

| Droprate(%) |0.016/0.014|0.017/0.015| 0.68/0.76 | 0.909/0.901 |

+-+

| Verification|1304/902.6 | 1339/896.7| 1586/982.2| 3826/2204 |

| duration(ms)| | | | |

+-+

| Queue size | 2.4/2 | 18.04/17.0|301.5/283.0| 1009/1022 |

+-+

To grasp what would be the performance implications, we measured HHIT

verification using 2 DHTs deployed in the Internet and single security

gateway. Each DHT was mimic single domain authority. We generated

storms of I1 packets towards security gateway, using exponential

distribution for interarrival times with different lambda parameter

1,10,100,1000 which corresponded to average interarrival times 1000,

100, 10, 1 (ms) respectively. We then measured 3 parameters: (a) drop

rate (due to failed verification when I1 arrived out off order, or

connection timeout), (b) HHIT verification duration (ms) and (c) queue

buildup (number of I1 packets waiting for verification request

completion). We present mean and median statistics for these parameters

in the table below.

5. Security Considerations

We mentioned earlier that for every sent I1 packet, sender picks next

unused one-time secret to produce HHIT and ENC_HHIT_TIMESTAMP. However,

it can be sufficient for domain authority and particular client to

share a single secret which is rotated every time T (where T can be on

the scale of days).

The Delta threshold should be relatively small to prevent replays.

Thus, Delta should be of order of few hundred milliseconds to guarantee

sufficient level of security.

6. References

[RFC5201]

Moskowitz, R., Nikander, P., Jokela, P. and T.

Henderson, "Host Identity Protocol", RFC 5201, April

2008.

Authors' Addresses

Dmitriy Kuptsov Kuptsov Helsinki Institute for Information

Technology, Aalto University

http://tools.ietf.org/html/rfc5201

PO Box 19215 Espoo, 00076 Aalto Finland EMail:

dmitriy.kuptsov@hiit.fi

Andrei Gurtov Gurtov Helsinki Institute for Information Technology,

Aalto University PO Box 19215 Espoo, 00076 Aalto Finland EMail:

gurtov@hiit.fi

Dacheng Zhang Zhang Huawei Technologies Co.,Ltd PO Box 19215

Beijing, China EMail: zhangdacheng@huawei.com

mailto:dmitriy.kuptsov@hiit.fi
mailto:gurtov@hiit.fi
mailto:zhangdacheng@huawei.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Structure of HHIT
	3. Use case
	4. Experimental observations
	5. Security Considerations
	6. References
	Authors' Addresses

