
COINRG D. Kutscher
Internet-Draft University of Applied Sciences Emden/Leer
Intended status: Experimental T. Kaerkkaeinen
Expires: January 9, 2020 J. Ott
 Technical University Muenchen
 July 08, 2019

Directions for Computing in the Network
draft-kutscher-coinrg-dir-00

Abstract

 In-network computing can be conceived in many different ways - from
 active networking, data plane programmability, running virtualized
 functions, service chaining, to distributed computing.

 This memo proposes a particular direction for Computing in the
 Networking (COIN) research and lists suggested research challenges.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Kutscher, et al. Expires January 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Directions for Computing in the Network July 2019

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 4

 3. Computing in the Network vs Networked Computing vs Packet
 Processing . 4

3.1. Networked Computing 4
3.2. Packet Processing . 5
3.3. Computing in the Network 6
3.4. Elements for Computing in the Network 8

4. Research Challenges . 10
 4.1. Categorization of Different Use Cases for Computing in
 the Network . 10

4.2. Networking and Remote-Method-Invocation Abstractions . . 10
4.3. Transport Abstractions 12
4.4. Programming Abstractions 13
4.5. Security, Privacy, Trust Model 14
4.6. Failure Handling, Debugging, Management 15

5. Acknowledgements . 15
6. Informative References 15

 Authors' Addresses . 16

1. Introduction

 Recent advances in platform virtualization, link layer technologies
 and data plane programmability have led to a growing set of use cases
 where computation near users or data consuming applications is needed
 - for example for addressing minimal latency requirements for
 compute-intensive interactive applications (networked Augmented
 Reality, AR), for addressing privacy sensitivity (avoiding raw data
 copies outside a perimeter by processing data locally), and for
 speeding up distributed computation by putting computation at
 convenient places in a network topology.

 In-network computing has mainly been perceived in five variants so
 far: 1) Active Networking [ACTIVE], adapting the per-hop-behavior of
 network elements with respect to packets in flows, 2) Edge Computing
 as an extension of virtual-machine (VM) based platform-as-a-service,
 3) programming the data plane of SDN switches (through powerful
 programmable CPUs and programming abstractions, such as P4 [SAPIO]),
 4) application-layer data processing frameworks, and 5) Service
 Function Chaining (SFC).

Kutscher, et al. Expires January 9, 2020 [Page 2]

Internet-Draft Directions for Computing in the Network July 2019

 Active Networking has not found much deployment in the past due to
 its problematic security properties and complexity.

 Programmable data planes can be used in data centers with uniform
 infrastructure, good control over the infrastructure, and the
 feasibility of centralized control over function placement and
 scheduling. Due to the still limited, packet-based programmability
 model, most applications today are point solutions that can
 demonstrate benefits for particular optimizations, however often
 without addressing transport protocol services or data security that
 would be required for most applications running in shared
 infrastructure today.

 Edge Computing (as traditional cloud computing) has a fairly coarse-
 grained (VM-based) computation-model and is hence typically deploying
 centralized positioning/scheduling though virtual infrastructure
 management (VIM) systems.

 Microservices can be seen as a (light-weight) extension of the cloud
 computing model (application logic in containers and orchestrators
 for resource allocation and other management functions), leveraging
 more light-weight platforms and fine-grained functions. Compared to
 traditional VM-based systems, microservice platforms typically employ
 a "stateless" approach, where the service/application state is not
 tied to the compute platform, thus achieving fault tolerance with
 respect to compute platform/process failures.

 Application-layer data processing such as Apache Flink [FLINK]
 provide attractive dataflow programming models for event-based stream
 processing and light-weight fault-tolerance mechanisms - however
 systems such as Flink are not designed for dynamic scheduling of
 compute functions.

 Modern distributed applications frameworks such as Ray [RAY], Sparrow
 [SPARROW] or Canary [CANARY] are more flexible in this regard - but
 since they are conceived as application-layer frameworks, their
 scheduling logic can only operate with coarse-granular cost
 information. For example, application-layer frameworks in general,
 can only infer network performance, anomalies, optimization potential
 indirectly (through observed performance or failure), so most
 scheduling decisions are based on metrics such as platform load.

 Service Function Chaining (SFC, [RFC7665]) is about establishing IP
 tunnels between processing functions that are expected to work on
 packets or flows - for applications such as inspection and
 classification - not for general Computing in the Network purposes.

https://datatracker.ietf.org/doc/html/rfc7665

Kutscher, et al. Expires January 9, 2020 [Page 3]

Internet-Draft Directions for Computing in the Network July 2019

2. Terminology

 We are using the following terms in this memo:

 Program: a set of computations requested by a user

 Program Instance: one currently executing instance of a program

 Function: a specific computation that can be invoked as part of a
 program

 Execution Platform: a specific host platform that can run function
 code

 Execution Environment: a class of target environments (execution
 platforms) for function execution, for example, a JVM-based
 execution environment that can run functions represented in JVM
 byte code

3. Computing in the Network vs Networked Computing vs Packet Processing

 Many applications that might intuitively be characterized as
 "computing in the network" are actually either about connecting
 compute nodes/processes or about IP packet processing in fairly
 traditional ways.

 Here, we try to contrast these existing and wildly successful systems
 (that probably do not require new research) with a more novel
 "computing in the network (COIN)" approach that revisits the function
 split between computing and networking.

3.1. Networked Computing

 Networked Computing exists in various facets today (as described in
 the Introduction). Fundamentally, these systems make use of
 networking to connect compute instances - be it VMs, containers,
 processes or other forms of distributed computing instances.

 There are established frameworks for connecting these instances, from
 general purpose Remote Method/Procedure Invocation to system-specific
 application-layer protocols. With that, these systems are not
 actually realizing "computing in the network" - they are just using
 the network (and taking connectivity as granted).

 Most of the challenges here are related to compute resource
 allocation, i.e., orchestration methods for instantiating the right
 compute instance on a corresponding platform - for achieving fault
 tolerance, performance optimization and cost reduction.

Kutscher, et al. Expires January 9, 2020 [Page 4]

Internet-Draft Directions for Computing in the Network July 2019

 Examples of successful applications of networked computing are
 typical overlay systems such as CDNs. As overlays they do not need
 to be "in the network" - they are effectively applications. (Note:
 we sometimes refer to CDN as an "in-network" service because of the
 mental model of HTTP requests that are being directed and potentially
 forwarded by CDN systems. However, none of this happens "in the
 network" - it is just a successful application of HTTP and underlying
 transport protocols.)

3.2. Packet Processing

 Packet processing is a function "in the network" - in a sense that
 middleboxes reside in the network as transparent functions that apply
 processing functions (inspection, classification, filtering, load
 management etc.) - mostly _transparent_ to endpoints. Some middlebox
 functions (TCP split proxies, video optimizers) are more invasive in
 a sense that they do not only operate on IP flows but also try to
 impersonate transport endpoints (or interfere with their behavior).

 Since these systems can have severe impacts on service availability,
 security/privacy, and performance they are typically not very
 programmable.

 Active Networking can be characterized as an attempt to offer
 abstractions for programmable packet processing from an "endpoint
 perspective", i.e., by using data packets to specify intended
 behavior in the network with the mentioned security problems.

 Programmable Data Plane approach such as P4 are providing
 abstractions of different types of network switch hardware (NPUs,
 CPUs, FPGA, PISA) from a switch/network programming perspective.
 Corresponding programs are constrained by the capabilities
 (instruction set, memory) of the target platform and typically
 operate on packets/flow abstractions (for example match-action-style
 processing).

 Network Functions Virtualization (NFV) is essentially a "Networked
 Computing" approach (after all, Network Functions are just
 virtualized compute functions that get instantiated on compute
 platforms by an orchestrator). However, some VNFs happen do process/
 forward packets (e.g., gateways in provider networks, NATs or
 firewalls). Still that does not affect their fundamental properties
 as virtualized computing functions.

Kutscher, et al. Expires January 9, 2020 [Page 5]

Internet-Draft Directions for Computing in the Network July 2019

3.3. Computing in the Network

 In some deployments, networked computing and packet processing go
 well together, for example when network virtualization (multiplexing
 physical infrastructure for multiple isolated subnetworks) is
 achieved through data-plane programming (SDN-style) to provide
 connectivity for VMs of a tenant system.

 While such deployments are including both computing and networking,
 they are not really doing computing _in the network_. VM/containers
 are virtualized hosts/processes using the existing network, and
 packet processing/programmable networks is about packet-level
 manipulation. While it is possible to implement certain
 optimizations (for example, processing logic for data aggregation) -
 the applicability is limited especially for applications where
 application-data units do not map to packets and where additional
 transport protocols and security requirements have to be considered.

 Distributed Computing (stream processing, edge computing) on the
 other side is an area where many application-layer frameworks exist
 that actually _could_ benefit from a better integration of computing
 and networking, i.e., from a new "computing in the network" approach.

 For example, when running a distributed application that requires
 dynamic function/process instantiation, traditional frameworks
 typically deploy an orchestrator that keeps track of available host
 platforms and assigned functions/processes. The orchestrator
 typically has good visibility of the availability of and current load
 on host platforms, so it can pick suitable candidates for
 instantiating a new function.

 However, it is typically agnostic of the network itself - as
 application layer overlays the function instances and orchestrators
 take the network as a given, assuming full connectivity between all
 hosts and functions. While some optimizations may still be feasible
 (for example co-locating interacting functions/processes on a single
 host platform), these systems cannot easily reason about

 o shortest paths between function instances;

 o function off-loading opportunities on topologically convenient
 next-hops; and

 o availability of new, not yet utilized resources in the network.

 While it is possible to perform optimizations like these in
 application layers overlays, it involves significant monitoring
 effort and would often duplicate information (topology, latency) that

Kutscher, et al. Expires January 9, 2020 [Page 6]

Internet-Draft Directions for Computing in the Network July 2019

 is readily available inside the network. In addition to the
 associated overhead, such systems also operate at different time
 scales so that direct reaction in fine-grained computing environments
 is difficult to achieve.

 When asking the question of how the network can support distributed
 computing better, it may be helpful to characterize this problem as a
 resource allocation optimization problem: Can we integrate computing
 and networking in a way that enables a joint optimization of
 computing and networking resource usage? Can we apply this approach
 to achieve certain optimization goals such as:

 o low latency for certain function calls or compute threads;

 o high throughput for a pipeline of data processing functions;

 o high availability for an overall application/service;

 o load management (balancing, concentration) according to
 performance/cost constraints; and

 o consideration of security/privacy constraints with respect to
 platform selection and function execution?

 o Also: can we do this at the speed of network dynamics, which may
 be substantially higher than the rate at which distributed
 computing applications change?

 Considering computing and networking resource holistically could be
 the key for achieving these optimization goals (without considerable
 overhead through telemetry, management and orchestration systems).
 If we are able to dissolve the layer boundaries between the
 networking domain (that is typically concerned with routing,
 forwarding, packet/flow-level load balancing) and the distributed
 computing domain (that is typically concerned with 'processor'
 allocation, scaling, reaction to failure for functions/processes), we
 might get a handle to achieve a joint resource optimization and
 enable the distributed computing layer to leverage network-provided
 mechanisms directly.

 For example, if distributing information about available/suitable
 compute platform could be a routing function, we might be able to
 obtain and utilize this information in a distributed fashion. If
 instantiating a new function (or offloading some piece of
 computation) could consider live performance data obtained from a in-
 network forwarding/offloading service (similar to IP packet
 forwarding in traditional IP networks), the "next-hop" decision could
 be based both on network performance and node load/availability).

Kutscher, et al. Expires January 9, 2020 [Page 7]

Internet-Draft Directions for Computing in the Network July 2019

 Integrating computing and networking in this manner would not rule
 out highly optimized systems leveraging sophisticated orchestrators.
 Instead, it would provide a (possibly somewhat uniform) framework
 that could allow several operating and optimization modes, including
 totally distributed modes, centralized orchestration, or hybrid
 forms, where policies or intents are injected into the distributed
 decision-making layer, i.e., as parameters for resource allocation
 and forwarding decisions.

3.4. Elements for Computing in the Network

 In-network computing requires computing resources (CPU, possibly
 GPUs, memory, ...), physical or virtualized to some extent by a
 suitable platform. These computing resources may be available in a
 number of places, as partly already discussed above, including:

 o They may be found on dedicated machines co-locating with the
 routing infrastructure, e.g., having a set of servers next to each
 router as one may find in access network concentrators. This
 would come closest to today's principles of edge computing.

 o They may be integrated with routers or other network operations
 infrastructure and thus be tightly integrated within the same
 physical device.

 o They may be integrated within switches, similar to the (limited)
 P4 compute capabilities offered today.

 o They may be located on NICs (in hosts) or line cards (routers) and
 be able to proactively perform some application functions, in the
 sense of a generalized variant of "offloading" that protocol
 stacks perform to reduce main CPU load.

 o They might add novel types of dedicated hardware to execute
 certain functions more efficiently, e.g., GPU nodes for
 (distributed) analytics.

 o They may also encompass additional resources at the edge of the
 network, such as sensor nodes. Associated sensors could be
 physical (as in IoT) or logical (as in MIB data about a network
 device).

 o Even user devices along the lines of crowd computing \cite{crowd-
 computing} or mist computing \cite{mist-computing} may contribute
 compute resources and dynamically become part of the network.

 Depending on the type of execution platform, as already alluded to
 above, a suitable execution framework must be put in place: from

Kutscher, et al. Expires January 9, 2020 [Page 8]

Internet-Draft Directions for Computing in the Network July 2019

 lambda functions to threads to processes or process VMs to unikernels
 to containers to full-blown VMs. This should support mutual
 isolation and, depending on the service in question, a set of
 security features (e.g., authentication, trustworthy execution,
 accountability). Further, it may be desirable to be able to compose
 the executable units, e.g., by chaining lambda functions or allowing
 unikernels to provide services to each other - both within a local
 execution platform and between remote platform instances across the
 network.

 The code to be executed may be pre-installed (as firmware, as
 microcode, as operating system functions, as libraries, as *aaS
 offering, among others) or may be dynamically supplied. While the
 former is governed by the entity operating the execution device or
 supplying it (the vendor), the code to be executed may have different
 origins. Fundamentally, we can distinguish between two cases:

 1. The code may be "centrally" provisioned, originating from an
 application or other service provider inside the network. This
 is analogous to CDNs, in which an application provider contracts
 a CDN provider to host content and service logic on its behalf.
 The deployment is usually long-term, even if instantiations of
 the code may vary. The code thus originates from rather few -
 known - sources. In this setting, applications only invoke this
 code and pass on their parameters, context, data, etc.

 2. The code may be "decentrally" provided from a user device or
 other service that requires a certain function or service to be
 carried out. At the coarse granularity of entire application
 images, this has been explored as "code offloading"; recent
 approaches have moved towards finer granularities of offloading
 (sets of) functions, for which also some frameworks for
 smartphones were developed, leading to finer granularities down
 to individual functions. In this setting, application transfer
 mobile code - along with suitable parameters, etc. - into the
 network that is executed by suitable execution platforms. This
 code is naturally expected to be less trusted as it may come from
 an arbitrary source.

 Obviously, 1. and 2. may be combined as mobile code may make use of
 other in-network functions and services, allowing for flexible
 application decomposition. Essentially, in-network computing may
 support everything from full application offloading to decomposing an
 application into small snippets of code (e.g., at class, objects, or
 function granularity) that are fully distributed inside the network
 and executed in a distributed fashion according to the control flow
 of the application. This may lead to iterative or recursive calling

Kutscher, et al. Expires January 9, 2020 [Page 9]

Internet-Draft Directions for Computing in the Network July 2019

 from application code on the initiating host to mobile code to pre-
 provisioned code.

 Another dimension beyond where the code comes from is how tightly the
 code and the data are coupled. At one extreme approaches like Active
 Messages combine the data and the code that operates (only) on that
 data into transmission units, while at the other extreme approaches
 like Network Function Virtualization are only concerned with the
 instantiation of the code in the network. The underlying
 architectural question is whether the goal is to enable the network
 to perform computations on the data passing through it, or whether
 the goal is to enable distributed computational processes to be built
 in the network.

 With these different existing and possibly emerging platforms and
 execution environments and different ways to provision functions in
 the network, it does not seem useful to assume any particular
 platform and any particular "mobile code" representation as _the_
 "computing in the network" environment. Instead, it seems more
 promising to reason about properties that are relevant with respect
 to distributed program semantics and protocols/interfaces that would
 be used to integrate functions on heterogeneous platforms into one
 application context. We discuss these ideas and associated
 challenges in the following section.

4. Research Challenges

 Conceiving computing in the network as a joint resource optimization
 problem as described above incurs a set of interesting, novel
 research challenges that are particularly relevant from an Internet
 Research perspective.

4.1. Categorization of Different Use Cases for Computing in the Network

 There are different applications but also different configuration
 classes of Computing in the Network systems. For example, a data
 processing pipeline might be different from a distributed application
 employing some stateful actor components. It is worthwhile analyzing
 different typical use cases and identify commonalities (for example,
 fundamental protocol elements etc.) and differences.

4.2. Networking and Remote-Method-Invocation Abstractions

 In distributed systems, there are different classes of functions that
 can be distinguished, for example:

 1. Strictly stateless functions that do not keep any context state
 beyond their activation time

Kutscher, et al. Expires January 9, 2020 [Page 10]

Internet-Draft Directions for Computing in the Network July 2019

 2. Stateful functions/modules/programs that can be instantiated,
 invoked and eventually destroyed that do keep state over a series
 of function invocations

 Modern frameworks such as Ray are offering a clear separation of
 stateless functions and stateful actors and offer corresponding
 abstractions in their programming environment. The aforementioned
 analysis of use cases should provide a diverse set of use cases for
 deriving a minimal yet sufficient set of function classes.

 Beyond this fundamental categorization of functions/actors, there is
 the question of interfaces and protocols mechanisms - as building
 blocks to utilize functions in programs. For example, stateful
 functions are typically invoked through some Remote Method Invocation
 (RMI) protocol that identifies functions, allows for specifying/
 transferring parameters and function results etc. Stateful actors
 could provide class-like interfaces that offer a set of functions
 (some of which might manipulate actor state).

 Another aspect is about identity (and naming) of functions and
 actors. For actors that are typically used to achieve real-world
 effects or to enable multiple invocations of functions manipulating
 actor state over time, it is obvious that there needs to be a concept
 of specific instances. Invoking an actor function would then require
 specifying some actor instance identifier.

 Stateless functions may be different: an invoking instance may be
 oblivious function identify and locus (on an execution platform) and
 might just want to leave it to the network to find the "best"
 instance or locus for a new instantiation. Some fine-granular
 functions might just be instantiated for one invocation. On the
 other hand, a function might be tied to a particular execution
 platform, for example an GPU-supported host system. The naming and
 identity framework must allow for specifying such a function (or at
 least equivalence classes) accordingly.

 Stateful functions may share state within the same program context,
 i.e., across multiple invocations by the same application (as, e.g.,
 holds for web services that preserve context - locally or on the
 client side). But stateful functions may also hold state across
 applications and possibly across different instantiations of a
 function on different compute nodes. Such will require data
 synchronization mechanisms and the implementation of suitable data
 structure to achieve a certain degree of consistency. The targeted
 degree of consistency may vary depending on the function and so may
 the mechanisms used to achieve the desired consistency.

Kutscher, et al. Expires January 9, 2020 [Page 11]

Internet-Draft Directions for Computing in the Network July 2019

 Finally, execution platforms will require efficient resource
 management techniques to operate with different types of stateless
 and stateful functions and their associated resources, as well as for
 dynamically instantiated mobile code. Besides the aforementioned
 location of suitable compute platforms and scheduling (possibly
 queuing) functions and function invocations, this also includes
 resource recovery ("garbage collection").

4.3. Transport Abstractions

 When implementing Computing in the Network and building blocks such
 as function invocation it seems that IP packet processing is not the
 right abstraction. First of all, carrying the context for some
 function invocation might require many IP packets - possibly
 something like Application Data Units (ADUs). But even if such ADUs
 could be fit into network layer packets, other problems still need to
 be addressed, for example message formats, reliability mechanisms,
 flow and congestion control etc.

 It could be argued that today's distributed computing overlays solve
 that by using TCP and corresponding application layer formats (such
 as HTTP) - however this bears the question whether a fine-granular
 distributed computing system, aiming to leverage the network for
 certain tasks, is best served by a TCP/IP-based approach that entails
 issues such as

 o need for additional resolution/mapping system to find IP addresses
 for functions;

 o possible overhead for establishing TCP connections for fine-
 granular function invocation; and

 o mismatch between TCP end-to-end semantics and the intention to
 defer next-hop selection etc. to the network.

 Moreover, some Computing in the Network applications such as Big Data
 processing (Hadoop-style etc.) can benefit significantly from data-
 oriented concepts such as

 o in-network caching (of data objects that represent function
 parameters or results);

 o reasoning about the tradeoffs between moving data to function vs.
 moving code to data assets; and

 o sharing data (e.g., function results) between sets of consuming
 entities.

Kutscher, et al. Expires January 9, 2020 [Page 12]

Internet-Draft Directions for Computing in the Network July 2019

 RMI systems such as RICE [RICE] [I-D.kutscher-icnrg-rice] enable
 Remote Method Invocation of ICN (data-oriented network/transport).
 Research questions include investigating how such approaches can be
 used to design general-purpose distributed computing systems. More
 specifically, this would involve questions such as:

 o What is the role of network elements in forwarding RMI requests?

 o What visibility into load, performance and other properties should
 endpoints and the network have to make forwarding/offloading
 decisions?

 o What is the notion of transport services in this concept and how
 intertwined is traditional transport with RMI invocation?

 o What kind of feedback mechanisms would be desirable for supporting
 corresponding transport services?

4.4. Programming Abstractions

 When creating SDKs and programming environments (as opposed to
 individual point solutions) questions arise such as:

 o How to use concepts such as stateless functions, actor models and
 RMI in actual programs, i.e., what are minimal/ideal bindings or
 extensions to programming languages so that programmers can take
 advantage of Computing in the Network?

 o Are there additional, potentially higher-layer, abstractions that
 are needed/useful, for example data set synchronization, data
 types for distributed computing such as CRDTs?

 In addition to programming languages, bindings, and data types, there
 is the question of execution environments and mobile code
 representation. With the vast amount of different platforms (CPUs,
 GPUs, FPGAs etc.) it does not seem useful to assume exactly one
 environment. Instead, interesting applications might actually
 benefit from running one particular function on a highly optimized
 platform but are agnostic with respect to platforms for other, less
 performance-critical functions. Being able to support a
 heterogenous, evolving set of execution environments brings about
 questions such as:

 o How to discover available platforms (and understand their
 properties)?

 o How to specify application needs and map them to available
 platforms?

Kutscher, et al. Expires January 9, 2020 [Page 13]

Internet-Draft Directions for Computing in the Network July 2019

 o Can a certain function/application service be provided with
 different fidelity levels, e.g., can an application leverage a GPU
 platform if available and fall back to a reduced feature set in
 case such a platform is not available?

 In this context, updates and versioning could entail another
 dimension of variability for Computing in the Network:

 o How to manage coexistence of multiple versions of functions and
 services, also for service routing and request forwarding?

 o Is there potential for fallback and version negotiation if needed
 (considering the risk of "bidding downs" attacks?)

 o How to retire old versions?

 o How to securely and reliably deal with function updates and
 corresponding maintenance tasks?

4.5. Security, Privacy, Trust Model

 Computing in the Network has interesting security-related challenges,
 including:

 o How can a caller trust that a remove function works as expected?
 This entails several questions such as

 * How to securely bind "function names" to actual function code?

 * How to trust the execution platform (in its entirety)?

 * How to trust the network that is forwards requests (and result
 messages) reliably and securely?

 o What levels of authentication are needed for callers (assuming
 that not everybody can invoke any function)?

 o How to authenticate and achieve confidentiality for requests,
 their parameters and result data (especially when considering
 sharing of results)?

 Many of these questions are related to other design decisions such as

 o What kind of session concept do we assume, i.e., is there a
 concept of distributed application session that represents a trust
 domain for its members?

Kutscher, et al. Expires January 9, 2020 [Page 14]

Internet-Draft Directions for Computing in the Network July 2019

 o Where is trust anchored? Can the system enable decentralized
 operation?

 All of these questions are not new, but conceiving networking and
 computing holistically seems to revisit distributed systems and
 network security - because some established concepts and technologies
 may not be directly applicable (such as transport layer security and
 corresponding web PKI).

4.6. Failure Handling, Debugging, Management

 Distributed computing naturally provides different types of failures
 and exceptions. In fine-granular distributed computing, some
 failures may by more tolerable (think microservices), i.e., platform
 crash or function abort due to isolated problems could be handled by
 just re-starting/re-running a particular function. Similarly,
 "message loss" or incorrect routing information may be repairable by
 the system itself (after time).

 When failure cannot be repaired (or just tolerated) by the
 distributed computing framework, this raises questions such as:

 o What are strategies for retrying vs aborting function invocation?

 o How to signal exceptions and enable robust response to failures?

 Failure handling and debugging also has a management aspect that
 leads to questions such as:

 o What monitoring and instrumentation interfaces are needed?

 o How can we represent, visualize, and understand the (dynamically
 changing) properties of Computing in the Network infrastructure as
 well as of the currently running/instantiated entities?

5. Acknowledgements

 The authors would like to thank Dave Oran, Michal Krol, Spyridon
 Mastorakis, Yiannis Psaras, and Eve Schooler for previous fruitful
 discussions on Computing in the Network topics.

6. Informative References

 [ACTIVE] Tennenhouse, D. and D. Wetherall, "Towards an active
 network architecture", ACM SIGCOMM Computer Communication
 Review Vol. 26, pp. 5-17, DOI 10.1145/231699.231701, April
 1996.

Kutscher, et al. Expires January 9, 2020 [Page 15]

Internet-Draft Directions for Computing in the Network July 2019

 [CANARY] Qu et al, H., "Canary -- A scheduling architecture for
 high performance cloud computing", 2016,
 <https://arxiv.org/abs/1602.01412>.

 [FLINK] Katsifodimos, A. and S. Schelter, "Apache Flink: Stream
 Analytics at Scale", 2016 IEEE International Conference on
 Cloud Engineering Workshop (IC2EW),
 DOI 10.1109/ic2ew.2016.56, April 2016.

 [I-D.kutscher-icnrg-rice]
 Krol, M., Habak, K., Oran, D., Kutscher, D., and I.
 Psaras, "Remote Method Invocation in ICN", draft-kutscher-

icnrg-rice-00 (work in progress), October 2018.

 [RAY] Moritz et al, P., "Ray -- A Distributed Framework for
 Emerging AI Applications", 2018,
 <http://dl.acm.org/citation.cfm?id=3291168.3291210>.

 [RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <https://www.rfc-editor.org/info/rfc7665>.

 [RICE] KrA^3l, M., Habak, K., Oran, D., Kutscher, D., and I.
 Psaras, "RICE", Proceedings of the 5th ACM Conference on
 Information-Centric Networking - ICN '18,
 DOI 10.1145/3267955.3267956, 2018.

 [SAPIO] Sapio, A., Abdelaziz, I., Aldilaijan, A., Canini, M., and
 P. Kalnis, "In-Network Computation is a Dumb Idea Whose
 Time Has Come", Proceedings of the 16th ACM Workshop on
 Hot Topics in Networks - HotNets-XVI,
 DOI 10.1145/3152434.3152461, 2017.

 [SPARROW] Ousterhout, K., Wendell, P., Zaharia, M., and I. Stoica,
 "Sparrow", Proceedings of the Twenty-Fourth ACM Symposium
 on Operating Systems Principles - SOSP '13,
 DOI 10.1145/2517349.2522716, 2013.

Authors' Addresses

 Dirk Kutscher
 University of Applied Sciences Emden/Leer
 Constantiaplatz 4
 Emden D-26723
 Germany

 Email: ietf@dkutscher.net

https://arxiv.org/abs/1602.01412
https://datatracker.ietf.org/doc/html/draft-kutscher-icnrg-rice-00
https://datatracker.ietf.org/doc/html/draft-kutscher-icnrg-rice-00
http://dl.acm.org/citation.cfm?id=3291168.3291210
https://datatracker.ietf.org/doc/html/rfc7665
https://www.rfc-editor.org/info/rfc7665

Kutscher, et al. Expires January 9, 2020 [Page 16]

Internet-Draft Directions for Computing in the Network July 2019

 Teemu Kaerkkaeinen
 Technical University Muenchen
 Boltzmannstrasse 3
 Munich
 Germany

 Email: kaerkkae@in.tum.de

 Joerg Ott
 Technical University Muenchen
 Boltzmannstrasse 3
 Munich
 Germany

 Email: jo@in.tum.de

Kutscher, et al. Expires January 9, 2020 [Page 17]

