
Network Working Group D. Kutscher
Internet-Draft M. Stiemerling
Intended status: Standards Track J. Seedorf
Expires: April 26, 2012 NEC
 October 24, 2011

 Design Considerations for a DECADE SDT
 draft-kutscher-decade-protocol-00

Abstract

 This memo provides some considerations for the design of a specific
 DECADE protocol.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Kutscher, et al. Expires April 26, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SDT Design October 2011

Table of Contents

 1. Introduction . 3
 2. Conceptual DECADE Protocols 3
 3. Object Naming and Addressing 4
 3.1. Object Naming . 4
 3.2. Object Addressing . 6
 4. Authentication and Access Control 7
 5. General SDT Considerations 8
 5.1. Dealing with Application Contexts, Resource Collection
 and Other Structure 8
 5.2. Server-to-Server Communication 9
 5.3. Recommendations . 9
 6. CDMI Considerations . 9
 6.1. CDMI Content Type Operations 10
 6.2. CDMI Features and SDT 10
 6.3. CDMI Containers . 11
 6.4. Object Identifiers in CDMI 12
 6.5. Recommendations for SDT over CDMI 12
 7. Security Considerations 13
 8. Normative References . 13
 Appendix A. Acknowledgments 14
 Authors' Addresses . 14

Kutscher, et al. Expires April 26, 2012 [Page 2]

Internet-Draft SDT Design October 2011

1. Introduction

 The DECADE architecture specification [refs.decadearch] describes
 fundamental principles for DECADE (naming, transport, authorization)
 and identifies a set of core components and conceptual protocols for
 accessing in-network storage.

 A few candidate technologies have been proposed for a concrete
 protocol specification, such as HTTP-based protocols [RFC2616],
 WEBDAV [RFC3744], and CDMI [refs.CDMI] for the actual transport/
 application layer functionality, as well as the NI URI scheme
 [refs.ni-core] for an URI format, and OAuth [RFC5849] for an
 authentication mechanism.

 This memo is intended to aid the discussion about how to design
 DECADE protocols, and how to leverage existing solutions best. It
 further gives recommendation for a future Standard Data Transport
 (SDT). These recommendations are labelled with REC_XY, where XY is a
 sequential number.

 [[Text in double square brackets (like this) is commentary.]]

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119. [RFC2119]

2. Conceptual DECADE Protocols

 As described in draft-ietf-decade-arch [refs.decadearch], DECADE
 conceptually consists of two functional building blocks: DRP (DECADE
 Resource Control Protocol) and SDT (Standard Data Transport).

 DRP would provide conveying authorization-relevant information to
 servers for access control functions. As such, it is not intended as
 a stand-alone protocol but rather as a scheme that would be used by
 SDT instantiations, e.g., for passing authorization tokens from an
 Application Endpoint to a DECADE server. For a concrete
 specification, a scheme is needed that supports the representation of
 authorization information. That scheme should be compatible to the
 SDT instantiations that are specified (and envisioned to be
 specified). The assumption is that there would be exactly one DRP.

 SDT is an actual protocol that Application Endpoints use for
 communicating with a DECADE server. Furthermore, SDT can also be
 used for server-to-server communication, i.e., when DECADE servers
 want to distribute content to other DECADE servers. A DECADE SDT
 would use an existing transport protocol and possibly an existing

Kutscher, et al. Expires April 26, 2012 [Page 3]

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3744
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-decade-arch

Internet-Draft SDT Design October 2011

 application layer protocol such as HTTP or NFS. In fact, the
 conceptual DECADE SDT interactions that are defined in
 draft-decade-arch would most likely be mapped to messages, services
 etc. of such existing protocols, e.g., the SDT GET request would map
 to a HTTP GET request. The assumption is that there can be different
 DECADE SDT specifications, i.e., leveraging different underlying
 protocols. However it is also the assumption that there would be one
 mandatory SDT.

 REC_01: The selected DRP scheme should be compatible to the different
 envisioned SDT instantiations.

 REC_02: There should be one mandatory SDT implementation.

 Figure 1: Recommendations

3. Object Naming and Addressing

3.1. Object Naming

 draft-ietf-decade-arch [refs.decadearch] outlines requirements and
 concepts for naming DECADE resources. In essence, a DECADE name
 should be globally unique (with a high probablity), it should be
 application independent, and it should provide a name-content binding
 through the use of content hashes as part of the name. The
 requirement for using DECADE names which are globally unique with a
 high probability stems from the envisioned usage of hashes. Hashes
 typically ensure two items will have different hashes with a certain
 probability, but there is typically a very limited risk that those 2
 items will have the same hash value.

 A concrete control specification needs to define the concrete name
 format and possibly also baseline hashing algorithms. The name
 format MUST be suitable for use in different possible SDT
 instantiations.

 [refs.ni-core] specifies a URI-based name format for naming objects,
 e.g., through content hashes. NI URIs fundamentally provide an hash
 algorithm identifier, the actual digest value and can provide
 additional information such as object type information or locator
 hints.

 ni:///sha-256;B_K97zTtFuOhug27fke4_Zgc4Myz4b_lZNgsQjy6fkc

 Figure 2: Example: DECADE NI URI

 The NI URI in the example above specifies SHA-256 as the hash

Kutscher, et al. Expires April 26, 2012 [Page 4]

https://datatracker.ietf.org/doc/html/draft-decade-arch
https://datatracker.ietf.org/doc/html/draft-ietf-decade-arch

Internet-Draft SDT Design October 2011

 algorithm, and provides the digest of an object. DECADE
 implementations can generate such names independently, without
 requiring any infrastructure (when creating objects), and they can
 verify the name-content binding by calculating the hash of an
 received object and by comparing the result to the name that was used
 for the object.

 NI URIs can optionally provide authority information, i.e.,
 information about an authority that may assist applications in
 accessing the object. DECADE should not require authority
 information to be present.

 The NI format allows the optional specification of media types (of
 the referenced objects) through the addition of parameters:

 ni:///sha-256;B_K97zTtFuOhug27fke4_Zgc4Myz4b_lZNgsQjy6fkc?ct=image/jpeg

 Figure 3: Example: DECADE NI URI with content type

 Such information may be present in URIs, but DECADE should not
 require such information. It is also important to note that
 parameters are not considered when testing NI URIs for identity.

 NI URIs can be mapped to HTTP URIs, and some HTTP URIs can be mapped
 to NI URIs. This can be useful for deriving a locator for obtaining
 NI-named objects without explicit specification. The following
 example depicts an NI URI with an authority part that is mapped to an
 HTTP URI (using the well-known convention specified in RFC 5785
 [RFC5785]).

 ni://decade127.example.com/
sha-256;B_K97zTtFuOhug27fke4_Zgc4Myz4b_lZNgsQjy6fkc

 http://decade127.example.com/.well-known/ni/sha-256/
B_K97zTtFuOhug27fke4_Zgc4Myz4b_lZNgsQjy6fkc

 Figure 4: Example: DECADE NI URI mapping to HTTP URI

 There are other possibilities to derive the host name part of the
 HTTP URI (when no autority information is present in the NI URI),
 e.g., from the application context that the NI URI was used in. For
 DECADE, we recommend that Application Endpoints that want to refer
 other Applications to a DECADE object on a specific server (assuming
 an HTTP-based SDT), provide the server host name as an authority
 element of the NI URI, as depicted above. It should be noted that
 this only works with HTTP (or HTTPS)-based SDTs. It is possible to
 specify additional/alternative locators using the NI parameter
 mechanisms (which will be described in a future version of this
 document).

https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc5785

Kutscher, et al. Expires April 26, 2012 [Page 5]

Internet-Draft SDT Design October 2011

 REC_03: There should be exactly one DECADE name format.

 REC_04: The DECADE name format must be suitable for use in different
 possible SDT instantiations.

 REC_05: The DECADE names should used the NI URI format.

 REC_06: DECADE should allow for different hash algorithms to be
 used. SHA-256 should be defined as MANDATORY, i.e., all applications
 that need to validate name-content binding of objects should be able
 to deal with SHA-256 hash digests.

 REC_07: DECADE should allow for different hash algorithms to be
 used. SHA-256 should be defined as MANDATORY, i.e., all applications
 that need to validate name-content binding of objects should be able
 to deal with SHA-256 hash digests.

 REC_08: DECADE should allow for different hash algorithms to be
 used. SHA-256 should be defined as MANDATORY, i.e., all applications
 that need to validate name-content binding of objects should be able
 to deal with SHA-256 hash digests.

 REC_09: In an application context where SDT==HTTP (or HTTPS), DECADE
 Application Endpoints should use the authority element in NI URIs to
 specify a HTTP server name when referring other Application Endpoints
 to a specific URL.

 Figure 5: Recommendations

3.2. Object Addressing

 Section Section 3.1 describes how complete objects are potentially
 named within DECADE. However, it might be also necessary to address
 parts of a DECADE object, if such objects are accessible in parts. A
 typical example is the usage of chunks, i.e., equal parts of a file
 used by peer-to-peer filesharing to exchange data.

 This addressing might be required if:

 o an object is not completly loaded on a DECADE server, but DECADE
 clients should be able to retrieve it while the object is being
 retrieved by the server;

 o DECADE clients do only need to access parts of the object, as they
 have already retrieved some other parts of the object;

Kutscher, et al. Expires April 26, 2012 [Page 6]

Internet-Draft SDT Design October 2011

 o DECADE clients retrieve a particular object from multipe sources
 at the same time and thus do only require a subset from a
 particular DECADE server.

REC_10: The DECADE SDT should allow to retrieve parts of an object.
REC_11: The DECADE SDT should allow DECADE servers to specify which parts
of an object are available.
REC_12: The DECADE SDT should allow DECADE clients to request single parts
or a range of parts from the DECADE server.

 Figure 6: Recommendations with respect to Addressing

4. Authentication and Access Control

 The DECADE architecture has a concept of token-based authentication
 and access control. The idea is that Application Endpoints that are
 referring other Application Endpoints to a DECADE server provide
 tokens to these other Application Endpoints. Those would use these
 tokens when communicating with a server, and the tokens would be
 meaningful to the server for making acess control decisions.

 OAuth is one particular candidate mechanism to be used for token-
 based authentication and access control. (A detailed analysis will
 be provided in a future version of this document.) A mechanism such
 as OAuth would be used by HTTP in specific ways, i.e., by using HTTP
 header fields -- this would be the DRP instantiation for a specific
 SDT.

 Communincating authentication information between Application
 Endpoints is out of scope for DECADE specifications; it is assumed
 that this would rely on application-specific protocols. However,
 there are principally two options:

 o authentication tokens in the specific application protocol; or

 o authentication tokens in the object identifier that Application
 Endpoints use to refer other Application Endpoints to a DECADE
 server.

 Including the authentication tokens in the object would provide an
 application-protocol-independent way for communicating this
 information between Application Endpoints. The parameter mechanism
 of NI URIs could be used for that:

 ni://decade127.example.com/
sha-256;B_K97zTtFuOhug27fke4_Zgc4Myz4b_lZNgsQjy6fkc?auth=AHFK34F

Kutscher, et al. Expires April 26, 2012 [Page 7]

Internet-Draft SDT Design October 2011

 Figure 7: Example: Authentication tokens in NI URIs

 For each SDT specification, there needs to be an algorithm to map the
 authentication token to specific header fields, messages, etc. of the
 particular protocol.

 REC_13: DECADE should use an NI URI parameter for representing
 authentication information in object identifiers.

 Figure 8: Recommendations

5. General SDT Considerations

5.1. Dealing with Application Contexts, Resource Collection and Other
 Structure

 Fundamentally, DECADE is intended to provide access to resources
 which are distributed in in-network storage servers for different
 applications. Such resources should be named uniquely across
 different servers, and the same resource should be accessible at
 different servers using the same name.

 Different servers, different file transfer, and different remote file
 system protocols may provide different capabilities for organizing
 resources in hierarchical structures (collections, file system
 directories etc.). Since DECADE already provides a way to name
 resources uniquely across different servers and protocols (through
 the DECADE naming scheme), SDT (and DECADE in general) should not
 require or rely on any hierarchical name space structure.

 Application-specific structure (e.g., collecting all chunks of a
 specific media resource) should be dealt with on the application
 layer, i.e., through the use of "torrent files" or index files that
 reference the DECADE resources.

 Similarly, DECADE resources from different application contexts
 should not be distinguished by additional name components, direcory
 names etc., since the DECADE naming scheme already provides for a
 unique naming of resource across application contexts.

 Consequently, any operations on remote file system structures,
 collections etc. should be orthogonal to DECADE and not be supported
 by SDT. Specific protocols that an SDT instantiation leverages may
 provide support for that, but we recommend that such operations are
 considered out of scope for SDT.

Kutscher, et al. Expires April 26, 2012 [Page 8]

Internet-Draft SDT Design October 2011

5.2. Server-to-Server Communication

 The DECADE architecture [refs.decadearch] describes the operation of
 Server-to-Server Protocols, which are intended to enable DECADE
 servers to distribute data objects to other servers, without the need
 of Application Endpoint interaction. One possible way of operation
 is that an Application Endpoint (client) would upload a data object
 to a DECADE server, and that server would then upload the object to
 one or more other servers, thus acting as a client to those other
 servers. In addition, an Application Endpoint would also be able to
 request a DECADE server to download the object from another specified
 server itself.

 For specifying a concrete SDT, some design questions need to be
 taken:

 o Is it possible to specify only one or multiple target DECADE
 servers?

 o Most HTTP-based protocols do not support requesting/configuring
 server-to-server communication natively. We recommend this
 feature be implemented without changing/extending those protocols.

5.3. Recommendations

 REC_14: DECADE should not assume any structure (collections,
 containers, directories) on DECADE servers.

 REC_15: DECADE object identifiers should be flat labels.

 REC_16: It should be possible for DECADE server to distribute objects
 between servers using SDT. An SDT instantiation should provide a
 corresponding mechanism.

 REC_17: DECADE should define a way to specify (control) the
 distribution of objects between servers.

 REC_18: Server-to-Server communication should not require the
 introduction of new HTTP request types (for HTTP-based SDT).

 Figure 9: Recommendations

6. CDMI Considerations

 CDMI [refs.CDMI] has been considered as a candidate basis for an
 DECADE SDT instantiation. This section discusses a few aspects and

Kutscher, et al. Expires April 26, 2012 [Page 9]

Internet-Draft SDT Design October 2011

 potential issues for adopting CDMI.

 In general, the assumption is that CDMI (as a certain way to leverage
 HTTP for accessing and managing cloud data) can be used for DECADE.
 Since CDMI has many features (namely the data management features)
 that are not required by DECADE, we assume that a CDMI-based SDT
 specification would specify a subset of CDMI and specify a list of
 requirements for implementations on how to use the mechanisms of the
 subset in detail.

6.1. CDMI Content Type Operations

 CDMI provides uploading/downloading/deleting etc. data with CDMI
 content types and with non-CDMI content types. CDMI content type
 operations use JSON to encode objects (and meta information), i.e.,
 PUT requests would encode the data object in JSON, and response
 messages to GET requests would also encode the returned object in
 JSON. Non-CDMI content type operations may also use JSON for
 encoding certain information, for example for data object meta
 information, but the object itself would be transmitted directly in
 message bodies (as non-CMDI web servers would do).

 A CDMI-based SDT should use the non-CDMI content type operations, for
 efficiency and backwards-compatibility reasons.

6.2. CDMI Features and SDT

 CDMI provides a broad range of feature for Cloud Data Management,
 such as:

 o discovering capabilities of a cloud storage provider;

 o creating a new container;

 o creating a new data object;

 o listing the contents of a container;

 o reading the contents of a data object;

 o reading the value of a data object; and

 o deleting a data object.

 Moreover, CDMI provides a set of administrative operations, such as:

 o managing domain objects representing the concept of administrative
 ownership (CDMI supports a hierarchy of domains and provides

Kutscher, et al. Expires April 26, 2012 [Page 10]

Internet-Draft SDT Design October 2011

 operations to manage those);

 o queue object resource operations, providing first-in, first-out
 access for storing and retrieving data;

 o capability query operations, allowing a client to find out about
 the subset of CDMI features that a server supports;

 o exporting (and configuring the exporting of) data objects to other
 protocol domains such as NFS, iSCSI, WebDAV etc.;

 o serialization and de-serialization of data;

 o configure access control through ACLs;

 o retention and hold management;

 o scope specifications to allow clients to select data objects based
 on filter/search expressions;

 o results specifications (to enable a client to specify subsets of
 data objects to be returned);

 o logging;

 o notification queues (for example for notfying clients about
 changes to a file system or to certain objects); and

 o query queues (enabling clients to requests data objects based on
 meta data or content search expressions).

 SDT over CDMI should specify a subset of these features and use the
 CDMI capability description mechanism to describe the subset of
 supported features.

6.3. CDMI Containers

 Containers are a fundamental concept for CDMI, and they are used for
 grouping objects. In fact, containers are CDMI objects, and they can
 be addressed and manipulated using the same CDMI operations that are
 used for data objects.

 With a flat naming scheme (as we expect DECADE to employ) there is no
 strong need for grouping objects in containers, so we recommend that
 the containers and container names should not be used for generating
 DECADE object names.

Kutscher, et al. Expires April 26, 2012 [Page 11]

Internet-Draft SDT Design October 2011

6.4. Object Identifiers in CDMI

 CDMI required globally unique object IDs be used for all objects
 stored on a CDMI server, which is conceptually similar to the DECADE
 architecture requirements for naming.

 In CDMI, objects are either accessible by their container-based
 hierarchical named such as
 "http://decade.example.com/root/vod/video1" or by their object ID
 such as "http://decade.example.com/root/cdmi_objectid/647284746393",
 with "647284746393" being the object ID.

 CDMI specifies how object IDs should be generated. Object ID are
 variable length byte sequences with a maximum length of 40 bytes, and
 they provide the following structure:

0	1	2	3	4	5	6	7	8	9	10	..	38	39
Reserved	Enterprise	Reserved	Length	CRC	opaque data								
(zero)	Number	(zero)											

 Figure 10: CDMI Object ID structure

 Although CDMI Objects IDs could provide content hashes (in the opaque
 data fields), these IDs are not directly compatible to the current NI
 URI format. It is possible to convey the additional information of
 CDMI IDs in NI URIs, employing the extension mechanismsm, but
 syntactically, the NI URI would be different.

 Although applications can treat these IDs as opaque bit strings, the
 format enables integrity checking for those applications that need
 it. In CDMI, the assumption is that the *server* generate these IDs,
 for example upon having received the object from a client over the
 upload interface. This server-based ID generation is the direct
 opposite of the client-based ID generation that we expect for DECADE.

6.5. Recommendations for SDT over CDMI

 REC_19: The difference between CDMI's object ID syntax and the NI URI
 syntax should be addressed by either adapting CDMI's syntax or by
 defining a bijective mapping between CDMI and NI URIs.

 REC_20: CDMI containers should not be used.

 REC_21: CDMI should only by used in the non-CDMI content type mode

 Figure 11: Recommendations

Kutscher, et al. Expires April 26, 2012 [Page 12]

Internet-Draft SDT Design October 2011

7. Security Considerations

 Several security considerations need to be investigated for a DECADE
 SDT protocol and for DECADE in general. First, proper access control
 to objects stored at DECADE servers must be provided (OAuth is a
 means to do this, but the specific security implications for using
 OAuth in the context of DECADE need to be considered, and potential
 attacks need to be analyzed and described). Second, the potential
 for Denial-of-Service attacks on DECADE servers must be minimized.
 Finally, the integrity of data items stored at DECADE servers must be
 maintained, and clients must have a way to verify the integrity of
 data items they retrieve from a DECADE server (hash-based or self-
 certifying schemes as a component of the DECADE name space can be a
 means to provide these requirements, but the specific implications
 and potential attacks on data integrity need to be condidered
 carefully and described in detail). Future versions of this document
 will study these security aspects in more detail.

 Also, SDT over HTTP-based protocols MUST support HTTPS. How
 applications choose whether to use HTTP or HTTPS will be discussed in
 a future version of this document.

8. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3744] Clemm, G., Reschke, J., Sedlar, E., and J. Whitehead, "Web
 Distributed Authoring and Versioning (WebDAV)
 Access Control Protocol", RFC 3744, May 2004.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 April 2010.

 [RFC5849] Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,
 April 2010.

 [refs.CDMI]
 "CDMI", HTML http://www.snia.org/cdmi, September 2011.

 [refs.decadearch]
 Alimi, R., Yang, Y., Rahman, A., Kutscher, D., and HP.

Kutscher, et al. Expires April 26, 2012 [Page 13]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3744
https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc5849
http://www.snia.org/cdmi

Internet-Draft SDT Design October 2011

 Liu, "DECADE Architecture", draft-ietf-decade-arch-03
 (work in progress), September 2011.

 [refs.ni-core]
 Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B., and
 P. Hallam-Baker, "The Named Information (ni) URI Scheme:
 Core Syntax", draft-farrell-decade-ni-00 (work in
 progress), October 2011.

Appendix A. Acknowledgments

 Dirk Kutscher is partially supported by the SAIL project (Scalable
 and Adaptive Internet Solutions, http://www.sail-project.eu), a
 research project supported by the European Commission under its 7th
 Framework Program (contract no. 257448).

 Jan Seedorf and Martin Stiemerling are partially supported by the
 COAST project (COntent Aware Searching, retrieval and sTreaming,
 http://www.coast-fp7.eu), a research project supported by the
 European Commission under its 7th Framework Program (contract no.
 248036).

 The views and conclusions contained herein are those of the authors
 and should not be interpreted as necessarily representing the
 official policies or endorsements, either expressed or implied, of
 the SAIL or the COAST project or the European Commission.

Authors' Addresses

 Dirk Kutscher
 NEC
 Kurfuersten-Anlage 36
 Heidelberg,
 Germany

 Phone:
 Email: kutscher@neclab.eu
 URI: http://dirk-kutscher.info/

Kutscher, et al. Expires April 26, 2012 [Page 14]

https://datatracker.ietf.org/doc/html/draft-ietf-decade-arch-03
https://datatracker.ietf.org/doc/html/draft-farrell-decade-ni-00
http://www.sail-project.eu
http://www.coast-fp7.eu
http://dirk-kutscher.info/

Internet-Draft SDT Design October 2011

 Martin Stiemerling
 NEC
 Kurfuersten-Anlage 36
 Heidelberg,
 Germany

 Phone:
 Email: martin.stiemerling@neclab.eu
 URI: http://ietf.stiemerling.org

 Jan Seedorf
 NEC
 Kurfuersten-Anlage 36
 Heidelberg,
 Germany

 Phone:
 Email: seedorf@neclab.eu

Kutscher, et al. Expires April 26, 2012 [Page 15]

http://ietf.stiemerling.org

