
GitHub Integration and Tooling (git) K. Watsen
Internet-Draft Watsen Networks
Intended status: Best Current Practice February 25, 2019
Expires: August 29, 2019

eXtract or Insert artwork And source code to/from Xml (xiax)
draft-kwatsen-git-xiax-automation-01

Abstract

 This document describes motivations behind and solutions for tooling
 to automate the extraction/insertion of artwork and source code to/
 from `rfc2xml` documents.

 While much may appear to be working, the author believes that, in
 order for such automation to be maximally useful, it is necessary to
 solicit broad input from the community (co-authors are welcomed, both
 on the draft and the tool).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 29, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Watsen Expires August 29, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft XIAX February 2019

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Applicability Statement 3
3. Notational Conventions 3
4. Terminology . 3
5. Updates to RFC 7991 . 3
6. Motivation . 4
7. Previous Work . 4
8. Automated Construction 5
9. Automated Verification 6
10. Security Considerations 7
10.1. Automated Execution of Arbitrary Scripts 7

11. References . 7
11.1. Normative References 7
11.2. Informative References 7

Appendix A. Examples . 10
A.1. Static Inclusion . 10
A.2. Static Inclusion and Date Substitution 10
A.3. Generated Inclusion and Date Substitution 11
A.4. Static Inclusion, Date Substitution, and Validation . . . 12

 A.5. Static Inclusion, Date Substitution, Markers, and
 Validation . 13

Appendix B. Details for the `xiax` Utility 14
B.1. The "xiax-block" Comment 14
B.2. Extensible Support to Content Types 15
B.3. The "xiax-block" Data Model 16
B.3.1. Tree Diagram . 16
B.3.2. YANG Module . 18

B.4. Examples . 23
B.4.1. A peak inside the "xiax-block" 23
B.4.2. A "gen" file (for a tree diagram) 25
B.4.3. A "val" file (for an YANG module) 25
B.4.4. A "val" file (for an XML document) 25

 Author's Address . 26

1. Introduction

 This document describes motivations behind and solutions for tooling
 to automate the extraction/insertion of artwork and source code to/
 from `rfc2xml` v2 [RFC7749] and v3 [RFC7991].

https://datatracker.ietf.org/doc/html/rfc7991
https://datatracker.ietf.org/doc/html/rfc7749
https://datatracker.ietf.org/doc/html/rfc7991

Watsen Expires August 29, 2019 [Page 2]

Internet-Draft XIAX February 2019

 For authors, adoption of the automation ensures completely up-to-date
 <artwork> and <sourcecode> inclusions every time the document is
 published.

 For reviewers (especially shepherds, doctors, and copy editors), use
 of the automation offers assurance that the <artwork> and
 <sourcecode> inclusions are syntactically valid, and the ability to
 quickly verify that they are when needed.

2. Applicability Statement

 At the time of this writing, `rfc2xml` v3 [RFC7991] is not yet in
 production, and thus the tooling support described herein is intended
 to apply to both v2 and v3.

 Whenever ambiguity may arise, this document will fully write out text
 such as "...source code stored in the v2 <artwork> element...".

3. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

4. Terminology

 This document uses the following terms (sorted by name):

 Artwork: The term "artwork" is used throughout to represent two-
 dimensional imagery (e.g., ASCII art), such as would be
 referenced by the <artwork> element defined in Section 2.5 of
 [RFC7991].

 Source code: The term "source code" is used throughout to represent
 a structured sequence of lines, such as would be referenced by
 the <sourcecode> element defined in Section 2.48 of [RFC7991].

5. Updates to RFC 7991

 This section is just a placeholder for now, but it is expected that
 [RFC7991] will need to be modified in order to support some of this
 work.

 At a minimum, [RFC7991] should be updated to support attributes from
 other namespaces, such that the `rfc2xml` tool would neither process
 nor discard them.

https://datatracker.ietf.org/doc/html/rfc7991
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7991#section-2.5
https://datatracker.ietf.org/doc/html/rfc7991#section-2.5
https://datatracker.ietf.org/doc/html/rfc7991#section-2.48
https://datatracker.ietf.org/doc/html/rfc7991
https://datatracker.ietf.org/doc/html/rfc7991
https://datatracker.ietf.org/doc/html/rfc7991

Watsen Expires August 29, 2019 [Page 3]

Internet-Draft XIAX February 2019

6. Motivation

 The driving motivation for this work is twofold:

 o To ensure the correctness of works in progress.

 o To simplify the formal verification process.

 Firstly, far too often, throughout the lifecycle of a draft, is it
 that authors overlook updating artwork and/or source code in their
 drafts, leading to confusion and wasting some of the precious little
 time of other working group members. While repeated encouragement
 from chairs and others to embrace automation, it seems that the bar
 is too high for some authors to bother for their one and perhaps only
 draft. It is actually a self-defeating strategy, as it has been
 shown time and again that the effort invested to do necessary script-
 fu would be recouped by the authors themselves over the lifetime of
 their draft.

 Next, for formal verifications, the YANG Doctor [yang-doctors],
 reviews are first in mind, but the automation is equally useful for
 any structured syntax other than YANG [RFC6020] [RFC7950], such as
 ASN.1 [ITU.X690.2015] and ABNF [RFC5234] [RFC7405]. That said,
 publication process experience shows that doctor reviews are often
 out of synch with the document submitted for publication, sometimes
 even by several draft revisions. Thusly, it is common for the draft
 shepherds themselves to verify the correctness of inclusions when
 doing the shepherd writeup. Further, the document may be
 subsequently updated by IESG and/or copy editor reviews, steps for
 which the automation would continue to support.

7. Previous Work

 o Section 3.2 of [RFC8407] states that normative YANG modules and
 submodules contained within Internet-Drafts and RFCs must be
 bracketed by <CODE BEGINS> and <CODE ENDS> markers.
 Section 3.1.18 of [I-D.levkowetz-xml2rfc-v3-implementation-notes]
 notes support for this in `xml2rfc` through the use of a `markers`
 attribute in the <sourcecode> element. [PS: these markers attempt
 to support extraction from plain-text documents but, as this
 document shows, extraction from XML is superior and, besides,
 there are many interesting things to extract beyond YANG modules.]

 o The `xym` [xym] and `rfcstrip` [rfcstrip] utilities have been
 developed to extract YANG modules from Internet-Drafts and RFCs
 using the <CODE BEGINS> and <CODE ENDS> markers.

https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7405
https://datatracker.ietf.org/doc/html/rfc8407#section-3.2

Watsen Expires August 29, 2019 [Page 4]

Internet-Draft XIAX February 2019

 o The RFC Submit [submit] tool has been modified to test YANG
 modules contained within I-Ds, and the resulting document page in
 Datatracker [datatracker] displays a new "Yang Validation" field
 containing a varying color yin-yang symbol (green if no errors,
 red if errors) along with counts. This tool is okay for what it
 is, but it neither aids authors between updates nor validates
 anything beyond YANG modules.

 o The YANG Validator site [yang-validator] provides an Internet-
 facing service, with a REST-based API, for validating YANG modules
 in drafts. Having a REST API enables its use throughout a
 document's lifecycle but, again, it doesn't validate anything
 beyond YANG modules.

8. Automated Construction

 When asked to build a submittable `rfc2xml` document, the automation
 should perform the following steps, in order:

 1. Prime artwork and source code as needed. Known priming steps
 include:

 i Draft revision addition/substitution for the `docName`
 attribute in the <rfc> element as well as in the filename.

 ii Date substitution (e.g., replacing the string "YYYY-MM-DD"
 with the current date. This substitution needs to occur
 both within files and in filenames.

 iii Generation of derived views (e.g., YANG tree diagrams
 [RFC8340]). Technically, the derived views should be
 generated after the validation (discussed next) but, said
 generation is rightly part of the "priming" step and,
 besides, if there is an error, the validation step would
 still catch it, so there's no harm in generating the
 derived views first.

 2. Validate source code and artwork. This step includes:

 i Validating data models (e.g., YANG modules) against the
 schema describing their syntax.

 ii Validating data instance examples (e.g., a snippet of
 configuration) against the governing data models (e.g., the
 aforementioned YANG modules).

 iii Validating the derived views. Technically, this step is
 not needed during the insertion process, since the derived

https://datatracker.ietf.org/doc/html/rfc8340

Watsen Expires August 29, 2019 [Page 5]

Internet-Draft XIAX February 2019

 views were just generated in the previous step but, since
 the same validation logic is used by automated verification
 (see Section 9), it is automatically executed here as well.
 Validating derived views is accomplished by running the
 script to generate the view and then comparing the result
 to the view extracted in the draft.

 3. Pack the final submittable XML file. This step includes:

 i Pasting the contents referenced by attributes in the
 <artwork> and <sourcecode> elements into the XML document,
 and storing information enabling the content to be extracted
 back to its original filename.

 ii Additional attributes can control if markers are added
 (e.g., the <CODE BEGINS> and <CODE ENDS> markers described
 by RFC 8407 Section 3.2).

 iii Character data (CDATA) wrappers may be added.

 iv Folding (line wrapping) may be added, per
 [I-D.ietf-netmod-artwork-folding].

 v Additional date substitutions (e.g., YYYY-MM-DD) in the body
 of the draft may be needed.

 vi Draft revision substitution (i.e., replacing placeholder
 "-latest" with, e.g., "-03").

9. Automated Verification

 When asked to extract/verify a submitted `rfc2xml` document, the
 automation should perform the following steps, in order:

 1. Extract the contents of the <artwork> and <sourcecode> elements
 to their original file-based forms, retaining their file names
 and directory paths.

 2. Extract any additional files that may be necessary to generate
 the derived views and/or validate the inclusions.

 3. Optionally, if requested, also save the "primed" or "unpacked"
 XML file (i.e., the source XML file before the content was packed
 into it).

 4. At this point, the local directory tree represents the "primed"
 state, and thus the same validation logic described above can
 executed again.

https://datatracker.ietf.org/doc/html/rfc8407#section-3.2

Watsen Expires August 29, 2019 [Page 6]

Internet-Draft XIAX February 2019

10. Security Considerations

10.1. Automated Execution of Arbitrary Scripts

 In order to support the auto-generation of derived views and the
 validation of data models and data instance examples, the automation
 solution must not automatically execute arbitrary scripts.

 A couple solutions present themselves:

 o Allow arbitrary scripts, but don't execute them automatically when
 a document is extracted. This solution is appealing as it still
 ensures these scripts were executed on the author's computer at
 time of construction, and the scripts themselves can be extracted
 and audited on the reviewer's computer. If desired, after
 auditing a script, a reviewer could choose to manually execute it
 on their own computer.

 o Don't allow arbitrary scripts but, instead, support parameterized
 files that declare all the information necessary to construct the
 command(s) necessary to generate derived views and/or validate
 inclusions.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7991] Hoffman, P., "The "xml2rfc" Version 3 Vocabulary",
RFC 7991, DOI 10.17487/RFC7991, December 2016,

 <https://www.rfc-editor.org/info/rfc7991>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [I-D.ietf-netmod-artwork-folding]
 Watsen, K., Wu, Q., Farrel, A., and B. Claise, "Handling
 Long Lines in Artwork in Internet-Drafts and RFCs", draft-

ietf-netmod-artwork-folding-00 (work in progress),
 November 2018.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7991
https://www.rfc-editor.org/info/rfc7991
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-artwork-folding-00
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-artwork-folding-00

Watsen Expires August 29, 2019 [Page 7]

Internet-Draft XIAX February 2019

 [I-D.levkowetz-xml2rfc-v3-implementation-notes]
 Levkowetz, H., "Implementation notes for RFC7991, "The
 'xml2rfc' Version 3 Vocabulary"", draft-levkowetz-xml2rfc-

v3-implementation-notes-08 (work in progress), February
 2019.

 [ITU.X690.2015]
 International Telecommunication Union, "Information
 Technology - ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, ISO/IEC 8825-1, August 2015,
 <https://www.itu.int/rec/T-REC-X.690/>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC7405] Kyzivat, P., "Case-Sensitive String Support in ABNF",
RFC 7405, DOI 10.17487/RFC7405, December 2014,

 <https://www.rfc-editor.org/info/rfc7405>.

 [RFC7749] Reschke, J., "The "xml2rfc" Version 2 Vocabulary",
RFC 7749, DOI 10.17487/RFC7749, February 2016,

 <https://www.rfc-editor.org/info/rfc7749>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [rfcstrip]
 "The `rfcstrip` GitHub Repository",
 <https://github.com/mbj4668/rfcstrip>.

https://datatracker.ietf.org/doc/html/rfc7991
https://datatracker.ietf.org/doc/html/draft-levkowetz-xml2rfc-v3-implementation-notes-08
https://datatracker.ietf.org/doc/html/draft-levkowetz-xml2rfc-v3-implementation-notes-08
https://www.itu.int/rec/T-REC-X.690/
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://datatracker.ietf.org/doc/html/rfc7405
https://www.rfc-editor.org/info/rfc7405
https://datatracker.ietf.org/doc/html/rfc7749
https://www.rfc-editor.org/info/rfc7749
https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/bcp215
https://datatracker.ietf.org/doc/html/rfc8340
https://www.rfc-editor.org/info/rfc8340
https://datatracker.ietf.org/doc/html/bcp216
https://datatracker.ietf.org/doc/html/rfc8407
https://www.rfc-editor.org/info/rfc8407
https://github.com/mbj4668/rfcstrip

Watsen Expires August 29, 2019 [Page 8]

Internet-Draft XIAX February 2019

 [submit] "Datatracker Internet-Draft Submission Service",
 <https://datatracker.ietf.org/submit>.

 [xiax] "The `xiax` GitHub Repository",
 <https://github.com/kwatsen/xiax>.

 [xym] "The `xym` GitHub Repository",
 <https://github.com/xym-tool/xym>.

 [yang-doctors]
 "The YANG Doctors "about" Page",
 <https://datatracker.ietf.org/group/yangdoctors/about>.

 [yang-validator]
 "The YANG Validator Service",
 <http://www.yangvalidator.com>.

https://datatracker.ietf.org/submit
https://github.com/kwatsen/xiax
https://github.com/xym-tool/xym
https://datatracker.ietf.org/group/yangdoctors/about
http://www.yangvalidator.com

Watsen Expires August 29, 2019 [Page 9]

Internet-Draft XIAX February 2019

Appendix A. Examples

 This section illustrates bits working using the `xiax` tool [xiax].

 This entire document has been processed by `xiax`, albeit with a
 little manual tweaking to return some of the "YYYY-MM-DD" strings
 (such as this one) back to their original forms.

 Note that, as this is an `xml2rfc` v2 document, all examples use the
 `xml2rfc` v2 <artwork> element.

A.1. Static Inclusion

 This example illustrates inclusion of static content with no
 additional processing, such as might be useful for pre-generated
 artwork.

 This is what the original `xml2rfc` XML looked like:

 <preamble>START FIGURE</preamble>
 <artwork xiax:src="art/hello.txt"/>
 <postamble>END FIGURE</postamble>

 Here is the rendered content:

 START FIGURE

 _ _ _
 | | | | |
 | |__ ___| | | ___
 | '_ \ / _ \ | |/ _ \
 | | | | __/ | | (_) |
 |_| |_|___|_|_|___/

 END FIGURE

A.2. Static Inclusion and Date Substitution

 This example illustrates inclusion of static content along with date
 substitution. Date substitution is triggered by the string "YYYY-MM-
 DD" appearing in the name of the file being included. The date-
 substitution is applied to both the filename as well as to the
 content of the file.

 This is what the original `xml2rfc` XML looked like:

Watsen Expires August 29, 2019 [Page 10]

Internet-Draft XIAX February 2019

 <preamble>START FIGURE</preamble>
 <artwork xiax:src="art/email-YYYY-MM-DD.txt"/>
 <postamble>END FIGURE</postamble>

 Here is the rendered content:

 START FIGURE

 +-------------------------------+
 | To: all |
 | Date: 2019-02-25 |
 | Subject: hello world |
 | |
 | ... |
 +-------------------------------+

 END FIGURE

 The content of the original "src" file (before date-substitute):

 +-------------------------------+
 | To: all |
 | Date: YYYY-MM-DD |
 | Subject: hello world |
 | |
 | ... |
 +-------------------------------+

A.3. Generated Inclusion and Date Substitution

 This example illustrates both inclusion of generated content along
 with date substitution.

 This is what the original `xml2rfc` XML looked like:

 <preamble>START FIGURE</preamble>
 <artwork xiax:gen="xiax/gen-foo-tree-diagram@YYYY-MM-DD.xml"/>
 <postamble>END FIGURE</postamble>

 Here is the rendered content:

 START FIGURE

 module: foo
 +--rw foo? empty

 END FIGURE

Watsen Expires August 29, 2019 [Page 11]

Internet-Draft XIAX February 2019

 The content of the "gen" file being referenced is:

 <generate xmlns="https://watsen.net/xiax" version="1">
 <yang-tree-diagram>
 <source>foo@YYYY-MM-DD.yang</source>
 </yang-tree-diagram>
 </generate>

A.4. Static Inclusion, Date Substitution, and Validation

 This example illustrates inclusion of static content with date
 substitution and behind-the-scenes validation. Note that, in this
 example, the date substitution occurs on the validation input file
 (since it references a date-substituted file).

 This is what the original `xml2rfc` XML looked like:

<preamble>START FIGURE</preamble>
<artwork xiax:src="examples/ex-foo.json" xiax:val="xiax/val-xml-ex-foo@YYYY-MM-
DD.xml"/>
<postamble>END FIGURE</postamble>

 Here is the rendered content:

 START FIGURE

 {
 "foo:foo": [null]
 }

 END FIGURE

 The content of the "val" file being referenced is:

 <validate xmlns="https://watsen.net/xiax">
 <xml-document>
 <using-yang>
 <yang-modules>
 <yang-module>
 <name>foo@YYYY-MM-DD.yang</name>
 <uri>foo@YYYY-MM-DD.yang</uri>
 </yang-module>
 </yang-modules>
 </using-yang>
 </xml-document>
 </validate>

Watsen Expires August 29, 2019 [Page 12]

Internet-Draft XIAX February 2019

A.5. Static Inclusion, Date Substitution, Markers, and Validation

 This example illustrates inclusion of static content with date
 substitution, <BEGIN CODE> and <END CODE> markers, and behind-the-
 scenes validation.

 This is what the original `xml2rfc` XML looked like:

<preamble>START FIGURE</preamble>
<artwork xiax:src="foo@YYYY-MM-DD.yang" xiax:markers="true" xiax:val="xiax/val-
yang-foo@YYYY-MM-DD.xml"/>
<postamble>END FIGURE</postamble>

 Here is the rendered content:

 START FIGURE

 <CODE BEGINS> file "foo@2019-02-25.yang"

 module foo {
 yang-version 1.1;
 namespace "https://example.com/foo";
 prefix "f";

 revision "2019-02-25" {
 description
 "Initial version";
 }

 leaf foo {
 type empty;
 }
 }

 <CODE ENDS>

 END FIGURE

 The content of the "val" file being referenced is:

Watsen Expires August 29, 2019 [Page 13]

Internet-Draft XIAX February 2019

 <validate xmlns="https://watsen.net/xiax">
 <xml-document>
 <using-yang>
 <yang-modules>
 <yang-module>
 <name>foo@YYYY-MM-DD.yang</name>
 <uri>foo@YYYY-MM-DD.yang</uri>
 </yang-module>
 </yang-modules>
 </using-yang>
 </xml-document>
 </validate>

Appendix B. Details for the `xiax` Utility

B.1. The "xiax-block" Comment

 In order to support extractions, `xiax` needs to encode metadata into
 the `xml2rfc` XML file. This metadata encodes, for instance, the
 original names of files, contents of the 'gen' and 'val' files, and
 and additional files that may have been used by the 'gen' and/or
 'val' files.

 There are limited options for encoding metadata into the `xml2rfc`
 format in a way that doesn't generate errors or is discarded during
 the Internet-Draft submission process.

 The only option that was discovered is to encode the metadata into an
 XML comment. Thus, `xiax` adds a special XML comment referred to as
 the "xiax-block" to the end of the `xml2rfc` XML file.

 An example xiax-block follows:

Watsen Expires August 29, 2019 [Page 14]

Internet-Draft XIAX February 2019

<!-- FANTASTIC RFC CONTENT ABOVE THIS LINE -->

 </back>
<!-- ##xiax-block-v1:
H4sIAMcX/82WTW/iMBCG7/wKlruZQsuhKzcqWq697aVCHEwYwMWxke206b/vOB8lgUhdsrDb
nJzxTOad8EyKjC2ViXf9LFHaPQy23u/dT4A34R3qoUYPIWkQ9fp9LnWsUieNDnd0vxd+Gy1F
vAOHsaf4L/38dgFruUktgrD+zdgdh7yoqHc2Lla0Ft5buYwoDbaolBn6zHMoo0U6lPkcGkLO
kzXuLAsT34zu2c2YjSdXVXj3nRXefu3hBvWxwsARUJytjWHeIrKVFBsrkseaYsKwqZjq11Jh
xH/Mf82m8Gi0wuNXyPZf0YaJHgajAt93oTeNxpWbJrUxRiSrriRkk13FXu5YSz2HSk3UWywi
DrnW0urS+mwYull9GTjuOr1gmIlkr9ABZkH08MUZfQLCq1DV+mhW2mE0DyuqH5/pYk9PbDZr
A+oUKSqXKncj9FmZOE1Q+3IgMofQCHx8as1hScwqpaFqjWvhQ5TiWiQFgTXpBYH5Tj01tbI9
M2wcOkFLVafeVM+hOSCHyp0TxEPy55lckJ5uvB8xcH3SJ51Ib/3MnAV6foZXx7xGCvxrCib/
kQIOh7+isdFI8SMJAAA=

-->

</rfc>

 Note that this data is the base64-encoding of the GZIP-ed string for
 the encoded metadata.

 Also note that the xiax-block is versioned. The intention is that,
 while a given version of `xiax` will only produce the "current" xiax-
 block version, it should be capable of extracting content from a
 draft produced by any prior version.

B.2. Extensible Support to Content Types

 Before diving into the "xiax-block", and in the interest of full
 disclosure, it should be known that `xiax` currently has limited
 support for content types. Specifically:

 o For generating content, `xiax` currently only knows how to
 generate YANG tree diagrams [RFC8340].

 o For validating content, `xiax` currently only knows how to
 validate YANG modules [RFC7950] and XML/JSON documents against
 YANG schema.

 However, the code has been developed anticipating a desire to extend
 it to support other content types. And, being an open source project
 on GitHub, it is hoped that others will take interest to add support
 for additional content types.

https://datatracker.ietf.org/doc/html/rfc8340
https://datatracker.ietf.org/doc/html/rfc7950

Watsen Expires August 29, 2019 [Page 15]

Internet-Draft XIAX February 2019

B.3. The "xiax-block" Data Model

 Being that `xiax` operates on XML files, it was intuitive to use XML
 to encode the xiax-block.

 In IETF fashion, the schema for the XML data model is defined using
 YANG [RFC7950].

B.3.1. Tree Diagram

 Following is the YANG Tree Diagram [RFC8340] for the xiax-block:

Watsen Expires August 29, 2019 [Page 16]

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc8340

Internet-Draft XIAX February 2019

 module: xiax-structures-v1

 yang-data xiax-block:
 +-- xiax-block
 +-- inclusion* [path]
 +-- path string
 +-- src
 | +-- attrib? inet:uri
 | +-- val
 | +-- attrib? inet:uri
 | +-- file? <anydata>
 +-- gen
 +-- attrib? inet:uri
 +-- file? <anydata>
 +-- val
 +-- attrib? inet:uri
 +-- file? <anydata>
 yang-data generate:
 +-- generate
 +-- (generate-type)?
 +--:(yang-tree-diagram)
 +-- yang-tree-diagram
 +-- source? string
 +-- print-yang-data? empty
 yang-data validate:
 +-- validate
 +-- (content-type)?
 +--:(yang-module)
 | +-- yang-module
 | +-- additional-yang-modules
 | +-- additional-yang-module* [name]
 | +-- name string
 | +-- uri* inet:uri
 +--:(xml-document)
 +-- xml-document
 +-- (schema-type)?
 | +--:(using-yang)
 | +-- using-yang
 | +-- yang-modules
 | +-- yang-module* [name]
 | +-- name string
 | +-- uri* inet:uri
 +-- additional-xml-documents
 +-- additional-xml-document* [name]
 +-- name string
 +-- uri* inet:uri

Watsen Expires August 29, 2019 [Page 17]

Internet-Draft XIAX February 2019

B.3.2. YANG Module

 Following is the YANG module for the xiax-block follows:

module xiax-structures-v1 {
 yang-version 1.1;
 namespace "https://watsen.net/xiax";
 prefix "xb";

 import ietf-inet-types {
 prefix inet;
 reference "RFC 6991: Common YANG Data Types";
 }

 import ietf-restconf {
 prefix rc;
 reference "RFC 8040: RESTCONF Protocol";
 }

 organization "Watsen Networks";

 contact "Kent Watsen <mailto:kent+ietf@watsen.net>";

 description
 "This module defines the data model for xiax data block.

 Copyright (c) 2019 Watsen Networks. All rights reserved.";

 revision "2019-02-25" {
 description
 "Initial version";
 }

 grouping val-grouping {
 container val {
 leaf attrib {
 type inet:uri;
 description
 "The original 'xiax:val' attribute that was in the
 <sourcecode> element (<artwork> cannot be validated).";
 }
 anydata file {
 description
 "The content of the file per the 'xiax:val' attribute";
 }
 }
 }

https://datatracker.ietf.org/doc/html/rfc6991
https://datatracker.ietf.org/doc/html/rfc8040

Watsen Expires August 29, 2019 [Page 18]

Internet-Draft XIAX February 2019

 rc:yang-data "xiax-block" {
 container xiax-block {

 description
 "Contains lists of inclusions that were processed by `xiax`
 during its 'packing' step.";

 list inclusion {
 key path;

 description
 "A list of inclusions, one for each <artwork> and/or
 <sourcecode> element processed by `xiax`.";

 leaf path {
 type string;
 description
 "The DOM path of the <artwork> or <sourcecode> element.";
 }

 container src {
 leaf attrib {
 type inet:uri;
 description
 "The original 'xiax:src' attribute that was in the
 <artwork> or <sourcecode> element.";
 }
 uses val-grouping;
 }

 container gen {
 leaf attrib {
 type inet:uri;
 description
 "The original 'xiax:gen' attribute that was in the
 <artwork> or <sourcecode> element.";
 }
 anydata file {
 description
 "The content of the file per the 'xiax:gen' attribute";
 }
 uses val-grouping;
 }

 } // end list inclusion
 } // end container xiax-block
 } // end rc:yang-data xiax-block

Watsen Expires August 29, 2019 [Page 19]

Internet-Draft XIAX February 2019

 rc:yang-data "generate" {
 container generate {

 description
 "Contains instructions to `xiax` for how to generate content";

 choice generate-type {
 description
 "The type of content to generate, and information for how
 to do so.";

 container yang-tree-diagram {
 leaf source {
 type string;
 description
 "The YANG file to generate the tree-diagram from.";
 }
 leaf print-yang-data {
 type empty;
 }
 }

 /*** add more gen-types here ***/

 } // end choice gen-type
 } // end container xiax-block
 } // end rc:yang-data generate

 rc:yang-data "validate" {
 container validate {

 description
 "Contains information for how to validate content. Currently
 just the list of modules and ";

 choice content-type {
 description
 "The type of content to validate, and information for how
 to do so.";

 container yang-module {
 description
 "Provides information for how to validate the YANG module.";
 container additional-yang-modules {
 description

Watsen Expires August 29, 2019 [Page 20]

Internet-Draft XIAX February 2019

 "Additional YANG documents that may be needed in order to
 resolve, e.g., import statements. Do not include the
 YANG module being validated.";
 list additional-yang-module {
 key name;
 leaf name {
 type string;
 }
 leaf-list uri {
 type inet:uri;
 description
 "Location for where the YANG module is located.
 Multiple URIs are used to address availability
 concerns. A copy of files referenced using the
 'file' schema is embedded into the xiax-block.
 A file will only be stored into the xiax-block
 at most once, in case it referenced by more
 than one validation.";
 }
 } // end list additional-yang-module
 } // end container additional-yang-modules
 } // end container yang-module

 container xml-document {
 description
 "Provides information for how to validate a XML document.";

 choice schema-type {
 description
 "Enables the schema-type to be selected.";

 container using-yang {
 description
 "Provides information for how to validate the XML
 document using YANG.";

 container yang-modules {
 list yang-module {
 key name;
 leaf name {
 type string;
 }
 leaf-list uri {
 type inet:uri;
 description
 "Location for where the YANG module is located.
 Multiple URIs are used to address availability
 concerns. A copy of files referenced using the

Watsen Expires August 29, 2019 [Page 21]

Internet-Draft XIAX February 2019

 'file' schema is embedded into the xiax-block.
 A file will only be stored into the xiax-block
 at most once, in case it referenced by more
 than one validation.";
 }
 } // end list yang-module
 } // end container yang-modules
 } // end container using-yang

 /*** add other XML-validating schema-types here ***/

 } // end choice schema-type

 container additional-xml-documents {
 description
 "Additional XML documents that may be needed in order to
 resolve, e.g., data references. Do not include the XML
 document being validated.";

 list additional-xml-document {
 key name;
 leaf name {
 type string;
 }
 leaf-list uri {
 type inet:uri;
 description
 "Location for where the XML document is located.
 Multiple URIs are used to address availability
 concerns. A copy of files referenced using the
 'file' schema is embedded into the xiax-block.
 A file will only be stored into the xiax-block
 at most once, in case it referenced by more
 than one validation.";
 }
 } // end additional-xml-document
 } // end container additional-xml-documents
 } // end container xml-document

 /*** add content-types here ***/

 } // end choice content-type
 } // end container validate
 } // end rc:yang-data validate

} // end module xiax-structures-v1

Watsen Expires August 29, 2019 [Page 22]

Internet-Draft XIAX February 2019

B.4. Examples

B.4.1. A peak inside the "xiax-block"

 The following is a snippet of the xiax-block used in this draft.

 Thie example illustrates three inclusions:

 1. A "xiax:src" attribute.

 2. A "xiax:gen" attribute, including the gen-file itself.

 3. Both "xiax:src" and "xiax:val" attributes, including the val-file
 itself.

Watsen Expires August 29, 2019 [Page 23]

Internet-Draft XIAX February 2019

 <?xml version="1.0"?>
 <xiax-block xmlns="https://watsen.net/xiax">
 <inclusion>
 <path>back/section[1]/section[1]/t[3]/figure/artwork</path>
 <src>
 <attrib>hello.txt</attrib>
 </src>
 </inclusion>
 <inclusion>
 <path>back/section[1]/section[3]/t[3]/figure/artwork</path>
 <gen>
 <attrib>xiax/gen-foo-tree-diagram@2019-02-25.xml</attrib>
 <file>
 <generate xmlns="https://watsen.net/xiax" version="1">
 <yang-tree-diagram>
 <source>foo@2019-02-25.yang</source>
 </yang-tree-diagram>
 </generate>
 </file>
 </gen>
 </inclusion>
 <inclusion>
 <path>back/section[1]/section[5]/t[4]/figure/artwork</path>
 <src>
 <attrib>examples/ex-foo.xml</attrib>
 <val>
 <attrib>xiax/val-xml-ex-foo@2019-02-25.xml</attrib>
 <file>
 <validate xmlns="https://watsen.net/xiax">
 <xml-document>
 <using-yang>
 <yang-modules>
 <yang-module>
 <name>foo@2019-02-25.yang</name>
 <uri>foo@2019-02-25.yang</uri>
 </yang-module>
 </yang-modules>
 </using-yang>
 </xml-document>
 </validate>
 </file>
 </val>
 </src>
 </inclusion>
 </xiax-block>

Watsen Expires August 29, 2019 [Page 24]

Internet-Draft XIAX February 2019

B.4.2. A "gen" file (for a tree diagram)

 This example shows what the "gen" file for generating a YANG tree
 diagram looks like.

 <generate xmlns="https://watsen.net/xiax">
 <yang-tree-diagram>
 <source>xiax-block-v1@YYYY-MM-DD.yang</source>
 </yang-tree-diagram>
 </generate>

B.4.3. A "val" file (for an YANG module)

 This example shows what the "val" file for validating a YANG module
 looks like.

<validate xmlns="https://watsen.net/xiax">
 <yang-module>
 <additional-yang-modules>
 <additional-yang-module>
 <name>ietf-restconf@2017-01-26.yang</name>
 <uri>https://raw.githubusercontent.com/YangModels/yang/master/standard/
ietf/RFC/ietf-restconf%402017-01-26.yang</uri>
 </additional-yang-module>
 </additional-yang-modules>
 </yang-module>
</validate>

B.4.4. A "val" file (for an XML document)

 This example shows what the "val" file for validating an XML document
 looks like.

<validate xmlns="https://watsen.net/xiax">
 <xml-document>
 <using-yang>
 <yang-modules>
 <yang-module>
 <name>xiax-block-v1.yang</name>
 <uri>./xiax-block-v1.yang</uri>
 </yang-module>
 <yang-module>
 <name>ietf-restconf@2017-01-26.yang</name>
 <uri>https://raw.githubusercontent.com/YangModels/yang/master/
standard/ietf/RFC/ietf-restconf%402017-01-26.yang</uri>
 </yang-module>
 </yang-modules>
 </using-yang>
 </xml-document>

</validate>

Watsen Expires August 29, 2019 [Page 25]

Internet-Draft XIAX February 2019

Author's Address

 Kent Watsen
 Watsen Networks

 EMail: kent+ietf@watsen.net

Watsen Expires August 29, 2019 [Page 26]

