
Workgroup: NETCONF Working Group

Internet-Draft:

draft-kwatsen-netconf-sztp-csr-01

Updates: 8572 (if approved)

Published: 10 June 2020

Intended Status: Standards Track

Expires: 12 December 2020

Authors: K. Watsen

Watsen Networks

R. Housley

Vigil Security, LLC

S. Turner

sn3rd

Conveying a Certificate Signing Request (CSR) in a Secure Zero Touch

Provisioning (SZTP) Bootstrapping Request

Abstract

This draft extends the "get-bootstrapping-data" RPC defined in RFC

8572 to include an optional certificate signing request (CSR),

enabling a bootstrapping device to additionally obtain an identity

certificate (e.g., an LDevID, from IEEE 802.1AR) as part of the

"onboarding information" response provided in the RPC-reply.

Editorial Note (To be removed by RFC Editor)

This draft contains many placeholder values that need to be replaced

with finalized values at the time of publication. This note

summarizes all of the substitutions that are needed. No other RFC

Editor instructions are specified elsewhere in this document.

Artwork in this document contains shorthand references to drafts in

progress. Please apply the following replacements:

XXXX --> the assigned numerical RFC value for this draft

AAAA --> the assigned RFC value for I-D.ietf-netconf-crypto-types

Artwork in this document contains a placeholder value for the

publication date of this draft. Please apply the following

replacement:

2020-06-10 --> the publication date of this draft

This document contains references to other drafts in progress, both

in the Normative References section, as well as in body text

throughout. Please update the following references to reflect their

final RFC assignments:

I-D.ietf-netconf-crypto-types

I-D.ietf-netconf-keystore

¶

¶

¶

* ¶

* ¶

¶

* ¶

¶

* ¶

* ¶

https://www.rfc-editor.org/rfc/rfc8572

I-D.ietf-netconf-trust-anchors

I-D.ietf-netmod-factory-default

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 December 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Overview

1.2. Terminology

1.3. Requirements Language

2. The "ietf-sztp-csr" Module

2.1. Data Model Overview

2.2. Example Usage

2.3. YANG Module

3. Security Considerations

3.1. SZTP-Client Considerations

3.1.1. Ensuring the Integrity of Asymmetric Private Keys

3.1.2. Reuse of a Manufacturer-generated Private Key

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

SZTP-client

SZTP-server

3.1.3. Replay Attack Protection

3.1.4. Connecting to an Untrusted Bootstrap Server

3.1.5. Selecting the Best Origin Authentication Mechanism

3.1.6. Clearing the Private Key and Associated Certificate

3.2. SZTP-Server Considerations

3.2.1. Conveying Proof of Possession to a CA

3.2.2. Supporting SZTP-Clients that don't trust the SZTP-Server

3.2.3. YANG Module Considerations

4. IANA Considerations

4.1. The IETF XML Registry

4.2. The YANG Module Names Registry

5. References

5.1. Normative References

5.2. Informative References

Authors' Addresses

1. Introduction

1.1. Overview

This draft extends the "get-bootstrapping-data" RPC defined in

[RFC8572] to include an optional certificate signing request (CSR)

[RFC2986], enabling a bootstrapping device to additionally obtain an

identity certificate (e.g., an LDevID [Std-802.1AR-2018]) as part of

the "onboarding information" response provided in the RPC-reply.

1.2. Terminology

This document uses the following terms from [RFC8572]:

Bootstrap Server

Bootstrapping Data

Conveyed Information

Device

Manufacturer

Onboarding Information

Signed Data

This document defines the following new terms:

The term "SZTP-client" refers to a "device" that is

using a "bootstrap server" as a source of "bootstrapping data".

The term "SZTP-server" is an alternative term for

"bootstrap server" that is symmetric with the "SZTP-client" term.

1.3. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. The "ietf-sztp-csr" Module

This section defines a YANG 1.1 [RFC7950] module that augments the

"ietf-sztp-bootstrap-server" module defined in [RFC8572] and defines

a YANG "structure".

The augmentation adds two nodes ("csr-support" and "csr") to the

"input" parameter of the "get-bootstrapping-data" RPC defined in

[RFC8572].

The YANG structure, "request-info", defines data returned in the

"error-info" node defined in Section 8 of [RFC8572].

2.1. Data Model Overview

The following tree diagram [RFC8340] illustrates the "ietf-sztp-csr"

module. The diagram shows the definition of an augmentation adding

descendent nodes "csr-support" and "csr" and the definition of a

structure called "request-info".

In the order of their intended use:

The "csr-support" node is used by the SZTP-client to signal to

the SZTP-server that it supports the ability the generate CSRs,

per this specification. The "csr-support" parameter carries

details regarding the SZTP-client's ability to generate CSRs.

The "request-info" structure is used by the SZTP-server to signal

back to the SZTP-client its desire to sign a CSR. The "request-

info" structure additionally communicates details about the CSR

the SZTP-client is to generate.

The "csr" node is used by the SZTP-client to communicate its CSR

to the SZTP-server. Not shown is how the SZTP-server communicates

the signed certificate to the SZTP-client; how to do this is

discussed later in this document.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc8572#section-8

To further illustrate how the augmentation and structure defined by

the "ietf-sztp-csr" module are used, below are two additional tree

diagrams showing these nodes placed where they are used.

The following tree diagram [RFC8340] illustrates SZTP's "get-

bootstrapping-data" RPC with the augmentation in place.

========== NOTE: '\' line wrapping per BCP XXX (RFC XXXX) ===========

module: ietf-sztp-csr

 augment /ietf-sztp-bootstrap-server:get-bootstrapping-data/ietf-sz\

tp-bootstrap-server:input:

 +---- csr-support!

 | +---- key-generation!

 | | +---- supported-algorithms

 | | +---- algorithm-identifier* binary

 | +---- csr-generation

 | +---- supported-formats

 | +---- format-identifier* identityref

 +---- csr!

 +---- (request-type)

 +--:(p10)

 | +---- p10? ietf-crypto-types:csr

 +--:(cmc)

 | +---- cmc? binary

 +--:(cmp)

 +---- cmp? binary

 structure: request-info

 +-- key-generation!

 | +-- selected-algorithm

 | +-- algorithm-identifier binary

 +-- csr-generation

 | +-- selected-format

 | +-- format-identifier identityref

 +-- cert-req-info? binary

¶

¶

¶

The following tree diagram [RFC8340] illustrates RESTCONF's "errors"

RPC-reply message with the "request-info" structure in place.

module: ietf-sztp-bootstrap-server

 rpcs:

 +---x get-bootstrapping-data

 +---w input

 | +---w signed-data-preferred? empty

 | +---w hw-model? string

 | +---w os-name? string

 | +---w os-version? string

 | +---w nonce? binary

 | +---w sztp-csr:csr-support!

 | | +---w sztp-csr:key-generation!

 | | | +---w sztp-csr:supported-algorithms

 | | | +---w sztp-csr:algorithm-identifier* binary

 | | +---w sztp-csr:csr-generation

 | | +---w sztp-csr:supported-formats

 | | +---w sztp-csr:format-identifier* identityref

 | +---w sztp-csr:csr!

 | +---w (sztp-csr:request-type)

 | +--:(sztp-csr:p10)

 | | +---w sztp-csr:p10? ct:csr

 | +--:(sztp-csr:cmc)

 | | +---w sztp-csr:cmc? binary

 | +--:(sztp-csr:cmp)

 | +---w sztp-csr:cmp? binary

 +--ro output

 +--ro reporting-level? enumeration {onboarding-server}?

 +--ro conveyed-information cms

 +--ro owner-certificate? cms

 +--ro ownership-voucher? cms

¶

¶

2.2. Example Usage

The examples below are encoded using JSON, but they could equally

well be encoded using XML, as is supported by SZTP.

An SZTP-client implementing this specification would signal to the

bootstrap server its willingness to generate a CSR by including the

"csr-support" node in its "get-bootstrapping-data" RPC, as

illustrated below.

REQUEST

module: ietf-restconf

 +--ro errors

 +--ro error* []

 +--ro error-type enumeration

 +--ro error-tag string

 +--ro error-app-tag? string

 +--ro error-path? instance-identifier

 +--ro error-message? string

 +--ro error-info

 +--ro request-info

 +--ro key-generation!

 | +--ro selected-algorithm

 | +--ro algorithm-identifier binary

 +--ro csr-generation

 | +--ro selected-format

 | +--ro format-identifier identityref

 +--ro cert-req-info? binary

¶

¶

¶

¶

Assuming the SZTP-server wishes to prompt the SZTP-client to provide

a CSR, then it would respond with an HTTP 400 (Bad Request) error

code:

RESPONSE

========== NOTE: '\' line wrapping per BCP XXX (RFC XXXX) ===========

POST /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrappi\

ng-data HTTP/1.1

HOST: example.com

Content-Type: application/yang.data+json

{

 "ietf-sztp-bootstrap-server:input" : {

 "hw-model": "model-x",

 "os-name": "vendor-os",

 "os-version": "17.3R2.1",

 "nonce": "extralongbase64encodedvalue=",

 "ietf-sztp-csr:csr-support": {

 "key-generation": {

 "supported-algorithms": {

 "algorithm-identifier": [

 "base64encodedvalue1=",

 "base64encodedvalue2=",

 "base64encodedvalue3="

]

 }

 },

 "csr-generation": {

 "supported-formats": {

 "format-identifier": [

 "ietf-sztp-csr:p10",

 "ietf-sztp-csr:cmc",

 "ietf-sztp-csr:cmp"

]

 }

 }

 }

 }

}

¶

¶

¶

Upon being prompted to provide a CSR, the SZTP-client would POST

another "get-bootstrapping-data" request, but this time including

the "csr" node to convey its CSR to the SZTP-server:

REQUEST

HTTP/1.1 400 Bad Request

Date: Sat, 31 Oct 2015 17:02:40 GMT

Server: example-server

Content-Type: application/yang.data+json

{

 "ietf-restconf:errors" : {

 "error" : [

 {

 "error-type": "application",

 "error-tag": "missing-attribute",

 "error-message": "Missing input parameter",

 "error-info": {

 "ietf-sztp-csr:request-info": {

 "key-generation": {

 "selected-algortithm": {

 "algorithm-identifier": "base64EncodedValue=="

 }

 },

 "csr-generation": {

 "selected-format": {

 "format-identifier": "ietf-sztp-csr:cmc"

 }

 },

 "cert-req-info": "base64EncodedValue=="

 }

 }

 }

]

 }

}

¶

¶

¶

The SZTP-server responds with "onboarding-information" (conveyed

encoded inside the "conveyed-information" node) containing a signed

identity certificate for the CSR provided by the SZTP-client:

RESPONSE

How the signed certificate is conveyed inside the onboarding

information is outside the scope of this document. Some

implementations may choose to convey it inside a script (e.g.,

SZTP's "pre-configuration-script"), while other implementations

convey it inside the SZTP "configuration" node.

Following are two examples of conveying the signed certificate

inside the "configuration" node. Both examples assume that the SZTP-

client understands the "ietf-keystore" module defined in [I-D.ietf-

netconf-keystore].

This first example illustrates the case where the signed certificate

is for the same asymmetric key used by the SZTP-client's

========== NOTE: '\' line wrapping per BCP XXX (RFC XXXX) ===========

POST /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrappi\

ng-data HTTP/1.1

HOST: example.com

Content-Type: application/yang.data+json

{

 "ietf-sztp-bootstrap-server:input" : {

 "hw-model": "model-x",

 "os-name": "vendor-os",

 "os-version": "17.3R2.1",

 "nonce": "extralongbase64encodedvalue=",

 "ietf-sztp-csr:csr": {

 "p10": "base64encodedvalue=="

 }

 }

}

¶

¶

¶

HTTP/1.1 200 OK

Date: Sat, 31 Oct 2015 17:02:40 GMT

Server: example-server

Content-Type: application/yang.data+json

{

 "ietf-sztp-bootstrap-server:output" : {

 "reporting-level": "verbose",

 "conveyed-information": "base64encodedvalue=="

 }

}

¶

¶

¶

manufacturer-generated identity certificate (e.g., an IDevID). As

such, the configuration needs to associate the newly signed

certificate with the existing asymmetric key:

This second example illustrates the case where the signed

certificate is for a newly generated asymmetric key. As such, the

configuration needs to associate the newly signed certificate with

the newly generated asymmetric key:

¶

========== NOTE: '\' line wrapping per BCP XXX (RFC XXXX) ===========

{

 "ietf-keystore:keystore": {

 "asymmetric-keys": {

 "asymmetric-key": [

 {

 "name": "Manufacturer-Generated Hidden Key",

 "public-key-format": "ietf-crypto-types:subject-public-key\

-info-format",

 "public-key": "base64encodedvalue==",

 "hidden-private-key": [null],

 "certificates": {

 "certificate": [

 {

 "name": "Manufacturer-Generated IDevID Cert",

 "cert": "base64encodedvalue=="

 },

 {

 "name": "Newly-Generated LDevID Cert",

 "cert": "base64encodedvalue=="

 }

]

 }

 }

]

 }

 }

}

¶

¶

In addition to configuring the signed certificate, it is often

necessary to also configure the Issuer's signing certificate so that

the the device (i.e., STZP-client) can authenticate certificates

presented by peer devices signed by the same issuer as its own.

While outside the scope of this document, one way to do this would

be to use the "ietf-truststore" module defined in [I-D.ietf-netconf-

trust-anchors].

========== NOTE: '\' line wrapping per BCP XXX (RFC XXXX) ===========

{

 "ietf-keystore:keystore": {

 "asymmetric-keys": {

 "asymmetric-key": [

 {

 "name": "Manufacturer-Generated Hidden Key",

 "public-key-format": "ietf-crypto-types:subject-public-key\

-info-format",

 "public-key": "base64encodedvalue==",

 "hidden-private-key": [null],

 "certificates": {

 "certificate": [

 {

 "name": "Manufacturer-Generated IDevID Cert",

 "cert": "base64encodedvalue=="

 }

]

 }

 },

 {

 "name": "Newly-Generated Hidden Key",

 "public-key-format": "ietf-crypto-types:subject-public-key\

-info-format",

 "public-key": "base64encodedvalue==",

 "hidden-private-key": [null],

 "certificates": {

 "certificate": [

 {

 "name": "Newly-Generated LDevID Cert",

 "cert": "base64encodedvalue=="

 }

]

 }

 }

]

 }

 }

}

¶

¶

2.3. YANG Module

This module augments an RPC defined in [RFC8572], uses a data type

defined in [I-D.ietf-netconf-crypto-types], has an normative

references to [RFC2986] and [ITU.X690.2015], and an informative

reference to [Std-802.1AR-2018].

<CODE BEGINS> file "ietf-sztp-csr@2020-06-10.yang"

¶

¶

module ietf-sztp-csr {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-sztp-csr";

 prefix sztp-csr;

 import ietf-sztp-bootstrap-server {

 prefix sztp-svr;

 reference "RFC 8572: Secure Zero Touch Provisioning (SZTP)";

 }

 import ietf-yang-structure-ext {

 prefix sx;

 reference "RFC BBBB:YANG Data Structure Extensions";

 }

 import ietf-crypto-types {

 prefix ct;

 reference "RFC AAAA: Common YANG Data Types for Cryptography";

 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: http://tools.ietf.org/wg/netconf

 WG List: <mailto:netconf@ietf.org>

 Authors: Kent Watsen <mailto:kent+ietf@watsen.net>

 Russ Housley <mailto:housley@vigilsec.com>

 Sean Turner <mailto:sean@sn3rd.com>";

 description

 "This module augments the 'get-bootstrapping-data' RPC,

 defined in the 'ietf-sztp-bootstrap-server' module from

 SZTP (RFC 8572), enabling the SZTP-client to obtain a

 signed identity certificate (e.g., an LDevID from IEEE

 802.1AR) as part of the SZTP 'onboarding-information'

 response.

 Copyright (c) 2020 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Simplified

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX

 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this

 document are to be interpreted as described in BCP 14

 (RFC 2119) (RFC 8174) when, and only when, they appear

 in all capitals, as shown here.";

 revision 2020-06-10 {

 description

 "Initial version";

 reference

 "RFC XXXX: Conveying a Certificate Signing Request (CSR)

 in a Secure Zero Touch Provisioning (SZTP)

 Bootstrapping Request";

 }

 identity certificate-request-format {

 description

 "A base identity for the request formats supported

 by the SZTP-client.

 Additional derived identities MAY be defined by

 future efforts.";

 }

 identity p10 {

 base "certificate-request-format";

 description

 "Indicates that the SZTP-client supports generating

 requests using the 'CertificationRequest' structure

 defined in RFC 2986.";

 reference

 "RFC 2986: PKCS #10: Certification Request Syntax

 Specification Version 1.7";

 }

 identity cmc {

 base "certificate-request-format";

 description

 "Indicates that the SZTP-client supports generating

 requests using a constrained version of the 'Full

 PKI Request' structure defined in RFC 5272.";

 reference

 "RFC 5272: Certificate Management over CMS (CMC)";

 }

 identity cmp {

 base "certificate-request-format";

 description

 "Indicates that the SZTP-client supports generating

 requests that contain a PKCS#10 Certificate Signing

 Request (p10cr), as defined in RFC 2986, encapsulated

 in a Nested Message Content (nested), as defined in

 RFC 4210.";

 reference

 "RFC 2986: PKCS #10: Certification Request Syntax

 Specification Version 1.7

 RFC 4210: Internet X.509 Public Key Infrastructure

 Certificate Management Protocol (CMP)";

 }

 // Protocol-accessible nodes

 augment "/sztp-svr:get-bootstrapping-data/sztp-svr:input" {

 description

 "This augmentation adds the 'csr-support' and 'csr' nodes to

 the SZTP (RFC 8572) 'get-bootstrapping-data' request message,

 enabling the SZTP-client to obtain an identity certificate

 (e.g., an LDevID from IEEE 802.1AR) as part of the onboarding

 information response provided by the SZTP-server.

 The 'csr-support' node enables the SZTP-client to indicate

 that it supports generating certificate signing requests

 (CSRs), and to provide details around the CSRs it is able

 to generate.

 The 'csr' node enables the SZTP-client to relay a CSR to

 the SZTP-server.";

 reference

 "IEEE 802.1AR: IEEE Standard for Local and metropolitan

 area networks - Secure Device Identity

 RFC 8572: Secure Zero Touch Provisioning (SZTP)";

 container csr-support {

 presence

 "Indicates that the SZTP-client is capable of sending CSRs.";

 description

 "The 'csr-support' node enables the SZTP-client to indicate

 that it supports generating certificate signing requests

 (CSRs), and to provide details around the CSRs it is able

 to generate.

 When present, the SZTP-server MAY respond with the HTTP

 error 400 (Bad Request) with an 'ietf-restconf:errors'

 document having the 'error-tag' value 'missing-attribute'

 and the 'error-info' node containing the 'request-info'

 structure described in this module.";

 container key-generation {

 presence

 "Indicates that the SZTP-client is capable of

 generating a new asymmetric key pair.

 If this node is not present, the SZTP-server MAY

 request a CSR using the asymmetric key associated

 with the device's existing identity certificate

 (e.g., an LDevID from IEEE 802.1AR).";

 description

 "Specifies details for the SZTP-client's ability to

 generate a new asymmetric key pair.";

 container supported-algorithms {

 description

 "A list of public key algorithms supported by the

 SZTP-client for generating a new key.";

 leaf-list algorithm-identifier {

 type binary;

 min-elements 1;

 description

 "An AlgorithmIdentifier, as defined in RFC 2986,

 encoded using ASN.1 distinguished encoding rules

 (DER), as specified in ITU-T X.690.";

 reference

 "RFC 2986: PKCS #10: Certification Request Syntax

 Specification Version 1.7

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 }

 }

 container csr-generation {

 description

 "Specifies details for the SZTP-client's ability to

 generate a certificate signing requests.";

 container supported-formats {

 description

 "A list of certificate request formats supported

 by the SZTP-client for generating a new key.";

 leaf-list format-identifier {

 type identityref {

 base certificate-request-format;

 }

 min-elements 1;

 description

 "A certificate request format supported by the

 SZTP-client.";

 }

 }

 }

 }

 container csr {

 presence

 "Indicates that the SZTP-client has sent a CSR.";

 description

 "The 'csr' node enables the SZTP-client to convey

 a certificate signing request, using the encoding

 format selected by the SZT-server's 'request-info'

 response to the SZTP-client's previously sent

 'get-bootstrapping-data' request containing the

 'csr-support' node.

 When present, the SZTP-server SHOULD respond with

 an SZTP 'onboarding-information' message containing

 a signed certificate for the conveyed CSR. The

 SZTP-server MAY alternatively respond with another

 HTTP error containing another 'request-info', in

 which case the SZTP-client MUST invalidate the CSR

 sent in this node.";

 choice request-type {

 mandatory true;

 description

 "A choice amongst certificate signing request formats.

 Additional formats MAY be augmented into this 'choice'

 statement by future efforts.";

 case p10 {

 leaf p10 {

 type ct:csr;

 description

 "A CertificationRequest structure, per RFC 2986.

 Please see 'csr' in RFC AAAA for encoding details.";

 reference

 "RFC 2986:

 PKCS #10: Certification Request Syntax Specification

 RFC AAAA:

 Common YANG Data Types for Cryptography";

 }

 }

 case cmc {

 leaf cmc {

 type binary;

 description

 "A constrained version of the 'Full PKI Request'

 message defined in RFC 5272, encoded using ASN.1

 distinguished encoding rules (DER), as specified

 in ITU-T X.690.

 For asymmetric key-based origin authentication

 of a CSR based on the IDevID's private key for the

 associated IDevID's public key, the PKIData contains

 one reqSequence element and no controlSequence,

 cmsSequence, or otherMsgSequence elements. The

 reqSequence is the TaggedRequest and it is the tcr

 CHOICE. The tcr is the TaggedCertificationRequest

 and it a bodyPartId and the certificateRequest

 elements. The certificateRequest is signed with

 the IDevID's private key.

 For asymmetric key-based origin authentication

 based on the IDevID's private key that encapsulates

 a CSR signed by the LDevID's private key, the

 PKIData contains one cmsSequence element and no

 controlSequence, reqSequence, or otherMsgSequence

 elements. The cmsSequence is the TaggedContentInfo

 and it includes a bodyPartID element and a

 contentInfo. The contentInfo is a SignedData

 encapsulating a PKIData with one reqSequence

 element and no controlSequence, cmsSequence, or

 otherMsgSequence elements. The reqSequence is

 the TaggedRequest and it is the tcr CHOICE. The

 tcr is the TaggedCertificationRequest and it a

 bodyPartId and the certificateRequest elements.

 The certificateRequest is signed with the LDevID's

 private key.

 For shared secret-based origin authentication of

 a CSR signed by the LDevID's private key, the

 PKIData contains one cmsSequence element and no

 controlSequence, reqSequence, or otherMsgSequence

 elements. The cmsSequence is the TaggedContentInfo

 and it includes a bodyPartID element and a

 contentInfo. The contentInfo is an AuthenticatedData

 encapsulating a PKIData with one reqSequence

 element and no controlSequence, cmsSequence, or

 otherMsgSequence elements. The reqSequence is the

 TaggedRequest and it is the tcr CHOICE. The tcr

 is the TaggedCertificationRequest and it a

 bodyPartId and the certificateRequest elements.

 The certificateRequest is signed with the LDevID's

 private key.";

 reference

 "RFC 5272: Certificate Management over CMS (CMC)

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 }

 case cmp {

 leaf cmp {

 type binary;

 description

 "A PKIMessage structure, as defined in RFC 4210,

 encoded using ASN.1 distinguished encoding rules

 (DER), as specified in ITU-T X.690.

 The PKIMessage structure contains a PKCS#10

 Certificate Signing Request (p10cr), as defined in

 RFC 2986, encapsulated in a Nested Message Content

 (nested) structure, as defined in RFC 4210.”;

 For asymmetric key-based origin authentication of

 a CSR based on the IDevID's private key for the

 associated IDevID's public key, PKIMessages contains

 one PKIMessage with one body element, a header

 element that is an empty sequence, and no protection

 or extraCerts elements. The body element contains a

 p10cr CHOICE.

 For asymmetric key-based origin authentication based

 on the IDevID's private key that encapsulates a CSR

 signed by the LDevID's private key, PKIMessages

 contains one PKIMessage with one header element,

 one body element, one protection element, and one

 extraCerts element. The header element contains

 pvno, sender, recipient, and protectionAlg elements

 and no other elements. The body element contains the

 nested CHOICE. The nested element's PKIMessages

 contains one PKIMessage with one body element, one

 header element that is an empty sequence, and no

 protection or extraCerts elements. The nested

 element's body element contains a p10cr CHOICE. The

 protection element contains the digital signature

 generated with the IDevID's private key. The

 extraCerts element contains the IDevID certificate.

 For shared secret-based origin authentication of a

 CSR signed by the LDevID's private key, PKIMessages

 contains one PKIMessage with one header element,

 one body element, one protection element, and no

 extraCerts element. The header element contains

 pvno, sender, recipient, and protectionAlg elements

 and no other elements. The body element contains

 the nested CHOICE. The nested element's PKIMessages

 contains one PKIMessage with one body element, one

 header element that is an empty sequence, and no

 protection or extraCerts elements. The body element

 contains a p10cr CHOICE. The protection element

 contains the MAC value generated with the shared

 secret.";

 reference

 "RFC 2986:

 PKCS #10: Certification Request Syntax

 Specification Version 1.7

 RFC 4210:

 Internet X.509 Public Key Infrastructure

 Certificate Management Protocol (CMP)

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 }

 }

 }

 }

 sx:structure request-info {

 container key-generation {

 presence

 "Indicates that the SZTP-client is to generate a new

 asymmetric key. If missing, then the SZTP-client

 MUST reuse the key associated with its existing

 identity certificate (e.g., IDevID).

 This leaf MUST only appear if the SZTP-clients

 'csr-support' included the 'key-generation' node.";

 description

 "Specifies details for the key that the SZTP-client

 is to generate.";

 container selected-algorithm {

 description

 "The key algorithm selected by the SZTP-server. The

 algorithm MUST be one of the algorithms specified

 by the 'supported-algorithms' node in the

 SZTP-client's request message.";

 leaf algorithm-identifier {

 type binary;

 mandatory true;

 description

 "An AlgorithmIdentifier, as defined in RFC 2986,

 encoded using ASN.1 distinguished encoding rules

 (DER), as specified in ITU-T X.690.";

 reference

 "RFC 2986: PKCS #10: Certification Request Syntax

 Specification Version 1.7

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 }

 }

 container csr-generation {

 description

 "Specifies details for the CSR that the SZTP-client

 is to generate.";

 container selected-format {

 description

 "The CSR format selected by the SZTP-server. The

 format MUST be one of the formats specified by

 the 'supported-formats' node in the SZTP-client's

 request message.";

 leaf format-identifier {

 type identityref {

 base certificate-request-format;

 }

 mandatory true;

 description

 "A certificate request format to be used by the

 SZTP-client.";

 }

 }

 }

 leaf cert-req-info {

 type binary;

 description

 "A CertificationRequestInfo structure, as defined in

 RFC 2986, encoded using ASN.1 distinguished encoding

 rules (DER), as specified in ITU-T X.690.

 Enables the SZTP-server to provide a fully-populated

 CertificationRequestInfo structure that the SZTP-client

 only needs to sign in order to generate the complete

 'CertificationRequest' structure to send to SZTP-server

 in its next 'get-bootstrapping-data' request message.

 When provided, the SZTP-client SHOULD use this

 structure to generate its CSR; failure to do so MAY

 result in another 400 (Bad Request) response.

 When not provided, the SZTP-client SHOULD generate a

 CSR using the same structure defined in its existing

 identity certificate (e.g., IDevID).

 It is an error if the 'AlgorithmIdentifier' field

 contained inside the 'SubjectPublicKeyInfo' field

 does not match the algorithm identified by the

 'selected-algorithm' node.";

 reference

 "RFC 2986: PKCS #10: Certification Request Syntax

 Specification Version 1.7

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 }

}

¶

<CODE ENDS>

3. Security Considerations

This document builds on top of the solution presented in [RFC8572]

and therefore all the Security Considerations discussed in RFC 8572

apply here as well.

3.1. SZTP-Client Considerations

3.1.1. Ensuring the Integrity of Asymmetric Private Keys

The private key the SZTP-client uses for the dynamically-generated

identity certificate MUST be protected from inadvertent disclosure

in order to prevent identity fraud.

The security of this private key is essential in order to ensure the

associated identity certificate can be used as a root of trust.

It is RECOMMENDED that devices are manufactured with an HSM

(hardware security module), such as a TPM (trusted platform module),

to generate and forever contain the private key within the security

perimeter of the HSM. In such cases, the private key, and its

associated certificates, MAY have long validity periods.

In cases where the device does not possess an HSM, or otherwise is

unable to use an HSM for the private key, it is RECOMMENDED to

regenerate the private key (and associated identity certificates)

periodically. Details for how to generate a new private key and

associate a new identity certificate are outside the scope of this

document.

3.1.2. Reuse of a Manufacturer-generated Private Key

It is RECOMMENDED in [RFC8572] that devices are shipped from

manufacturing with a secure device identity certificate (e.g., an

IDevID, from [Std-802.1AR-2018]). It is also RECOMMENDED that the

private key for these necessarily long-lived certificates be stored

in an HSM, such as a TPM. Lastly, per the previous consideration,

when devices generate a new private key, it is also RECOMMENDED that

the private key is protected by the HSM.

However, it is understood that space on an HSM chip may be limited,

potentially to the point of not being able to store an additional

private key for the CSR described in this document, and that it may

not be possible to store hardware-protected keys outside the TPM

(e.g., a TPM-encrypted key stored in non-volatile memory). In such

cases, it is RECOMMENDED to reuse the existing hardware-protected

private key rather than generate a second private key outside of

protection afforded by the hardware.

¶

¶

¶

¶

¶

¶

¶

¶

3.1.3. Replay Attack Protection

This RFC enables an SZTP-client to announce an ability to generate

new key to use for its CSR.

When the SZTP-server responds with a request for the device to

generate a new key, it is essential that the device actually

generates a new key.

Generating a new key each time enables the random bytes used to

create the key to serve the dual-purpose of also acting like a

"nonce" used in other mechanisms to detect replay attacks.

When a fresh public/private key pair is generated for the request,

confirmation to the SZTP-client that the response has not been

replayed is enabled by the SZTP-client's fresh public key appearing

in the signed certificate provided by the SZTP-server.

When a public/private key pair associated with the IDevID used for

the request, there may not be confirmation to the SZTP-client that

the response has not been replayed; however, the worst case result

is a lost certificate that is associated to the private key known

only to the SZTP-client.

3.1.4. Connecting to an Untrusted Bootstrap Server

[RFC8572] allows SZTP-clients to connect to untrusted SZTP-servers,

by blindly authenticating the SZTP-server's TLS end-entity

certificate.

As is discussed in Section 9.5 of [RFC8572], in such cases the SZTP-

client MUST assert that the bootstrapping data returned is signed,

if the SZTP-client is to trust it.

However, the HTTP error message used in this document cannot be

signed data, as described in RFC 8572.

Therefore, the solution presented in this document cannot be used

when the SZTP-client connects to an untrusted SZTP-server.

Consistent with the recommendation presented in Section 9.6 of

[RFC8572], SZTP-clients SHOULD NOT passed the "csr-support" input

parameter to an untrusted SZTP-server. SZTP-clients SHOULD pass

instead the "signed-data-preferred" input parameter, as discussed in

Appendix B of [RFC8572].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8572#section-9.5
https://rfc-editor.org/rfc/rfc8572#section-9.6
https://rfc-editor.org/rfc/rfc8572#appendix-B

3.1.5. Selecting the Best Origin Authentication Mechanism

When generating a new key, it is important that the client be able

to provide additional proof to the CA that it was the entity that

generated the key.

All of the certificate request formats defined in this document

(e.g., CMS, CMP, etc.), not including a raw PKCS#10, support origin

authentication.

These formats support origin authentication using both PKI and

shared secret.

Typically only one possible origin authentication mechanism can

possibly be used but, in the case that the SZTP-client authenticates

itself using both TLS-level (e.g., IDevID) and HTTP-level

credentials (e.g., Basic), as is allowed by Section 5.3 of

[RFC8572], then the SZTP-client may need to choose between the two

options.

In the case the SZTP-client must choose between the asymmetric key

option versus a shared secret for origin authentication, it is

RECOMMENDED that the SZTP-client choose using the asymmetric key

option.

3.1.6. Clearing the Private Key and Associated Certificate

Unlike a manufacturer-generated identity certificate (e.g., IDevID),

the deployment-generated identity certificate (e.g., LDevID) and the

associated private key (assuming a new private key was generated for

the purpose), are considered user data and SHOULD be cleared

whenever the device is reset to its factory default state, such as

by the "factory-reset" RPC defined in [I-D.ietf-netmod-factory-

default].

3.2. SZTP-Server Considerations

3.2.1. Conveying Proof of Possession to a CA

3.2.2. Supporting SZTP-Clients that don't trust the SZTP-Server

[RFC8572] allows SZTP-clients to connect to untrusted SZTP-servers,

by blindly authenticating the SZTP-server's TLS end-entity

certificate.

As is recommended in Section 3.1.4 in this document, in such cases,

SZTP-clients SHOULD pass the "signed-data-preferred" input

parameter.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8572#section-5.3

The reciprocal of this statement is that SZTP-servers, wanting to

support SZTP-clients that don't trust them, SHOULD support the

"signed-data-preferred" input parameter, as discussed in Appendix B

of [RFC8572].

3.2.3. YANG Module Considerations

The recommended format for documenting the Security Considerations

for YANG modules is described in Section 3.7 of [RFC8407]. However,

the module defined in this document only augments two input

parameters into the "get-bootstrapping-data" RPC in [RFC8572], and

therefore only needs to point to the relevant Security

Considerations sections in that RFC.

Security considerations for the "get-bootstrapping-data" RPC are

described in Section 9.16 of [RFC8572].

Security considerations for the "input" parameters passed inside

the "get-bootstrapping-data" RPC are described in Section 9.6 of

[RFC8572].

4. IANA Considerations

4.1. The IETF XML Registry

This document registers one URI in the "ns" subregistry of the IETF

XML Registry [RFC3688] maintained at https://www.iana.org/

assignments/xml-registry/xml-registry.xhtml#ns. Following the format

in [RFC3688], the following registration is requested:

4.2. The YANG Module Names Registry

This document registers one YANG module in the YANG Module Names

registry [RFC6020] maintained at https://www.iana.org/assignments/

yang-parameters/yang-parameters.xhtml. Following the format defined

in [RFC6020], the below registration is requested:

5. References

5.1. Normative References

¶

¶

*

¶

*

¶

¶

URI: urn:ietf:params:xml:ns:yang:ietf-sztp-csr

Registrant Contact: The NETCONF WG of the IETF.

XML: N/A, the requested URI is an XML namespace.

¶

¶

name: ietf-sztp-csr

namespace: urn:ietf:params:xml:ns:yang:ietf-sztp-csr

prefix: sztp-csr

reference: RFC XXXX

¶

https://rfc-editor.org/rfc/rfc8572#appendix-B
https://rfc-editor.org/rfc/rfc8407#section-3.7
https://rfc-editor.org/rfc/rfc8572#section-9.16
https://rfc-editor.org/rfc/rfc8572#section-9.6
https://www.iana.org/assignments/xml-registry/xml-registry.xhtml#ns
https://www.iana.org/assignments/xml-registry/xml-registry.xhtml#ns
https://www.iana.org/assignments/yang-parameters/yang-parameters.xhtml
https://www.iana.org/assignments/yang-parameters/yang-parameters.xhtml

[I-D.ietf-netconf-crypto-types]

[ITU.X690.2015]

[RFC2119]

[RFC2986]

[RFC6020]

[RFC7950]

[RFC8174]

[RFC8572]

[I-D.ietf-netconf-keystore]

Watsen, K., "Common YANG Data Types for Cryptography",

Work in Progress, Internet-Draft, draft-ietf-netconf-

crypto-types-15, 20 May 2020, <https://tools.ietf.org/

html/draft-ietf-netconf-crypto-types-15>.

International Telecommunication Union, "Information

Technology - ASN.1 encoding rules: Specification of Basic

Encoding Rules (BER), Canonical Encoding Rules (CER) and

Distinguished Encoding Rules (DER)", ITU-T Recommendation

X.690, ISO/IEC 8825-1, August 2015, <https://www.itu.int/

rec/T-REC-X.690/>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Nystrom, M. and B. Kaliski, "PKCS #10: Certification

Request Syntax Specification Version 1.7", RFC 2986, DOI

10.17487/RFC2986, November 2000, <https://www.rfc-

editor.org/info/rfc2986>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Watsen, K., Farrer, I., and M. Abrahamsson, "Secure Zero

Touch Provisioning (SZTP)", RFC 8572, DOI 10.17487/

RFC8572, April 2019, <https://www.rfc-editor.org/info/

rfc8572>.

5.2. Informative References

Watsen, K., "A YANG Data Model for a

Keystore", Work in Progress, Internet-Draft, draft-ietf-

https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-15
https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-15
https://www.itu.int/rec/T-REC-X.690/
https://www.itu.int/rec/T-REC-X.690/
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8572
https://www.rfc-editor.org/info/rfc8572

[I-D.ietf-netconf-trust-anchors]

[I-D.ietf-netmod-factory-default]

[RFC3688]

[RFC8340]

[RFC8407]

[Std-802.1AR-2018]

netconf-keystore-17, 20 May 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-keystore-17>.

Watsen, K., "A YANG Data Model for a Truststore", Work in

Progress, Internet-Draft, draft-ietf-netconf-trust-

anchors-10, 20 May 2020, <https://tools.ietf.org/html/

draft-ietf-netconf-trust-anchors-10>.

WU, Q., Lengyel, B., and Y. Niu, "A YANG Data Model for

Factory Default Settings", Work in Progress, Internet-

Draft, draft-ietf-netmod-factory-default-15, 25 April

2020, <https://tools.ietf.org/html/draft-ietf-netmod-

factory-default-15>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Bierman, A., "Guidelines for Authors and Reviewers of

Documents Containing YANG Data Models", BCP 216, RFC

8407, DOI 10.17487/RFC8407, October 2018, <https://

www.rfc-editor.org/info/rfc8407>.

Group, W. -. H. L. L. P. W., "IEEE Standard for

Local and metropolitan area networks - Secure Device

Identity", 14 June 2018, <http://standards.ieee.org/

findstds/standard/802.1AR-2018.html>.

Authors' Addresses

Kent Watsen

Watsen Networks

Email: kent+ietf@watsen.net

Russ Housley

Vigil Security, LLC

Email: housley@vigilsec.com

Sean Turner

sn3rd

Email: sean@sn3rd.com

https://tools.ietf.org/html/draft-ietf-netconf-keystore-17
https://tools.ietf.org/html/draft-ietf-netconf-keystore-17
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-10
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-10
https://tools.ietf.org/html/draft-ietf-netmod-factory-default-15
https://tools.ietf.org/html/draft-ietf-netmod-factory-default-15
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8407
http://standards.ieee.org/findstds/standard/802.1AR-2018.html
http://standards.ieee.org/findstds/standard/802.1AR-2018.html
mailto:kent+ietf@watsen.net
mailto:housley@vigilsec.com
mailto:sean@sn3rd.com

	Conveying a Certificate Signing Request (CSR) in a Secure Zero Touch Provisioning (SZTP) Bootstrapping Request
	Abstract
	Editorial Note (To be removed by RFC Editor)
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Overview
	1.2. Terminology
	1.3. Requirements Language

	2. The "ietf-sztp-csr" Module
	2.1. Data Model Overview
	2.2. Example Usage
	2.3. YANG Module

	3. Security Considerations
	3.1. SZTP-Client Considerations
	3.1.1. Ensuring the Integrity of Asymmetric Private Keys
	3.1.2. Reuse of a Manufacturer-generated Private Key
	3.1.3. Replay Attack Protection
	3.1.4. Connecting to an Untrusted Bootstrap Server
	3.1.5. Selecting the Best Origin Authentication Mechanism
	3.1.6. Clearing the Private Key and Associated Certificate

	3.2. SZTP-Server Considerations
	3.2.1. Conveying Proof of Possession to a CA
	3.2.2. Supporting SZTP-Clients that don't trust the SZTP-Server
	3.2.3. YANG Module Considerations

	4. IANA Considerations
	4.1. The IETF XML Registry
	4.2. The YANG Module Names Registry

	5. References
	5.1. Normative References
	5.2. Informative References

	Authors' Addresses

