
Internet Architecture Board (IAB) K. Watsen
Internet-Draft Juniper Networks
Intended status: Best Current Practice June 8, 2018
Expires: December 10, 2018

Handling Long Lines in Artwork in Drafts
draft-kwatsen-netmod-artwork-folding-02

Abstract

 This document introduces a simple and yet time-proven strategy for
 handling long lines in artwork in drafts using a backslash ('\')
 character where line-folding has occurred. The strategy works on any
 text based artwork, producing consistent results regardless the
 artwork content. Using a per-artwork notice, the strategy is both
 self-documenting and enables automated reconstitution of the original
 artwork.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 10, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Watsen Expires December 10, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Handling Long Lines in Artwork in Drafts June 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Requirements Language . 2
3. Goals . 3
3.1. Automated folding of long lines in artwork 3
3.2. Automated reconstitution of original artwork 3

4. Limitations . 3
4.1. Doesn't work well on graphical artwork 3
4.2. Doesn't work as well as format-specific options 4

5. Solution . 4
5.1. Folding . 4
5.2. Unfolding . 5
5.3. Example . 6

6. Security Considerations 7
7. IANA Considerations . 7
8. References . 8
8.1. Normative References 8
8.2. Informative References 8

Appendix A. POSIX Shell Script 9
 Acknowledgements . 13
 Author's Address . 13

1. Introduction

 Internet drafts many times contain artwork that exceed the 72
 character limit specified by RFC 7994 [RFC7994]. The "xml2rfc"
 utility, in an effort to maintain clean formatting, issues a warning
 whenever artwork lines exceed 69 characters. According to RFC
 Editor, there is currently no convention in place for how to handle
 long lines, other than clearly indicating that some manipulation has
 occurred.

 This document introduces a simple and yet time-proven strategy for
 handling long lines using a backslash ('\') character where line-
 folding has occurred. The strategy works on any text based artwork,
 producing consistent results regardless the artwork content. Using a
 per-artwork notice, the strategy is both self-documenting and enables
 automated reconstitution of the original artwork.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

https://datatracker.ietf.org/doc/html/rfc7994
https://datatracker.ietf.org/doc/html/rfc7994

Watsen Expires December 10, 2018 [Page 2]

Internet-Draft Handling Long Lines in Artwork in Drafts June 2018

 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Goals

3.1. Automated folding of long lines in artwork

 Automated folding of long lines is needed in order to support draft
 compilations that entail a) validation of source input files (e.g.,
 YANG, XML, JSON, ABNF, ASN.1) and/or b) dynamic generation of output
 (e.g., tree diagrams) that are stitched into the final draft to be
 submitted.

 Generally, in order for tooling to be able to process input files,
 the files must be in their original/natural state, which may include
 having some long lines. Thus, these source files need to be modified
 before inclusion in the draft in order to satisfy the line length
 limits. This modification SHOULD be automated to reduce effort and
 errors resulting from manual effort.

 Similarly, dynamically generated output (e.g., tree diagrams) must
 also be modified, if necessary, in order for the resulting I-D to
 satisfy the line length limits. When needed, this effort again
 SHOULD be automated to reduce effort and errors resulting from manual
 effort.

3.2. Automated reconstitution of original artwork

 Automated reconstitution of the original artwork is needed to support
 validation of artwork extracted from drafts. Already YANG modules
 are extracted from drafts and validated as part of the draft-

submission process. Additionally, there has been some discussion
 regarding needing to do the same for examples contained within drafts
 ([yang-doctors-list]). Thus, it SHOULD be possible to mechanically
 reconstitute artwork in order to satisfy the tooling input parsers.

4. Limitations

4.1. Doesn't work well on graphical artwork

 While the solution presented in this document will work on any kind
 of text-based artwork, it is most useful on artwork that represents
 sourcecode (e.g., YANG, XML, JSON, etc.) or, more generally, on
 artwork that has not been laid out in two dimensions (e.g.,
 diagrams).

 The issue regards the readability of the folded artwork in the draft.
 Artwork that is unpredictable is especially susceptible is looking

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/draft-submission
https://datatracker.ietf.org/doc/html/draft-submission

Watsen Expires December 10, 2018 [Page 3]

Internet-Draft Handling Long Lines in Artwork in Drafts June 2018

 bad when folded; falling into this category are most UML diagrams.
 Artwork that is somewhat structured (e.g., YANG tree diagrams
 [RFC8340]) fair better when folded, as the eyes seem to be able to
 still see the vertical lines, even when they are interrupted.

 It is thus NOT RECOMMENDED to use the solution presented in this
 document on graphical artwork.

4.2. Doesn't work as well as format-specific options

 The solution presented in this document works generically for all
 artwork, as it only views artwork as plain text. However, various
 formats sometimes have mechanisms that can be used to prevent long
 lines.

 For instance, some source formats allow any quoted string to be
 broken up into substrings separated by a concatenation character
 ('+'), any of which can by on a different line.

 In another example, some languages allow factoring out chucks of code
 out into "functions" or "groupings". Using such call outs is
 especially helpful when in some deeply-nested code, as it typically
 resets the indentation back to the first column.

 As such, it is RECOMMENDED that authors do as much as possible within
 the selected format to avoid long lines.

5. Solution

 The following two sections provide the folding and unfolding
 algorithms that MUST be implemented to align with this BCP.

5.1. Folding

 Scan the artwork to see if any line exceeds the desired maximum. If
 no line exceeds the desired maximum, exit (this artwork does not need
 to be folded).

 Ensure that the desired maximum is not less than then minumum header
 "=== NOTE: '\' line wrapping per BCP XX (RFC XXXX) ===" (53
 characters). If the desired maximum is less than this minimum, exit
 (this artwork can not be folded).

 Scan the artwork to ensure no existing lines already end with a '\'
 character on the desired maximum column, as this would be lead to an
 ambiguous result. If such a line is found, exit (this artwork cannot
 be folded).

https://datatracker.ietf.org/doc/html/rfc8340

Watsen Expires December 10, 2018 [Page 4]

Internet-Draft Handling Long Lines in Artwork in Drafts June 2018

 Otherwise, generate a header to be prepended to the output as
 follows:

 The header MUST be exactly the maximum desired length.

 The header MUST consist of the string " NOTE: '\' line wrapping
 per BCP XX (RFC XXXX) " (note the space character before and after
 the text) surrounded by roughly equal number of "=" characters in
 order to fill up line to the desired maximum length.

 Add one '\n' character to the end of the header line to terminate
 that line, and another '\n' character to provide one blank line
 before that actual folded artwork text begins.

 For each line in the artwork, from top-to-bottom, if the line exceeds
 the desired maximum, then fold the line at the desired maximum column
 by inserting the string "\\n" at the column before the maximum
 column. Note that the column before needs to be used in order to
 enable the '\' character to be placed on the desired maximum column.
 The result of this operation is that the character that was on the
 maximum colomn is now the first character of the next line.

 Continue in this manner until reaching the end of the artwork. Note
 that this algorithm naturally addresses the case where the remainder
 of a folded line is still longer than the desired maximum, and hence
 needs to be folded again, ad infinitum.

5.2. Unfolding

 Scan the artwork for the above-mentioned header occurring on the
 first line of the artwork. If the header is not present on the first
 line of the artwork, exit (this artwork does not need to be
 unfolded).

 Caluculate the folding-column used from the length of the provided
 header.

 Remove the 2-line header from the artwork.

 For each line in the artwork, from top-to-bottom, if the line has a
 '\' on the folding-column followed by a '\n' character, then remove
 both the '\' and '\n' characters, which will bring up the next line,
 and then scan the remainder of the line to see if it again has a '\'
 after folding-column characters followed by a '\n' character, and so
 on.

 Continue in this manner until reaching the end of the artwork.

Watsen Expires December 10, 2018 [Page 5]

Internet-Draft Handling Long Lines in Artwork in Drafts June 2018

5.3. Example

 The following self-documenting example illustrates the result of the
 folding algorithm running over a specific artwork input.

 The specific input used cannot be presented here, as it would again
 need to be folded. Alas, only the result can be provided.

 Some things to note about the following example:

 o This artwork is exactly 69 characters wide, the widest possible
 before `xml2rfc` starts to issue warnings.

 o The line having the 'x' character on the 69th column would've been
 illegal input had the '\' been used.

Watsen Expires December 10, 2018 [Page 6]

Internet-Draft Handling Long Lines in Artwork in Drafts June 2018

 =========== NOTE: '\' line wrapping per BCP XX (RFC XXXX) ===========

 # boundary condition tests using numbers for counting purposes
 123456789012345678901234567890123456789012345678901234567890123456
 1234567890123456789012345678901234567890123456789012345678901234567
 12345678901234567890123456789012345678901234567890123456789012345678
 123456789012345678901234567890123456789012345678901234567890123456789
 12345678901234567890123456789012345678901234567890123456789012345678\
 90
 12345678901234567890123456789012345678901234567890123456789012345678\
 901

 # same as above, but every character converted to a backslash
 # ...and the offending "\\n" on column 69 is removed...
 \\
 \\\
 \\
 \\x
 \\\
 \\
 \\\
 \\\

 # one very long line (280 characters)
 12345678901234567890123456789012345678901234567890123456789012345678\
 90123456789012345678901234567890123456789012345678901234567890123456\
 78901234567890123456789012345678901234567890123456789012345678901234\
 56789012345678901234567890123456789012345678901234567890123456789012\
 34567890

 # same as above, but every character converted to a backslash
 \\\
 \\\
 \\\
 \\\
 \\\\\\\\

6. Security Considerations

 This BCP has no Security Considerations.

7. IANA Considerations

 This BCP has no IANA Considerations.

Watsen Expires December 10, 2018 [Page 7]

Internet-Draft Handling Long Lines in Artwork in Drafts June 2018

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

 [RFC7994] Flanagan, H., "Requirements for Plain-Text RFCs",
RFC 7994, DOI 10.17487/RFC7994, December 2016,

 <https://www.rfc-editor.org/info/rfc7994>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

 <https://www.rfc-editor.org/info/rfc8340>.

 [yang-doctors-list]
 "[yang-doctors] automating yang doctor reviews",
 <https://mailarchive.ietf.org/arch/msg/yang-doctors/

DCfBqgfZPAD7afzeDFlQ1Xm2X3g>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc7994
https://www.rfc-editor.org/info/rfc7994
https://datatracker.ietf.org/doc/html/bcp215
https://datatracker.ietf.org/doc/html/rfc8340
https://www.rfc-editor.org/info/rfc8340
https://mailarchive.ietf.org/arch/msg/yang-doctors/DCfBqgfZPAD7afzeDFlQ1Xm2X3g
https://mailarchive.ietf.org/arch/msg/yang-doctors/DCfBqgfZPAD7afzeDFlQ1Xm2X3g

Watsen Expires December 10, 2018 [Page 8]

Internet-Draft Handling Long Lines in Artwork in Drafts June 2018

Appendix A. POSIX Shell Script

 This non-normative appendix section includes a shell script that can
 both fold and unfold artwork based on the solution presented in this
 document.

 As a testament for the simplicity of this solution, note that at the
 core of the script are the following two one-liners:

 For folding:
 gsed "/.\{$testcol\}/s/\(.\{$foldcol\}\)/\1\\\\\n/g"

 For unfolding:
 gsed ":x; /[^\t]\\{$foldcol\\}\\\\\$/N; s/\\\\\n/\t/; tx; s/\t//g"

 Disclaimer: this script has the limitation of disallowing the input
 file from containing any TAB ('\t') characters.

 =====START SCRIPT=====

 =========== NOTE: '\' line wrapping per BCP XX (RFC XXXX) ===========

 #!/bin/bash
 #
 # the only reason why /bin/sh isn't being used
 # is because "echo -n" is broken on the Mac.

 print_usage() {
 echo
 echo "Folds the text file, only if needed, at the specified"
 echo "column, according to BCP XX."
 echo
 echo "Usage: $0 [-c <col>] [-r] -i <infile> -o <outfile>"
 echo
 echo " -c: column to fold on (default: 69)"
 echo " -r: reverses the operation"
 echo " -i: the input filename"
 echo " -o: the output filename"
 echo " -d: show debug messages"
 echo " -h: show this message"
 echo
 echo "Exit status code: zero on success, non-zero otherwise."
 echo
 }

 # global vars, do not edit
 debug=0

Watsen Expires December 10, 2018 [Page 9]

Internet-Draft Handling Long Lines in Artwork in Drafts June 2018

 reversed=0
 infile=""
 outfile=""
 maxcol=69 # default, may be overridden by param
 hdr_txt=" NOTE: '\' line wrapping per BCP XX (RFC XXXX) "
 equal_chars="==="

 fold_it() {
 # since upcomming tests are >= (not >)
 testcol=`expr "$maxcol" + 1`

 # check if file needs folding
 grep ".\{$testcol\}" $infile >> /dev/null 2>&1
 if [$? -ne 0]; then
 if [[$debug -eq 1]]; then
 echo "nothing to do"
 fi
 cp $infile $outfile
 return 0
 fi

 foldcol=`expr "$maxcol" - 1` # for the inserted '\' char

 # ensure file doesn't have any '\' char on $maxcol already
 # - as this would lead to false positives...
 grep "^.\{$foldcol\}\\\\$" $infile >> /dev/null 2>&1
 if [$? -eq 0]; then
 echo
 echo "Error: infile has a '\\\' on colomn $maxcol already."
 echo
 exit 1
 fi

 # calculate '=' filled header
 length=${#hdr_txt}
 left_sp=`expr \("$maxcol" - "$length" \) / 2`
 right_sp=`expr "$maxcol" - "$length" - "$left_sp"`
 header=`printf "%.*s%s%.*s" "$left_sp" "$equal_chars" "$hdr_txt" "\
 $right_sp" "$equal_chars"`

 # generate outfile and return
 echo -ne "$header\n\n" > $outfile
 gsed "/.\{$testcol\}/s/\(.\{$foldcol\}\)/\1\\\\\n/g" < $infile >> \
 $outfile
 return 0
 }

Watsen Expires December 10, 2018 [Page 10]

Internet-Draft Handling Long Lines in Artwork in Drafts June 2018

 unfold_it() {
 # check if it looks like a BCP XX header
 line=`head -n 1 $infile | fgrep "$hdr_txt"`
 if [$? -ne 0]; then
 if [[$debug -eq 1]]; then
 echo "nothing to do"
 fi
 cp $infile $outfile
 return 0
 fi

 # determine what maxcol value was used
 maxcol=${#line}

 # output all but the first two lines (the header) to wip (work in \
 progress) file
 awk "NR>2" $infile > /tmp/wip

 # unfold wip file
 foldcol=`expr "$maxcol" - 1` # for the inserted '\' char
 gsed ":x; /[^\t]\\{$foldcol\\}\\\\\$/N; s/\\\\\n/\t/; tx; s/\t//g"\
 /tmp/wip > $outfile

 # clean up and return
 rm /tmp/wip
 return 0
 }

 process_input() {
 while ["$1" != ""]; do
 if ["$1" == "-h" -o "$1" == "--help"]; then
 print_usage
 exit 1
 fi
 if ["$1" == "-d"]; then
 debug=1
 fi
 if ["$1" == "-c"]; then
 maxcol="$2"
 shift
 fi
 if ["$1" == "-r"]; then
 reversed=1
 fi
 if ["$1" == "-i"]; then
 infile="$2"
 shift

Watsen Expires December 10, 2018 [Page 11]

Internet-Draft Handling Long Lines in Artwork in Drafts June 2018

 fi
 if ["$1" == "-o"]; then
 outfile="$2"
 shift
 fi
 shift
 done

 if [-z "$infile"]; then
 echo
 echo "Error: infile parameter missing (use -h for help)"
 echo
 exit 1
 fi

 if [-z "$outfile"]; then
 echo
 echo "Error: outfile parameter missing (use -h for help)"
 echo
 exit 1
 fi

 if [! -f "$infile"]; then
 echo
 echo "Error: specified file \"$infile\" is does not exist."
 echo
 exit 1
 fi

 mincol=`expr ${#hdr_txt} + 6`
 if [$maxcol -lt $mincol]; then
 echo
 echo "Error: the folding column cannot be less than $mincol"
 echo
 exit 1
 fi
 }

 main() {
 if ["$#" == "0"]; then
 print_usage
 exit 1
 fi

 process_input $@

 if [[$reversed -eq 0]]; then

Watsen Expires December 10, 2018 [Page 12]

Internet-Draft Handling Long Lines in Artwork in Drafts June 2018

 fold_it
 code=$?
 else
 unfold_it
 code=$?
 fi
 exit $code
 }

 main "$@"

 =====END SCRIPT=====

Acknowledgements

 The authors thank the RFC Editor for confirming that there are no set
 convention today for handling long lines in artwork.

Author's Address

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

Watsen Expires December 10, 2018 [Page 13]

