
NETMOD Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Best Current Practice Q. Wu
Expires: April 19, 2019 Huawei Technologies
 A. Farrel
 Juniper Networks
 B. Claise
 Cisco Systems, Inc.
 October 16, 2018

Handling Long Lines in Artwork in Internet-Drafts and RFCs
draft-kwatsen-netmod-artwork-folding-08

Abstract

 This document introduces a simple and yet time-proven strategy for
 handling long lines in artwork in drafts using a backslash ('\')
 character where line-folding has occurred. The strategy works on any
 text based artwork, but is primarily intended for sample text and
 formatted examples and code, rather than for graphical artwork. The
 approach produces consistent results regardless of the content and
 uses a per-artwork header. The strategy is both self-documenting and
 enables automated reconstitution of the original artwork.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 19, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Watsen, et al. Expires April 19, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Handling Long Lines in Artwork October 2018

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Requirements Language . 3
3. Goals . 3
3.1. Automated Folding of Long Lines in Artwork 3
3.2. Automated Reconstitution of Original Artwork 4

4. Limitations . 4
4.1. Not Recommended for Graphical Artwork 4
4.2. Doesn't Work as Well as Format-Specific Options 4

5. Folded Structure . 5
5.1. Header . 5
5.2. Body . 5

6. Algorithm . 6
6.1. Automated Folding . 6
6.1.1. Manual Folding 7

6.2. Automated Unfolding 7
7. Considerations for xml2rfc v3 8
8. Examples . 8
8.1. Simple Example Showing Boundary Conditions 8
8.2. Example Showing Multiple Wraps of a Single Line 9
8.3. Example With Native Backslash 9
8.4. Example With Native Whitespace 9
8.5. Example of Manual Wrapping 9

9. Security Considerations 10
10. IANA Considerations . 10
11. References . 10
11.1. Normative References 10
11.2. Informative References 10

Appendix A. POSIX Shell Script 12
 Acknowledgements . 16
 Authors' Addresses . 17

1. Introduction

 [RFC7994]sets out the requirements for plain-text RFCs and states
 that each line of an RFC (and hence of an Internet-Draft) must be

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc7994

Watsen, et al. Expires April 19, 2019 [Page 2]

Internet-Draft Handling Long Lines in Artwork October 2018

 limited to 72 characters followed by the character sequence that
 denotes an end-of-line (EOL).

 Internet-Drafts and RFCs often include example text or code
 fragments. In order to render the formatting of such text it is
 usually presented as a figure using the "<artwork>" element in the
 source XML. Many times the example text or code exceeds the 72
 character line-length limit and the "xml2rfc" utility does not
 attempt to wrap the content of artwork, simply issuing a warning
 whenever artwork lines exceed 69 characters. According to the RFC
 Editor, there is currently no convention in place for how to handle
 long lines, other than advising authors to clearly indicate what
 manipulation has occurred.

 This document introduces a simple and yet time-proven strategy for
 handling long lines using a backslash ('\') character where line-
 folding has occurred. The strategy works on any text based artwork,
 but is primarily intended for sample text and formatted examples and
 code, rather than for graphical artwork. The approach produces
 consistent results regardless of the content and uses a per-artwork
 header. The strategy is both self-documenting and enables automated
 reconstitution of the original artwork.

 Note that text files are represent as lines having their first
 character in column 1, and a line length of N where the last
 character is in the Nth column and is immediately followed by an end
 of line character sequence.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Goals

3.1. Automated Folding of Long Lines in Artwork

 Automated folding of long lines is needed in order to support draft
 compilations that entail a) validation of source input files (e.g.,
 XML, JSON, ABNF, ASN.1) and/or b) dynamic generation of output, using
 a tool that doesn't observe line lengths, that is stitched into the
 final document to be submitted.

 Generally, in order for tooling to be able to process input files,
 the files must be in their original/natural state, which may include

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Watsen, et al. Expires April 19, 2019 [Page 3]

Internet-Draft Handling Long Lines in Artwork October 2018

 having some long lines. Thus, these source files need to be modified
 before inclusion in the document in order to satisfy the line length
 limits. This modification SHOULD be automated to reduce effort and
 errors resulting from manual effort.

 Similarly, dynamically generated output (e.g., tree diagrams) must
 also be modified, if necessary, in order for the resulting document
 to satisfy the line length limits. When needed, this effort again
 SHOULD be automated to reduce effort and errors resulting from manual
 effort.

3.2. Automated Reconstitution of Original Artwork

 Automated reconstitution of the original artwork is needed to support
 validation of artwork extracted from documents. YANG [RFC7950]
 modules are already extracted from Internet-Drafts and validated as
 part of the draft-submission process. Additionally, there has been
 some discussion regarding needing to do the same for example YANG
 fragments contained within Internet-Drafts ([yang-doctors-thread]).
 Thus, it SHOULD be possible to mechanically reconstitute artwork in
 order to satisfy the tooling input parsers.

4. Limitations

4.1. Not Recommended for Graphical Artwork

 While the solution presented in this document will work on any kind
 of text-based artwork, it is most useful on artwork that represents
 sourcecode (XML, JSON, etc.) or, more generally, on artwork that has
 not been laid out in two dimensions (e.g., diagrams).

 Fundamentally, the issue is whether the artwork remains readable once
 folded. Artwork that is unpredictable is especially susceptible to
 looking bad when folded; falling into this category are most UML
 diagrams.

 It is NOT RECOMMENDED to use the solution presented in this document
 on graphical artwork.

4.2. Doesn't Work as Well as Format-Specific Options

 The solution presented in this document works generically for all
 artwork, as it only views artwork as plain text. However, various
 formats sometimes have built-in mechanisms that can be used to
 prevent long lines.

 For instance, both the `pyang` and `yanglint` utilities have the
 command line option "--tree-line-length" that can be used to indicate

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/draft-submission

Watsen, et al. Expires April 19, 2019 [Page 4]

Internet-Draft Handling Long Lines in Artwork October 2018

 a desired maximum line length for when generating tree diagrams
 [RFC8340].

 In another example, some source formats (e.g., YANG [RFC7950]) allow
 any quoted string to be broken up into substrings separated by a
 concatenation character (e.g., '+'), any of which can be on a
 different line.

 In yet another example, some languages allow factoring chunks of code
 into call outs, such as functions. Using such call outs is
 especially helpful when in some deeply-nested code, as they typically
 reset the indentation back to the first column.

 As such, it is RECOMMENDED that authors do as much as possible within
 the selected format to avoid long lines.

5. Folded Structure

 Artwork that has been folded as specified by this document MUST
 contain the following structure.

5.1. Header

 The header is two lines long.

 The first line is the following 46-character string that MAY be
 surrounded by any number of printable characters. This first line
 cannot itself be folded.

 NOTE: '\\' line wrapping per BCP XX (RFC XXXX)

 [Note to RFC Editor: Please replace XX and XXXX with the numbers
 assigned to this document and delete this note. Please make this
 change in multiple places in this document.]

 The second line is a blank line. This line provides visual
 separation for readability.

5.2. Body

 The character encoding is the same as described in Section 2 of
 [RFC7994], except that, per [RFC7991], tab characters are prohibited.

 Lines that have a backslash ('\') occurring as the last character in
 a line immediately followed by the end of line character sequence,
 when the subsequent line starts with a backslash ('\') as the first
 non-space (' ') character, are considered "folded".

https://datatracker.ietf.org/doc/html/rfc8340
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7994#section-2
https://datatracker.ietf.org/doc/html/rfc7994#section-2
https://datatracker.ietf.org/doc/html/rfc7991

Watsen, et al. Expires April 19, 2019 [Page 5]

Internet-Draft Handling Long Lines in Artwork October 2018

 Really long lines may be folded multiple times.

6. Algorithm

6.1. Automated Folding

 Determine the desired maximum line length from input. If no value is
 explicitly specified, the value "69" SHOULD be used.

 Ensure that the desired maximum line length is not less than the
 minimum header, which is 46 characters. If the desired maximum line
 length is less than this minimum, exit (this artwork can not be
 folded).

 Scan the artwork to see if any line exceeds the desired maximum. If
 no line exceeds the desired maximum, exit (this artwork does not need
 to be folded).

 Scan the artwork for horizontal tab characters. If any horizontal
 tab characters appear, either resolve them to space characters or
 exit, forcing the input provider to convert them to space characters
 themselves first.

 Scan the artwork to ensure no existing lines already end with a
 backslash ('\') character when the subsequent line starts with a
 backslash ('\') character as the first non-space (' ') character, as
 this would lead to an ambiguous result. If such a line is found,
 exit (this artwork cannot be folded).

 For each line in the artwork, from top-to-bottom, if the line exceeds
 the desired maximum, then fold the line at the desired maximum column
 by 1) inserting the character backslash ('\') character at the
 maximum column, 2) inserting the end of line character sequence,
 inserting any number of space (' ') characters, and 4) inserting a
 further backslash ('\') character.

 The result of this previous operation is that the next line starts
 with an arbitrary number of space (' ') characters, followed by a
 backslash ('\') character, immediately followed by the character that
 was previously in the maximum column.

 Continue in this manner until reaching the end of the artwork. Note
 that this algorithm naturally addresses the case where the remainder
 of a folded line is still longer than the desired maximum, and hence
 needs to be folded again, ad infinitum.

Watsen, et al. Expires April 19, 2019 [Page 6]

Internet-Draft Handling Long Lines in Artwork October 2018

6.1.1. Manual Folding

 Authors may choose to fold text examples and source code by hand to
 produce a document that is more pleasant for a human reader but which
 can still be automatically unfolded (as described in Section 6.2) to
 produce single lines that are longer than the maximum document line
 length.

 For example, an author may choose to make the fold at convenient gaps
 between words such that the backslash is placed in a lower column
 number than the artwork's maximum column value.

 Additionally, an author may choose to indent the start of a
 continuation line by inserting space characters before the line
 continuation marker backslash character.

 Manual folding may also help handle the cases that cannot be
 automatically folded as described in Section 6.

6.2. Automated Unfolding

 All unfolding is assumed to be automated although a reader will
 mentally perform the act of unfolding the text to understand the true
 nature of the artwork or source code.

 Scan the beginning of the artwork for the header described in
Section 5.1. If the header is not present, starting on the first

 line of the artwork, exit (this artwork does not need to be
 unfolded).

 Remove the 2-line header from the artwork.

 For each line in the artwork, from top-to-bottom, if the line has a
 backslash ('\') character immediately followed by the end of line
 character sequence, and if the next line has a backslash ('\')
 character as the first non-space (' ') character, then the lines can
 be unfolded. Remove the first backslash ('\') character, the end of
 line character sequence, any leading space (' ') characters, and the
 second backslash ('\') character, which will bring up the next line.
 Then continue to scan each line in the artwork starting with the
 current line (in case it was multiply folded).

 Continue in this manner until reaching the end of the artwork.

Watsen, et al. Expires April 19, 2019 [Page 7]

Internet-Draft Handling Long Lines in Artwork October 2018

7. Considerations for xml2rfc v3

 [RFC7991] introduces the vocabulary for version 3 of the xml2rfc
 tool. This includes a new element, "<sourcecode>" used to present
 sourcecode examples and fragments and to distinguish them from
 general artwork and in particular figures and graphics.

 The folding and unfolding described in this document is applicable to
 the "<artwork>" element in both v2 and v3 of xml2rfc, and is equally
 applicable to the "<sourcecode>" element in xml2rfc v3.

8. Examples

 The following self-documenting examples illustrate a folded document.

 The source artwork cannot be presented here, as it would again need
 to be folded. Alas, only the result can be provided.

 The examples in Sections 8.1 through 8.4 were automatically folded on
 column 69, the default value. Section 8.5 shows an example of manual
 folding.

8.1. Simple Example Showing Boundary Conditions

 This example illustrates a boundary condition test using numbers for
 counting purposes. The input contains 5 lines, each line one
 character longer than the previous.

 Any printable character (including ' ' and '\') can be used as a
 substitute for any number, except for on the 4th row, the trailing
 '9' is not allowed to be a '\' character if the first non-space
 character of the next line is a '\' character, as that would lead to
 an ambiguous result.

 ========== NOTE: '\\' line wrapping per BCP XX (RFC XXXX) ===========

 123456789012345678901234567890123456789012345678901234567890123456
 1234567890123456789012345678901234567890123456789012345678901234567
 12345678901234567890123456789012345678901234567890123456789012345678
 123456789012345678901234567890123456789012345678901234567890123456789
 12345678901234567890123456789012345678901234567890123456789012345678\
 \90
 12345678901234567890123456789012345678901234567890123456789012345678\
 \901
 12345678901234567890123456789012345678901234567890123456789012345678\
 \9012

Watsen, et al. Expires April 19, 2019 [Page 8]

Internet-Draft Handling Long Lines in Artwork October 2018

8.2. Example Showing Multiple Wraps of a Single Line

 This example illustrates one very long line (280 characters).

 Any printable character (including ' ' and '\') can be used as a
 substitute for any number.

 ========== NOTE: '\\' line wrapping per BCP XX (RFC XXXX) ===========

 12345678901234567890123456789012345678901234567890123456789012345678\
 \9012345678901234567890123456789012345678901234567890123456789012345\
 \6789012345678901234567890123456789012345678901234567890123456789012\
 \3456789012345678901234567890123456789012345678901234567890123456789\
 \01234567890

8.3. Example With Native Backslash

 This example has a '\' character in the wrapping column. The native
 text includes the sequence "fish\fowl" with the '\' character
 occurring on the 69th column.

 string1="The quick brown dog jumps over the lazy dog which is a fish\
 \\fowl as appropriate"

8.4. Example With Native Whitespace

 This example has whitespace spanning the wrapping column. The native
 input contains 15 space (' ') characters between "like" and "white".

 ========== NOTE: '\\' line wrapping per BCP XX (RFC XXXX) ===========

 Sometimes our strings include multiple spaces such as "We like \
 \ white space."

8.5. Example of Manual Wrapping

 This example was manually wrapped to cause the folding to occur after
 each term, putting each term on its own line. Indentation is used to
 additionally improve readability. Also note that the mandatory
 header is surrounded by different printable characters than shown in
 the other examples.

Watsen, et al. Expires April 19, 2019 [Page 9]

Internet-Draft Handling Long Lines in Artwork October 2018

 [NOTE: '\\' line wrapping per BCP XX (RFC XXXX)]

 <request>::= <RP> \
 \<END-POINTS> \
 \[<LSPA>] \
 \[<BANDWIDTH>] \
 \[<metric-list>] \
 \[<RRO>[<BANDWIDTH>]] \
 \[<IRO>] \
 \[<LOAD-BALANCING>]

 The manual folding produces a more readable result than the following
 equivalent folding that contains no indentation.

 ========== NOTE: '\\' line wrapping per BCP XX (RFC XXXX) ===========

 <request>::= <RP> <END-POINTS> [<LSPA>] [<BANDWIDTH>] [<metric-list>\
 \] [<RRO>[<BANDWIDTH>]] [<IRO>] [<LOAD-BALANCING>]

9. Security Considerations

 This BCP has no Security Considerations.

10. IANA Considerations

 This BCP has no IANA Considerations.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950

Watsen, et al. Expires April 19, 2019 [Page 10]

Internet-Draft Handling Long Lines in Artwork October 2018

 [RFC7991] Hoffman, P., "The "xml2rfc" Version 3 Vocabulary",
RFC 7991, DOI 10.17487/RFC7991, December 2016,

 <https://www.rfc-editor.org/info/rfc7991>.

 [RFC7994] Flanagan, H., "Requirements for Plain-Text RFCs",
RFC 7994, DOI 10.17487/RFC7994, December 2016,

 <https://www.rfc-editor.org/info/rfc7994>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

 <https://www.rfc-editor.org/info/rfc8340>.

 [yang-doctors-thread]
 "[yang-doctors] automating yang doctor reviews",
 <https://mailarchive.ietf.org/arch/msg/yang-doctors/

DCfBqgfZPAD7afzeDFlQ1Xm2X3g>.

https://datatracker.ietf.org/doc/html/rfc7991
https://www.rfc-editor.org/info/rfc7991
https://datatracker.ietf.org/doc/html/rfc7994
https://www.rfc-editor.org/info/rfc7994
https://datatracker.ietf.org/doc/html/bcp215
https://datatracker.ietf.org/doc/html/rfc8340
https://www.rfc-editor.org/info/rfc8340
https://mailarchive.ietf.org/arch/msg/yang-doctors/DCfBqgfZPAD7afzeDFlQ1Xm2X3g
https://mailarchive.ietf.org/arch/msg/yang-doctors/DCfBqgfZPAD7afzeDFlQ1Xm2X3g

Watsen, et al. Expires April 19, 2019 [Page 11]

Internet-Draft Handling Long Lines in Artwork October 2018

Appendix A. POSIX Shell Script

 This non-normative appendix section includes a shell script that can
 both fold and unfold artwork.

 ========== NOTE: '\\' line wrapping per BCP XX (RFC XXXX) ===========

 #!/bin/bash

 print_usage() {
 echo
 echo "Folds the text file, only if needed, at the specified"
 echo "column, according to BCP XX."
 echo
 echo "Usage: $0 [-c <col>] [-r] -i <infile> -o <outfile>"
 echo
 echo " -c: column to fold on (default: 69)"
 echo " -r: reverses the operation"
 echo " -i: the input filename"
 echo " -o: the output filename"
 echo " -d: show debug messages"
 echo " -h: show this message"
 echo
 echo "Exit status code: zero on success, non-zero otherwise."
 echo
 }

 # global vars, do not edit
 debug=0
 reversed=0
 infile=""
 outfile=""
 maxcol=69 # default, may be overridden by param
 hdr_txt="NOTE: '\\\\' line wrapping per BCP XX (RFC XXXX)"
 equal_chars="=="
 space_chars=" "

 fold_it() {
 # since upcomming tests are >= (not >)
 testcol=`expr "$maxcol" + 1`

 # check if file needs folding
 grep ".\{$testcol\}" $infile >> /dev/null 2>&1
 if [$? -ne 0]; then
 if [[$debug -eq 1]]; then
 echo "nothing to do"
 fi

Watsen, et al. Expires April 19, 2019 [Page 12]

Internet-Draft Handling Long Lines in Artwork October 2018

 cp $infile $outfile
 return -1
 fi

 foldcol=`expr "$maxcol" - 1` # for the inserted '\' char

 # ensure input file doesn't contain a TAB
 grep "\t" $infile >> /dev/null 2>&1
 if [$? -eq 0]; then
 echo
 echo "Error: infile contains a TAB character, which is not allow\
 \ed."
 echo
 return 1
 fi

 # ensure input file doesn't contain the fold-sequence already
 pcregrep -M "\\\\\n[\]*\\\\" $infile >> /dev/null 2>&1
 if [$? -eq 0]; then
 echo
 echo "Error: infile has a line ending with a '\' character follo\
 \wed"
 echo " by '\' as the first non-space character on the next\
 \ line."
 echo " This file cannot be folded."
 echo
 return 1
 fi

 # center header text
 length=`expr ${#hdr_txt} + 2`
 left_sp=`expr \("$maxcol" - "$length" \) / 2`
 right_sp=`expr "$maxcol" - "$length" - "$left_sp"`
 header=`printf "%.*s %s %.*s" "$left_sp" "$equal_chars" "$hdr_txt"\
 \ "$right_sp" "$equal_chars"`

 # fold using recursive passes ('g' didn't work)
 if [-z "$1"]; then
 # init recursive env
 cp $infile /tmp/wip
 fi
 gsed "/.\{$testcol\}/s/\(.\{$foldcol\}\)/\1\\\\\n\\\\/" < /tmp/wip\
 \ >> /tmp/wip2
 diff /tmp/wip /tmp/wip2 > /dev/null 2>&1
 if [$? -eq 1]; then
 mv /tmp/wip2 /tmp/wip
 fold_it "recursing"
 else

Watsen, et al. Expires April 19, 2019 [Page 13]

Internet-Draft Handling Long Lines in Artwork October 2018

 echo "$header" > $outfile
 echo "" >> $outfile
 cat /tmp/wip2 >> $outfile
 rm /tmp/wip*
 fi

 ## following two lines represent a non-functional variant to the r\
 \ecursive
 ## logic presented in the block above. It used to work before the\
 \ '\'
 ## on the next line was added to the format (i.e., the trailing '\\
 \\\\'
 ## in the substitution below), but now there is an off-by-one erro\
 \r.
 ## Leaving here in case anyone can fix it.
 #echo "$header" > $outfile
 #echo "" >> $outfile
 #gsed "/.\{$testcol\}/s/\(.\{$foldcol\}\)/\1\\\\\n\\\\/g" < $infil\
 \e >> $outfile

 return 0
 }

 unfold_it() {
 # check if file needs unfolding
 line=`head -n 1 $infile | fgrep "$hdr_txt"`
 if [$? -ne 0]; then
 if [[$debug -eq 1]]; then
 echo "nothing to do"
 fi
 cp $infile $outfile
 return -1
 fi

 # output all but the first two lines (the header) to wip (work in \
 \progress) file
 awk "NR>2" $infile > /tmp/wip

 # unfold wip file
 gsed ":x; /.*\\\\\$/N; s/\\\\\n[]*\\\\//; tx; s/\t//g" /tmp/wip >\
 \ $outfile

 # clean up and return
 rm /tmp/wip
 return 0
 }

Watsen, et al. Expires April 19, 2019 [Page 14]

Internet-Draft Handling Long Lines in Artwork October 2018

 process_input() {
 while ["$1" != ""]; do
 if ["$1" == "-h" -o "$1" == "--help"]; then
 print_usage
 exit 1
 fi
 if ["$1" == "-d"]; then
 debug=1
 fi
 if ["$1" == "-c"]; then
 maxcol="$2"
 shift
 fi
 if ["$1" == "-r"]; then
 reversed=1
 fi
 if ["$1" == "-i"]; then
 infile="$2"
 shift
 fi
 if ["$1" == "-o"]; then
 outfile="$2"
 shift
 fi
 shift
 done

 if [-z "$infile"]; then
 echo
 echo "Error: infile parameter missing (use -h for help)"
 echo
 exit 1
 fi

 if [-z "$outfile"]; then
 echo
 echo "Error: outfile parameter missing (use -h for help)"
 echo
 exit 1
 fi

 if [! -f "$infile"]; then
 echo
 echo "Error: specified file \"$infile\" is does not exist."
 echo
 exit 1
 fi

Watsen, et al. Expires April 19, 2019 [Page 15]

Internet-Draft Handling Long Lines in Artwork October 2018

 min_supported=`expr ${#hdr_txt} + 8`
 if [$maxcol -lt $min_supported]; then
 echo
 echo "Error: the folding column cannot be less than $min_support\
 \ed"
 echo
 exit 1
 fi

 max_supported=`expr ${#equal_chars} + 1 + ${#hdr_txt} + 1 + ${#equ\
 \al_chars}`
 if [$maxcol -gt $max_supported]; then
 echo
 echo "Error: the folding column cannot be more than $max_support\
 \ed"
 echo
 exit 1
 fi

 }

 main() {
 if ["$#" == "0"]; then
 print_usage
 exit 1
 fi

 process_input $@

 if [[$reversed -eq 0]]; then
 fold_it
 code=$?
 else
 unfold_it
 code=$?
 fi
 exit $code
 }

 main "$@"

Acknowledgements

 The authors thank the following folks for their various contributions
 (sorted by first name): Jonathan Hansford, Joel Jaeggli, Lou Berger,
 Martin Bjorklund, Italo Busi, and Rob Wilton.

Watsen, et al. Expires April 19, 2019 [Page 16]

Internet-Draft Handling Long Lines in Artwork October 2018

 The authors additionally thank the RFC Editor, for confirming that
 there is no set convention today for handling long lines in artwork.

Authors' Addresses

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

 Qin Wu
 Huawei Technologies

 EMail: bill.wu@huawei.com

 Adrian Farrel
 Juniper Networks

 EMail: afarrel@juniper.net

 Benoit Claise
 Cisco Systems, Inc.

 EMail: bclaise@cisco.com

Watsen, et al. Expires April 19, 2019 [Page 17]

