
Internet Engineering Task Force D. Lanz

Internet-Draft L. Novikov

Intended status: Informational MITRE

Expires: January 26, 2012 July 25, 2011

Common Interface to Cryptographic Modules (CICM) Logical Model

draft-lanz-cicm-lm-01

Abstract

This document defines an abstract model for high assurance

cryptographic modules. It defines the relevant terminology and high-

level descriptions of the types of services and operations offered by

such modules. The goal is to provide a common vocabulary for discussing

the programming of high assurance modules.

Comments are solicited and should be addressed to the mailing list at

cicm@ietf.org.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on January 26, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction*

1.1. Background

1.2. Language Independent

1.3. Audience

1.4. Scope of the Specification

2. Use Cases

2.1. Data-in-Transit

2.2. Data-at-Rest

2.3. Single Security Domain

3. Module Management

3.1. Managing Module Authentication

3.1.1. Managing Hardware Access Tokens

3.1.2. Managing Users

3.1.3. Logging in to a Module from a Host

3.2. Managing Software Packages

3.3. Managing Logs

3.4. Managing Tests

3.5. Managing Module Events

4. Key Management

4.1. Creating and Establishing Keys

4.1.1. No Host Interaction Key Fill

4.1.2. Client Program-Initiated

4.1.3. Module/Key Infrastructure Initiated

4.2. Exporting Keys

4.2.1. Locating and Retrieving Information about a Key

4.2.2. Applying Metadata to Keys

4.2.3. Performing Operations on Keys

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

4.2.4. Enabling Remote Management

5. Channel Management

5.1. Creating Channels

5.1.1. Encryption and Decryption

5.1.2. Bypass

5.1.3. Integrity

5.1.4. Hashing

5.1.5. Keystream Generation

5.1.6. Random Data

5.2. Managing Channels

5.3. Using Channels

5.4. Grouping Channels

5.5. Receiving Notification of Channel Events

5.6. Destroying Channels

6. IANA Considerations

7. Security Considerations

7.1. Unauthorized Usage

7.2. Inappropriate Usage

7.3. Confidentiality and Data Integrity

7.4. Bypass

7.5. Entity Authentication

8. References

Appendix A. Terms

Authors' Addresses

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1. Introduction

1.1. Background

Sensitive data is increasingly under attack, whether in transit or at

rest. The computer security community has responded to these threats by

using cryptography to secure sensitive data. To counter the growing

number and types of threats against systems processing sensitive data,

module vendors have engineered a diverse set of cryptographic modules.

Systems that require cryptographic protection may use various

cryptographic services including data encryption, signature generation,

hashing, and keystream generation. Cryptographic modules providing

these services and the key material they hold must be managed. All of

these services have proprietary interfaces that differ significantly

among module types, leading to the following problems:

Replacement of one module type for another and reuse of module-

dependent software are inhibited as applications require

extensive modifications to adapt to new module types and their

proprietary interfaces.

Developers of systems that host cryptographic modules must

accommodate different cryptographic module interfaces for

different types of cryptographic modules.

Test tools and procedures developed for one module usually will

not work with other modules.

Security evaluators must learn multiple module developers'

interfaces, increasing evaluation time and expense.

To address these problems, this document outlines a logical model for

the Common Interface to Cryptographic Modules (CICM) specification

which offers module developers a set of standard programming interfaces

for the set of operations supported by high assurance cryptographic

modules. Although many Application Programming Interfaces (APIs)

intended for commercial cryptography are available, the CICM

specification was designed for high assurance environments, but may be

used in other environments as well.

Modules do not require changes to support the use of CICM. A module-

specific abstraction layer between the library implementing CICM

interfaces and the module performs the needed translations between the

CICM model of a module and the model presented by a specific module.

This abstraction component may be provided by the module developer, a

module embedder/integrator, or another interested party. This

arrangement is analogous to manufacturers of computer peripheral

devices providing platform or operating system-specific drivers for

their peripheral devices.

*

*

*

*

The benefits of using standard interfaces to access cryptographic

services include:

Provide a common, logical model of cryptographic modules that is

straightforward to learn and easy to use.

Enable the replacement of one cryptographic module for another

without significant modifications to the client programs that

interact and use the cryptographic module, assuming certain

compatibility characteristics between the modules exist.

Accommodate binding to multiple programming languages.

Enforce the correct use of the API; in particular, interfaces

must be used in the intended order, imposable at compile time or

recognizable via static analysis.

Support high assurance evaluation by enabling evaluators to

quickly validate that a particular implementation uses only the

required functions in the manner they were intended.

1.2. Language Independent

CICM is defined using Interface Definition Language (IDL) [IDL], a

specification language that describes a software interface in a

language-neutral way. The specification currently does not specify

normative bindings for specific programming languages, although

bindings for common languages can be generated from the IDL provided

with the specification. However, normative bindings for one or more

popular programming languages will be made available in a future

release of the specification.

The use of IDL in CICM is not intended to either prescribe or preclude

a particular communications protocol such as General Inter-ORB Protocol

(GIOP) [CORBA] between programs in different address spaces or on

different devices.

1.3. Audience

The CICM specification is written for computer programmers, software

engineers, and technical architects with a background in data security

and cryptography. Knowledge of object-oriented programming concepts is

useful when reading IDL definitions. Software engineers may use the

specification when developing software that integrates with

cryptographic modules. Technical architects may use the specification

when designing systems that incorporate cryptographic modules to secure

data within the system or between systems.

Although the specification is targeted to software developers who will

access module services using a compliant implementation, it also

addresses module developers and others who implement library and other

support software.

*

*

*

*

*

1.4. Scope of the Specification

The CICM model should provide a common way to access the following

services offered by cryptographic modules:

Cryptographic module management: Includes retrieving information

about a specific module, managing access control, managing module

events, and loading and managing software packages on modules.

Key management: Includes the generation, storage, protection, and

removal of key material, and support for message exchanges used

in key agreement and key transfer protocols.

Channel management: A channel defines a specific cryptographic

transform and encapsulates all attributes associated with that

transform. Channel management includes channel instantiation,

channel control throughout its lifetime, providing data to a

channel for transformation, and extracting transformed data from

a channel.

The following elements are not addressed:

Hardware interfaces, protocols, or design

Details of specific protocols (The model provides a means to move

protocol messages into and out of a module, but does not dictate

low level protocol.)

Internal structure of certain types of data elements (e.g.,

software packages imported into a module, test results extracted

from a module)

Policy enforcement (The model provides a means to convey policy

elements to the module, but policy enforcement is considered a

module responsibility.)

Organization of the information stored and processed within a

module

Separation of commands/data for multiple security domains that

access a single CICM library instance (e.g., Multiple Levels of

Security).

2. Use Cases

A significant characteristic that differentiates CICM from other

cryptographic interfaces such as Cryptoki [PKCS-11], GSS-API [RFC5554],

and [JCA] is its ability to support cryptographic modules that separate

two security domains. The use cases that follow capture this

*

*

*

*

*

*

*

*

*

fundamental element of the CICM model. These use cases can be divided

into two basic types:

Cryptographic transformation of data initiated in one security

domain with the result made available in another security domain

Cryptographic transformation of data within a single security

domain: Cryptographic hash or digital signature operations may be

initiated in the same security domain where the result is

received. Other single domain use cases include data encryption/

decryption for storage and keystream/random data generation.

The data-in-transit and data-at-rest use cases illustrated below

incorporate multiple security domains, while the final use case depicts

a transformation within a single domain.

2.1. Data-in-Transit

The figure below shows a hardware device with an embedded cryptographic

module providing encryption and decryption services between a secure

and non-secure network. The secure side protocol logic subsystems

access cryptographic services using CICM. In this use case, the High

Assurance IP Encryptor (HAIPE) device uses CICM to enable the internal

protocol logic of the device to access cryptographic services; the

network to which the HAIPE device is connected does not interface to

the protocol encryptor using CICM.

 High Assurance IP Encryptor

 +----------------------------.-----------------+

 | HAIPE Cryptographic HAIPE |

Secure <-> Protocol <-> CICM <-> Module <-> Protocol <-> Non-Secure

Network | Logic . Logic | Network

 +----------------------------.-----------------+

 .

 Security Domain

 Boundary

Figure 1. First Data-in-Transit Use Case, HAIPE

The following figure depicts the same use case in its end-to-end

configuration.

*

*

 Security Domain

 Boundary

 .

 +------------------------------.--------+

 | HAIPE . |

(Secure) <-> Protocol <-> CICM <-> Cryptographic <---+

(Network) | Logic Module | |

 +------------------------------.--------+ |

 |

 +-------------> (Non-Secure) <--------------+

 | (Network)

 |

 | +--------.------------------------------+

 | | . HAIPE |

 +---> Cryptographic <-> CICM <-> Protocol <-> (Secure)

 | Module Logic | (Network)

 +--------.------------------------------+

 .

 Security Domain

 Boundary

Figure 2. HAIPE Use Case in End-to-End Configuration

A second data-in-transit use case shows a tactical secure radio with an

embedded cryptographic module providing encryption and decryption

services between a local host and a radio frequency environment. The

functional blocks that make up the tactical secure radio are logically

identical to those in the first example.

 Tactical Secure Radio

 +----------------------------.---------------------+

Host <-> Information <-> CICM <-> Module <-> Waveform <-> RF

 | Processing . Processing |

 +----------------------------.---------------------+

 .

 Security Domain

 Boundary

Figure 3. Second Data-in-Transit Use Case, Tactical Secure Radio

2.2. Data-at-Rest

The figure below shows a cryptographic module providing encryption

services for data stored on a disk and decryption services for data

read from a disk. A file system driver accesses cryptographic services

using CICM. This use case could apply to a laptop computer that

contains encrypted data; it would prevent access to sensitive data from

a lost or stolen laptop.

 Host .

 +---------------------------------+ .

User <-> Word <-> File <-> CICM <-> Cryptographic <-> Disk

 | Processor System | Module

 +---------------------------------+ .

 .

 Security Domain

 Boundary

Figure 4. Data-at-Rest Use Case

2.3. Single Security Domain

The following figure shows a cryptographic transform within a single

security domain (it assumes that the transform does not change the

classification of the data). The plaintext is conveyed to the module,

transformed by an encryption algorithm, and results in ciphertext. This

information is then returned to the same domain from which the

plaintext originated. Other natural examples of a single domain use

case include signing, which results in a digital signature; hashing,

which results in a hash value; and keystream generation, which results

in keystream data.

 1. Query 2. Load

User <---------> Database <---------> Disk

 Back end

 |

 +---------------> Cryptographic

 3. Decrypt Module

Figure 5. Single Security Domain Use Case

3. Module Management

The fundamental element of the CICM model is the MODULE -- an

abstraction which refers to the cryptographic module and its

capabilities. A single CICM library may provide access to multiple

modules.

Each module contains references to information about the module,

including the module manufacturer, serial number, and version numbers.

Modules also defines attributes called MANAGERS that provide access to

the services made available by the module.

3.1. Managing Module Authentication

Modules may require a host or user to authenticate to the module before

the module will enter an operational state, allowing it to accept

commands and perform cryptographic transformations. In some cases, a

specialized, removable hardware component will perform or participate

in the authentication. This hardware component is termed a HARDWARE

ACCESS TOKEN in CICM nomenclature, although other communities may use

different terminology. Most implementations that use hardware access

tokens will transfer key material between the token and module,

independent of CICM. In cases where access tokens are not supported, a

user may provide authentication credentials to the module via CICM. In

still other cases, support for multi-factor authentication will require

a token and a user login. Note that the user and token holder may be

different entities.

CICM provides interfaces that can be used separately or in combination

with one another as appropriate for the system using them and for the

authentication mechanisms offered by the module that is used by the

system. Methods to manage module/token associations are available for

systems where hardware access tokens are supported. Login methods and

related user management methods are supported for systems that require

user login.

3.1.1. Managing Hardware Access Tokens

The TOKEN MANAGER defines methods that support associating a token with

a module, disassociating a token from a module, and disassociating a

module from a token. The manager also supports retrieving a list of

token associations on a module and module associations on a token.

3.1.2. Managing Users

The USER MANAGER defines methods that support adding users to and

removing users from a module user database, and associating a user with

a module-defined ROLE. The manager also supports listing the user

database, and the roles defined and supported by the module.

3.1.3. Logging in to a Module from a Host

The LOGIN MANAGER defines methods that enable a user configured on a

module to login to and logout from a module.

3.2. Managing Software Packages

The PACKAGE MANAGER defines methods that support importing and managing

the executable images that reside on a cryptographic module. These

methods enable module software/firmware PACKAGES to be imported and

other software package management operations to be performed, including

retrieving a list of packages, and activating or deleting a specific

package.

The package manager enables packages to be imported into a module in

segments rather as an atomic unit. This supports modules that must make

special provisions to import executable images due to internal storage

space limitations.

3.3. Managing Logs

Modules generate log entries as they operate. The LOG MANAGER defines

methods that support retrieving individual log entries or extracting an

entire log from a module. Additionally, clients may clear individual

log entries or the entire module log.

3.4. Managing Tests

Modules may incorporate built-in tests to validate that module

functionality is operating as designed. Some tests may be externally

initiated. The TEST MANAGER defines methods that support host-initiated

module tests.

3.5. Managing Module Events

The MODULE EVENT MANAGER defines methods that support registering/

unregistering module-generated event notifications received by a client

program. Clients can register custom-developed CALLBACK procedures,

called LISTENERS, for specific module events. When the condition

associated with a specific listener presents itself, the registered

listener is called.

Examples of events for which listeners may be registered include:

Hardware access token has been inserted or removed.

Module is ready to receive traffic.

Alarm condition is raised.

Hardware zeroization condition raised.

Continuous module/engine health test failed.

Usable lifespan of key expired.

Change in module power state.

4. Key Management

Cryptographic modules use key material under their protection as one

input to perform a cryptographic transformation. Keys

can originate at a Key Infrastructure Component that has a trust

relationship with the module

may be agreed upon between the module and another entity

may be generated on the module itself

*

*

*

*

*

*

*

*

*

*

may be derived from information presented to the module by a

client program.

Once established on a module, they may be subject to client-initiated

management operations or may be used as part of a cryptographic channel

to effect cryptographic transformations.

CICM treats SYMMETRIC KEYS and ASYMMETRIC KEYSETS separately. An

asymmetric keyset may comprise an asymmetric key pair, the public and

private key components of a keypair, the digital certificate

corresponding to the keyset public key, one or more verification

certificates in the certificate chain of trust, and related public

domain parameters.

The ASYMMETRIC KEY MANAGER and SYMMETRIC KEY MANAGER attributes allow

for access to asymmetric keysets and symmetric keys, respectively.

4.1. Creating and Establishing Keys

Keys may be moved into a module in one of several scenarios. Each

scenario is described in detail below.

4.1.1. No Host Interaction Key Fill

Specialized hardware devices designed to transfer key from a key

infrastructure component to a specific cryptographic module may fill

key into a module without host involvement and thus no API interaction.

In some cases, this process does not support transferring key metadata

with a key. This requires host and API interaction to apply metadata to

the key inside the module upon completion of the fill.

4.1.2. Client Program-Initiated

In some cases, key fill devices require host interaction to initiate a

key fill. In such cases, the target key storage location or key tagging

information can be specified prior to the initiation of the fill.

Keys may be imported directly or derived using a text-based secret

provided by the user of the client program. Keys also may be generated

on the module. Each case results in a persistent key.

A key also is implicitly established each time a channel is created

using an asymmetric keyset and upon renegotiation. Keys resulting from

channel-based key agreement are ephemeral; they are not generally

managed outside of a channel. Ephemeral keys also may be destroyed when

a channel is destroyed.

4.1.3. Module/Key Infrastructure Initiated

A facility to operate a key agreement protocol with an infrastructure

component is supported. This facility also enables key material or key

revocation information to be authenticated by one of the module's trust

anchors, and then loaded into the module.

*

4.2. Exporting Keys

Methods to export key material out of a module are supported. A module

may require wrapping the key material prior to export or may disallow

this operation.

4.2.1. Locating and Retrieving Information about a Key

A method to locate a specific key on a module based upon identification

information associated with the key is supported. In addition, the

entire key database may be listed.

4.2.2. Applying Metadata to Keys

Key metadata may be retrieved and set for individual keys. Metadata

elements include the key identifier, alias, and classification.

Untagged keys that are imported via a fill device may require certain

metadata to be applied after the conclusion of the load.

4.2.3. Performing Operations on Keys

A number of management operations on keys are supported. Keys may be

wrapped (cryptographically protected) in preparation for export, or

unwrapped after import. All key material on the module can be zeroized

either on a key-by-key basis or as a whole. There are also operations

to perform key conversions and updates.

4.2.4. Enabling Remote Management

CICM supports various key management-related protocol messages

including remote key functions (e.g., remote zeroize or rekey),

infrastructure-initiated key revocation, and trust anchor management.

5. Channel Management

The CHANNEL is the fundamental construct under which one or more

related cryptographic transforms are performed, and within which all

details and attributes associated with the transform are encapsulated,

including the path through the module. Most channels accept data from a

port in the local security domain, transform the data, and output the

result on a port in another security domain. A channel also may perform

transformations within a single security domain, or may accept data for

transformation in one domain and output the result in another. The

channel type determines which ports must be specified when a channel is

created.

 Security Domain Security Domain

 Boundary Boundary

 . .

 +--------.--------+ +--------.--------+

 Client --(a) Cryptographic (b)---(c) Cryptographic (d) -- Client

Program X | Module | | Module | Program Y

 +--------.--------+ +--------.--------+

 . .

 X local X remote Y remote Y local

 port (a) port (b) port (c) port (d)

Figure 6. Local and Remote Port Nomenclature for Channels that Operate

in Two Security Domains

Three classes of objects are fundamental to the creation and use of

CICM channels. A CONTROLLER is used to configure and control a channel.

A STREAM enables data to be sent to a module to be transformed, and

transformed data to be received using a controller as a foundation. A

CONDUIT is the sum of a controller and a stream. Thus, the term

"channel" is only an abstraction representing the logical path through

the module on which cryptographic transformations are performed.

+--+

| Channel |

| |

| +-----------------------+ |

| | +--------------------+ |

| | Controller | Conduit | Stream | |

| +-----------------------+ | |

| +--------------------+ |

+--+

Figure 7. Relationship Between Channel, Conduit, Controller, and Stream

This division of responsibility makes channels very flexible. One

client program can be responsible for creating and managing channels

with a controller, and another can send data over this pre-configured

channel for transformation using a stream. In some environments, data

to be transformed never enters the host to pass through the API.

Instead, it is clocked directly through the module. In this situation,

a controller is configured, but no stream is configured since it would

never be used. In other cases, a client program is required to

configure the channel and pass data through the channel it configured.

In this case, the client program configures a conduit, which

incorporates a controller and a stream.

Both controllers and conduits accept symmetric keys, requiring that the

client program configuring the channel and its remote peer share the

same secret key. Alternatively, all peers may hold their own respective

asymmetric keysets, requiring a key negotiation which, upon successful

completion, results in each peer holding an ephemeral symmetric key.

CICM supports a NEGOTIATOR for this purpose. A successful negotiation

results in a negotiated controller or conduit.

CICM supports the following channel types:

Encryption/decryption, including selective bypass

Signature generation/verification

Message Authentication Code (MAC) generation/verification

Cryptographic hashing

Keystream generation

Random/pseudo-random data generation

Key wrap

Full bypass.

CICM also supports hybrid channel types. A channel that simultaneously

supports encryption and signature, resulting in both ciphertext and a

final signature value, is a hybrid channel.

Each of the types above differs in the way it is configured, its

configuration options, and how it handles the cryptographic

transformation of data. Consider the following examples portraying the

diversity of the channel types:

The encryption channel accepts plaintext to be transformed, and

can return the resulting ciphertext directly to the caller or

route it a different security domain

The random data generation channel requires no data for

transformation, but emits a random stream

The signature channel accepts an indeterminate amount of data,

and returns an algorithm-specific fixed-sized value

The hashing channel does not accept a cryptographic key as a

parameter, as most of the other channel types do (keyed hashes

are supported by MAC channels)

The decryption channel accepts a state vector input parameter,

but does not allow a state vector to be generated.

This diversity results from the fundamental characteristics of the

cryptographic primitives that are being abstracted. The CHANNEL MANAGER

defines the methods that support creating conduits, controllers,

streams, and negotiators for each of the channel services listed above.

*

*

*

*

*

*

*

*

*

*

*

*

*

5.1. Creating Channels

Creating a channel requires an awareness of the options available:

The type of cryptographic operation desired (encryption, hashing,

keystream generation, etc.)

How the channel will be used (control-only, send/receive data

only, or both control and send/receive data)

The type of key that will be used for channels that require a

symmetric key or an asymmetric keyset (hybrid channels accept two

keys).

Selecting among these options enables the client program developer to

determine what channel interface to use.

In cases where an asymmetric keyset is used, channels are created as a

result of a key agreement protocol negotiation with a remote peer. To

ensure that it is the expected peer, a human user at the client may

validate information extracted from the peer's certificate. If the

module uses a trusted display, the module communicates the peer

information directly to the display. Based upon user input at the

display, host-independent negotiation is continued or aborted. If no

trusted display is available, the client program requests information

about the remote peer, displays it at the host for user confirmation,

and provides positive confirmation via the API that the peer is valid,

allowing the negotiation to continue.

5.1.1. Encryption and Decryption

CICM defines interfaces to support encryption and decryption between

two security domains or within a single security domain. Additional

variants are defined including hybrid channels that can concurrently

compute integrity values. Another set of variants provides methods to

perform encryption/decryption with selective bypass.

If an asymmetric keyset is used to create a channel, a negotiation

process is initiated, which results in a negotiated channel. Negotiated

versions of hybrid channels also are available. For those negotiator

versions that combine encryption with integrity value generation,

negotiation applies only to the encryption key specified when the

channel is negotiated, not the signature or MAC key.

Channel-based multiple key wrap/unwrap support is provided via a

special channels for that purpose.

CICM also supports encryption/decryption channels that operate in

coprocessor mode . These channels accept their input and return their

output as part of the same method call. Where relevant, the integrity

value or verification status (verified/not verified) is returned when

the final block of the input has been presented for transformation.

*

*

*

Duplex channel configurations that use the same key to perform encrypt

and decrypt transformations also are supported. Negotiated versions of

the duplex channel also are available.

5.1.2. Bypass

Bypass channels capable of defining a path through a module and then

bypassing data from one security domain to a different domain are

supported. Selective bypass also is supported on encryption and

decryption channels.

5.1.3. Integrity

Interfaces to compute and validate integrity values using asymmetric

key-derived digital signatures or symmetric key-derived MACs are

available. A variant on the sign and verify interfaces accepts a

previously generated hash value in place of a message.

5.1.4. Hashing

A channel to calculate a fixed-length cryptographic hash from an input

message is available. Keyed hashes are supported by MAC channels.

5.1.5. Keystream Generation

Channels are supported to read keystream from a module.

5.1.6. Random Data

Separate interfaces are defined to retrieve random or pseudorandom data

from a module.

5.2. Managing Channels

Only conduits and controllers (not streams) can manage channels.

Negotiators can manage the negotiation aspects of a channel.

The management operations that can be performed on a channel are

specific to each channel type, but the following general operations are

supported:

Generating, extracting, and setting state vectors

Resynchronization

Initiating a key rollover

Initiating a key update.

*

*

*

*

Negotiators support the following general operations:

Renegotiation

Changing classification level/acknowledging change of

classification level.

Managing state vectors is an important channel management capability.

CICM provides a method to explicitly generate a state vector for those

algorithms/modes that require a random initialization vector (IV),

although modules may alternatively generate an IV as a byproduct of

channel creation. CICM also provides a method to set the state vector

on a channel. This may be used to:

Set the decrypt channel to the IV generated/used on the encrypt

side of a channel.

Provide a vector on a block-by-block basis for appropriate

algorithms/modes or at each time epoch (e.g., time-of-day

encryption). In addition, a method is available to take a special

state vector called a synchronization vector to assist in

resynchronizing a channel.

5.3. Using Channels

Only conduits and streams (not controllers) can send data for

transformation and receive cryptographically transformed data on a

channel.

The data operations that can be performed on a channel or stream are

specific to each channel type, but the following general operations are

supported:

Sending data on a channel to initiate a cryptographic

transformation:

Blocking send: Call does not return until data has been sent

or the operation times out.

Non-blocking send: Call queues data for sending and returns

immediately to the caller.

Poll: Determines status of non-blocking send operation.

Receiving transformed data from a channel:

Blocking read: Blocks until data becomes available or the

operation times out.

Non-blocking read: Call queues a buffer to receive data and

returns immediately.

*

*

*

*

*

-

-

-

*

-

-

Poll: Determines status of non-blocking read operation.

Notification via callback that data has become available using

a channel event listener.

Although it is possible for multiple client programs to use the same

stream, the model provides no facilities to coordinate the parties

participating in the communication.

Certain channel services support receiving an "answer" from a channel.

For example, signature and hashing channels accept variable amounts of

data for transformation before returning a final, constant-sized

"answer" (a signature or a hash) to the caller. HYBRID CHANNELS require

sending/receiving data and receiving a final "answer" after a discrete

unit of data has been transformed.

The figure below depicts the use of a hybrid channel. Plaintext is sent

through CICM for transformation. The module performs encrypt and sign

transformations on the plaintext data. Ciphertext resulting from the

encrypt transform emits from the module in a different security domain

than the one in which it originated. When it is finished presenting

data for transformation, the client program requests the signature that

results from the transaction.

 .

 Plaintext . Ciphertext

 Host ---------> Cryptographic ---------->

 <--------- Module

 Signature .

 .

 Security Domain

 Boundary

Figure 8. Hybrid Sign-Encrypt Channel Operations

Each type of channel supports a specific set of channel data

operations. Channel types and the data operations they support are

listed below:

Encrypt, selective bypass with encryption, and full bypass write

channels: Write data in the local security domain for

transformation and output in another security domain.

Decrypt, selective bypass with decryption, and full bypass read

channels: Read transformed data from one security domain into the

local security domain.

Coprocessor channels: Data is presented for transformation and

the result received within the same security domain.

Duplex channels: Read/write exchange between two security

domains.

-

-

*

*

*

*

Keystream and random data generation: Transformation within

module results in data stream that emits in the local domain.

5.4. Grouping Channels

Controllers and conduits can be grouped to enable certain

characteristics to be shared. One characteristic may be the state

vector associated with the channels. This supports environments where

two or more channels with related security rules supporting a single

operation are used within a system. Whenever a shared characteristic is

changed on a controller or conduit in a group, the effect of this

change is applied to all controllers/conduits in the group.

5.5. Receiving Notification of Channel Events

The CICM model defines methods that support managing module event

notifications. Similar support is available at the granularity of an

individual conduit/controller. Conduits and controllers define methods

that support registering/unregistering channel-specific module-

generated event notifications captured by a client program. Clients can

register custom-developed callback procedures called listeners for

specific channel events. When the condition associated with a specific

listener presents itself, the registered listener is called.

Examples of channel events for which listeners may be registered

include:

Data is available.

Synchronization with peer has been lost.

Remote peer no longer available.

General channel error encountered.

5.6. Destroying Channels

Conduits and controllers may be destroyed when their services are no

longer needed. A channel is destroyed without regard for users who may

have pending operations on the channel. Any ephemeral keys associated

with the channel also may be destroyed. A stream ceases to function

when its associated controller is destroyed. A destroyed channel is

removed from any channel groups to which it belongs without effect upon

other controllers/conduits in the group.

6. IANA Considerations

[RFC Editor: Please remove this section prior to publication.]

This document has no IANA actions.

*

*

*

*

*

7. Security Considerations

7.1. Unauthorized Usage

Cryptographic modules are typically protected assets and most have

built-in mechanisms for preventing unauthorized usage. Section 3.1

discusses several mechanisms for preventing unauthorized usage

including using hardware access tokens and user login. Specific

implementations may also consider the use of access control lists.

7.2. Inappropriate Usage

The log manager described in Section 3.3 may be used by some modules to

report certain types of usage which may act as a type of audit log

thereby providing information about inappropriate usage.

7.3. Confidentiality and Data Integrity

Many of CICM's channel types provide confidentiality services such as

encryption and decryption as well as data integrity services such as

hashing, MACing, signing, and verifying.

Hybrid channels provide a combination of confidentiality and data

integrity service.

7.4. Bypass

There are four broad categories of bypass that are supported: reading

and writing full bypass; encrypting and decrypting with selective

bypass. These services must be used with caution in order to avoid

accidental or malicious bypass of protected data.

7.5. Entity Authentication

As described in Section 5, a negotiator is the primary mechanism for

establishing that the peer entity is the one desired.

Similarly, the mechanism described in Section 4.1.3 ensures that the

infrastructure component that is attempting to send data to the module

is trusted.

8. References

[RFC4949]
Shirey, R., "Internet Security Glossary, Version 2",

RFC 4949, August 2007.

[RFC5554]

Williams, N., "Clarifications and Extensions to the

Generic Security Service Application Program

Interface (GSS-API) for the Use of Channel

Bindings", RFC 5554, May 2009.

[IDL]

International Standards Organization, "Information

technology — Open Distributed Processing — Interface

http://tools.ietf.org/html/rfc4949
http://tools.ietf.org/html/rfc5554
http://tools.ietf.org/html/rfc5554
http://tools.ietf.org/html/rfc5554
http://tools.ietf.org/html/rfc5554

Definition Language", ISO/IEC 14750:1999(E), March

1999.

[CORBA]

Object Management Group, "Common Object Request

Broker Architecture (CORBA) Specification, Version

3.1", January 2008.

[CNSSI-4009]

Committee on National Security Systems (U.S.

Government), "National Information Assurance (IA)

Glossary", CNSS Instruction No. 4009, revised June

2006.

[FIPS-140-2]

Federal Information Processing Standards Publication

(FIPS PUB) 140-2, "Security Requirements for

Cryptographic Modules", May 2001.

[PKCS-11]
RSA Laboratories, "PKCS #11 v2.30: Cryptographic

Token Interface Standard", April 2009.

[GCS-API]
The OpenGroup, "Generic Cryptographic Service API",

June 1996.

[JCA]
Oracle, "Java Cryptography Architecture", August

2002.

Appendix A. Terms

This section contains a list of terms and their corresponding

definitions as used in this model. Following the formatting convention

in [RFC4949], each term is preceded by a dollar sign ($) and a space to

facilitate automated searching.

$ alarm

Output signal that denotes that the module has entered an alarm

state. An alarm condition may prohibit a module from performing

cryptographic operations.

$ asymmetric key

Pair of related keys, a public key known to everyone and a

private key known only to the owning entity. See symmetric key

and asymmetric keyset.

$ asymmetric keyset

May comprise one more of the following components: an asymmetric

key pair, the public and private key components of a keypair, the

digital certificate corresponding to the keyset public key, one

or more verification certificates in the certificate chain of

trust, and related public domain parameters. See also asymmetric

key.

*

*

*

$ asynchronous notification

Delivery of an indication of a condition or event where, from the

point of view of the recipient (the client program), the delivery

occurs asynchronously via a callback. See also event and event

notification.

$ attribute

State associated with an instance of an interface.

$ authentication

Security measure designed to establish the validity of a

transmission, message, or originator, or a means of verifying an

individual's authorization to receive specific categories of

information ([CNSSI-4009]).

$ authorization

Access privileges granted to a user, program, or process

([CNSSI-4009]).

$ blocking

A call to a method is blocking if the method does not return

program control to the caller until either the operation has

completed or an error is recognized. See also non-blocking.

$ buffer

Collection of binary data.

$ bypass

In cryptography, this is an operation whereby all of the data is

passed from one security domain through the cryptographic module

to the other security domain without having a cryptographic

transformation applied to it. See also selective bypass.

$ callback

Procedure provided by the client program that is to be invoked

when an appropriate condition or event is recognized. See also

asynchronous notification.

$ certificate

Digitally signed document that binds a public key with an

identity. The certificate contains, at a minimum, the identity of

*

*

*

*

*

*

*

*

*

the issuing Certification Authority, the user identification

information, and the user's public key ([CNSSI-4009]).

$ certificate revocation list (CRL)

List of certificate serial numbers corresponding to certificates

that have been revoked or are no longer valid.

$ channel

Abstraction under which one or more cryptographic transforms are

performed and within which all details associated with the

transform are encapsulated, including the path through the

module. See also conduit, controller, and stream.

$ channel type

Cryptographic transform to be applied on a channel.

$ client program

Program linked to a CICM library running as a single process on a

host computer system that accesses cryptographic services and/or

to manages a cryptographic module.

$ conduit

Abstraction that encapsulates channel control and data flow. See

also channel, controller, and stream.

$ controller

Abstraction used to configure and control a channel. See also

channel, conduit, and stream.

$ coprocessor mode

Mode of operation in which cryptographic transformations are

performed within a single security domain. For example, in

coprocessor mode, a client program provides plaintext to a

module, the plaintext is transformed, and the resulting

ciphertext is returned to the same client program.

$ cryptographic module

Abstraction of hardware, firmware, or software components that

makes cryptographic services available to client programs via one

or more channels.

*

*

*

*

*

*

*

*

$ cryptographic synchronization

Process by which a receiving decrypting cryptographic logic

attains the same internal state as the transmitting encrypting

logic.

$ cryptographic transform

The specific cryptographic process that is to be applied to a

stream of data or is used to generate keystream or random data,

often (but not always) based upon a cryptographic key. Transforms

include encryption, decryption, signing, keystream generation,

hashing, and random data generation.

$ driver

Conceptual component residing on a host that enables the exchange

of commands and data between the client program and a module.

Module-specific abstraction layer that serves as a translation

mechanism between the individual functions defined in the CICM

library and the commands specific to a given cryptographic

module. This component also provides a conduit for data between a

host and a module.

$ ephemeral symmetric key

Symmetric cryptographic key generated as part of a key

negotiation process. Ephemeral keys may be destroyed when the

channel or session utilizing the ephemeral key completes.

Ephemeral keys are not visible if a client program lists the keys

on a module. See also static key.

$ event

Situation occurring on a module or a channel for which a client

program may be notified.

$ event notification

Call from the host runtime system to a client program announcing

that a specific situation has occurred. See callback and

asynchronous notification.

$ grade

Negotiated classification level of a channel.

*

*

*

*

*

*

*

$ hardware access token

Removable device used to provide locking and unlocking features

for the cryptographic capabilities of a cryptographic module.

$ host

Computer system upon which a client program linked to a CICM

library executes.

$ hybrid channel

Channel that simultaneously supports two fundamental

cryptographic services; for example, an encryption with signature

channel transforms data, resulting in both ciphertext and a final

signature value.

$ iterator

Software construct that enables a software program to walk

through a list of related items.

$ key

See symmetric key and asymmetric key.

$ key agreement protocol

Protocol that allows two or more participants to negotiate an

ephemeral symmetric key without disclosing the resulting key

material to non-participants. The protocol is conducted in such a

way that all participants influence the outcome.

$ key encryption key

Key that encrypts or decrypts another key for transmission or

storage.

$ key fill device

Devices that read-in, transfer, and store key material.

$ key fill interface

Set of protocols, electrical connections, and physical

characteristics that comprise the connecting link between a key

fill device and a cryptographic module. CICM enables a key fill

interface to be configured and actions to be initiated on a key

fill device via the key fill interface.

*

*

*

*

*

*

*

*

*

$ key infrastructure

Set of hardware, software, people, policies, and procedures

needed to create, manage, store, distribute, and revoke key

material.

$ key rollover

Process of moving from one key to another in a pre-defined

sequence of keys; may also be referred to as "key supersession."

$ key tag

Identification information associated with certain types of

electronic key ([CNSSI-4009]).

$ key unwrap

Process whereby an encrypted cryptographic key is decrypted using

a cryptographic module and a different key.

$ key update

Deterministic one-way transformation of a symmetric key (and its

current update count) to a new key.

$ key wrap

Process whereby a cryptographic key is encrypted by a

cryptographic module using a separate key in a manner sufficient

to protect the key at the level of its classification.

$ keystream

Sequence of symbols produced by a cryptographic module using a

cryptographic key to combine with plain text to produce cipher

text, control transmission security processes, or produce key

([CNSSI-4009]).

$ listener

Method registered by the client program that will be called upon

the occurrence of a specific module event.

$ local port

Port on module in same security domain in which client program is

located to which commands are presented and through which data is

sent/received. See also remote port.

*

*

*

*

*

*

*

*

*

$ manager

Specialized attributes that encapsulate different classes of

module, key and channel management functionality.

$ message authentication code (MAC)

Data associated with an authenticated message allowing a receiver

to verify the integrity of the message ([CNSSI-4009]).

$ method

Single CICM library function that performs a specific task.

$ namespace

An abstract container that holds related interfaces.

$ non-blocking

A method is non-blocking if it initiates an operation and then

returns control to the caller, usually before the outcome of the

operation has been determined. See also blocking.

$ opaque data object

Binary object accepted by or returned from a method call whose

structure is imposed by some entity unrelated to the CICM

specification.

$ package

Software, FPGA image, policy database, configuration parameters,

or other types of executable or interpretable code that may be

imported into and removed from a module.

$ persistent key

See static key.

$ policy

Precise specification of the security rules under which a

cryptographic module will operate.

$ port

Identifier that designates a logical interface through which data

moves into and out of a cryptographic module. See also local port

and remote port.

*

*

*

*

*

*

*

*

*

*

$ remote port

Port in non-local security domain from which transformed data is

received. See also local port.

$ role

A designation to which users are assigned that identifies a job

type defined in terms of the privileges of that user.

$ security domain

System or group of systems operating under a common security

policy. Communication between domains is controlled in a well-

defined manner.

$ selective bypass

Portion of the traffic through a channel that is not to be

cryptographically transformed. Also commonly referred to as

"header bypass."

$ static key

Cryptographic key imported into or established on a module that

will remain on the module until it is explicitly removed. See

also ephemeral key.

$ stream

An abstraction representing an entity utilizing an existing

controller to enable data to be sent to a module to be

transformed and transformed data to be received using a

controller as a foundation.

$ symmetric key

Usually a sequence of random or pseudorandom bits used initially

to set up and periodically change the operations performed in

crypto-equipment for the purpose of encrypting or decrypting

electronic signals ([CNSSI-4009]). See asymmetric key.

$ system

Hardware and software components, including the cryptographic

module, that meet a specific set of security-related

requirements.

*

*

*

*

*

*

*

*

$ tamper

Output signal from module that denotes it has detected a tamper

event.

$ token

See hardware access token.

$ trusted display

Hardware component independent of a host to enter or display

information to be directly sent to/received from a cryptographic

module.

$ zeroize

Input signal instructing the module to clear its memory of any

sensitive cryptographic material. CICM supports both a module

zeroize (destroying all key material on module) and zeroizing an

individual key.

Authors' Addresses

Daniel J. Lanz Lanz The MITRE Corporation EMail: dlanz@mitre.org

Lev Novikov Novikov The MITRE Corporation EMail: lnovikov@mitre.org

*

*

*

*

mailto:dlanz@mitre.org
mailto:lnovikov@mitre.org

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Background
	1.2. Language Independent
	1.3. Audience
	1.4. Scope of the Specification
	2. Use Cases
	2.1. Data-in-Transit
	2.2. Data-at-Rest
	2.3. Single Security Domain
	3. Module Management
	3.1. Managing Module Authentication
	3.1.1. Managing Hardware Access Tokens
	3.1.2. Managing Users
	3.1.3. Logging in to a Module from a Host
	3.2. Managing Software Packages
	3.3. Managing Logs
	3.4. Managing Tests
	3.5. Managing Module Events
	4. Key Management
	4.1. Creating and Establishing Keys
	4.1.1. No Host Interaction Key Fill
	4.1.2. Client Program-Initiated
	4.1.3. Module/Key Infrastructure Initiated
	4.2. Exporting Keys
	4.2.1. Locating and Retrieving Information about a Key
	4.2.2. Applying Metadata to Keys
	4.2.3. Performing Operations on Keys
	4.2.4. Enabling Remote Management
	5. Channel Management
	5.1. Creating Channels
	5.1.1. Encryption and Decryption
	5.1.2. Bypass
	5.1.3. Integrity
	5.1.4. Hashing
	5.1.5. Keystream Generation
	5.1.6. Random Data
	5.2. Managing Channels
	5.3. Using Channels
	5.4. Grouping Channels
	5.5. Receiving Notification of Channel Events
	5.6. Destroying Channels
	6. IANA Considerations
	7. Security Considerations
	7.1. Unauthorized Usage
	7.2. Inappropriate Usage
	7.3. Confidentiality and Data Integrity
	7.4. Bypass
	7.5. Entity Authentication
	8. References
	Appendix A. Terms
	Authors' Addresses

