
Network Working Group P. Lapukhov
Internet-Draft E. Nkposong
Intended status: Informational Microsoft Corporation
Expires: March 06, 2014 September 02, 2013

Centralized Routing Control in BGP Networks Using Link-State Abstraction
draft-lapukhov-bgp-sdn-00

Abstract

 Some operators deploy networks consisting of multiple BGP Autonomous-
 Systems (ASNs) under the same administrative control. There are also
 implementations which use only one routing protocol, namely BGP, as
 in [I-D.lapukhov-bgp-routing-large-dc], for example. In such
 designs, inter-AS traffic engineering is commonly implemented using
 BGP policies, by configuring multiple routers at the ASN boundaries.
 This distributed policy model is difficult to manage and scale due to
 its dependency on complex routing policies and the need to develop
 and maintain a model for per-prefix path preference signaling. One
 example of such models could be standard BGP community-based (see
 [RFC1997]) signaling, which requires careful documentation and
 consistent configuration. Furthermore, automating such policy
 configuration changes for the purpose of centralized management
 requires additional efforts and is dependent on a particular vendor's
 configuration management (CLI extensions, NetConf [RFC6241] etc).

 This document proposes a method for inter-AS traffic engineering for
 use with the kind of deployment scenarios outlined above. No
 protocol changes or additional features are required to implement
 this method. The key to the proposed methodology is a new software
 entity called "BGP Controller" - a special purpose application that
 peers with all eBGP speakers in the managed network. This controller
 constructs live state of the underlying BGP ASN graph and presents
 multi-topology view of this graph via a simple API to third-party
 applications interested in performing network traffic engineering.
 An example application could be an operational tool used to drain
 traffic from network devices. In response to changes in the logical
 network topology proposed by these applications, the controller
 computes new routing tables, and pushes them down to the network
 devices via the established BGP sessions.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Lapukhov & Nkposong Expires March 06, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn-00
https://datatracker.ietf.org/doc/html/rfc1997
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 06, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Overview . 4
2.1. Use Cases . 4
2.2. Architectural Assumptions 5
2.3. BGP Controller . 8

3. Link-State Abstraction and Multiple Topologies 9
3.1. Link-State Discovery Process 9
3.2. The Default Topology 10
3.3. Alternate Topologies 11
3.4. Overloading a Vertex 13

4. Implementation Details 15
4.1. Programming Next-Hops 15
4.2. Equal-Cost Multipath Routing 15
4.3. Prefix Discovery Process 16
4.4. Sequenced Device Programming 16
4.5. Mapping Prefixes to Topologies 17
4.6. Autonomous Systems with iBGP Peering Mesh 17
4.7. Minimizing Controller-Injected State 18

5. Handling Failure Scenarios 18

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Lapukhov & Nkposong Expires March 06, 2014 [Page 2]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

5.1. Underlying Network Failures 18
5.2. BGP Controller failures 19
5.3. Multiple BGP Controllers 20
5.4. Network Partitioning 21

6. Controller API . 21
6.1. Pathnames and document names 22
6.2. Encoding of the documents and objects 22
6.3. Creating & Deleting State 22
6.4. Reading State . 23
6.5. Writing State . 23
6.6. Typical API Call Sequence 23
6.7. Limitations . 24

7. Security Considerations 24
8. Acknowledgements . 24
9. References . 24
9.1. Normative References 24
9.2. Informative References 25

 Authors' Addresses . 26

1. Introduction

 BGP was intentionally designed as a path-vector protocol, since
 efficiently distributing link-state information for Internet-sized
 graph is virtually impossible. However, some network deployments
 leverage multiple BGP ASN to separate IGP domains, or simply use BGP
 as the only routing protocol. See, for example
 [I-D.lapukhov-bgp-routing-large-dc] which proposes using a BGP AS
 either per network device or "horizontal" device group, within a
 data-center. In such cases, the number of BGP ASNs is very small
 when compared to the Internet - on the order of few thousands in the
 largest case.

 Under these assumptions, it becomes possible to build and maintain a
 link-state graph of the complete inter-AS topology and compute
 network paths based on this link-state information. In accomplishing
 this, it is desirable to avoid adding any protocol extensions so that
 current implementations can leverage the proposed method, such as
 those described, for example in [RWHITE2005]. Instead, this document
 proposes the use of a centralized agent (referred to as "BGP
 Controller" or simply "the controller") that peers with all eBGP
 speakers in the underlying network. The BGP Controller is
 responsible for constructing an up-to-date link-state view of the BGP
 inter-AS graph and pushing down routing information (prefixes and
 their associated next-hops) to the network devices via BGP updates.
 The new routing information reflects the results of link-state path
 computations performed by the controller. Such routing information
 push is possible because BGP supports the next-hop attribute that
 could be recursively resolved via either IGP or BGP. Notice that

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 3]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 while the controller pushes routing information to the device, the
 underlying BGP processes also compute the best-paths for the same
 prefixes using the path-vector logic in the regular way. However,
 the BGP Controller could override this information by manipulating
 BGP attributes of injected routes, such as LOCAL_PREF to make its own
 advertisements more preferred.

 Third party applications can influence routing computations by
 creating logical alternations of the network link-state graph, e.g.
 changing the cost of the links from the BGP Controllers point of
 view. This document will refer to those constructs as "alternate
 topologies" (or simply "topologies" for short), while the original,
 unaltered, link-state graph will referred to as the "default
 topology". The controller would use these alternate topologies to
 make routing decisions different from those that BGP would have made
 based on available information. It is possible to create multiple
 alternate topologies and associate different prefixes with every
 topology, with the restriction that each prefix maps to one and only
 one topology. Once this mapping is defined, the BGP Controller would
 perform autonomously, detecting network faults and reacting by re-
 computing routing information as needed based on the effect that the
 failure has across all instantiated topologies.

 In many aspects, the proposed method was inspired by and is similar
 to the "Routing Control Platform" [RCP], but differs in the fact that
 link-state discovery is done using BGP mechanics only, and overall
 BGP is the only protocol used to build the system.

2. Overview

2.1. Use Cases

 Primary intended use case of the BGP Controller is inter-AS traffic
 engineering. This includes, but is not limited, to the following:

 o Link/device overloading for the purpose of drying out traffic from
 a device. A link, or group of links, connecting one ASN to
 another could be declared as having "infinite" cost from the
 controller's viewpoint, causing the latter to re-compute paths and
 instruct the network devices to bypass those links. Notice that
 this does not include "internal" overload (inside an ASN), that
 may need to be done using IGP techniques.

 o Traffic load-sharing among multiple links, e.g. links connecting
 two different ASN's. Multiple alternate topologies could be
 created where the same link is given different costs in each
 topology. These topologies will then have subsets of prefixes
 mapped to them, thus engineering different inter-AS paths for

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 4]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 these prefixes. Notice that for accurate load-sharing, knowledge
 of the traffic matrix may be required, but this requirement
 equally applies to any traffic engineering solutions. The load-
 sharing could be also accomplished using weighted Equal-Cost
 Multipath (ECMP), accounting for link capacities as "weights" to
 distribute different proportions of egress traffic to the peering
 points. See [KVALBEIN2007] for more information on the multi-
 topology techniques in general and [I-D.ietf-idr-link-bandwidth]
 for information on weighted ECMP signaling in BGP.

 The main benefit of the proposed approach is centralized control of
 the above functions. There is no need to configure policies on
 multiple devices, as all routing changes could be done using the
 uniform light-weight API to the controller. This ensures ease of
 automation and consistent changes. Furthermore, such a centralized
 model should be deployed to augment the classical distributed routing
 policy configuration. The advantage is that centralized control
 could be disabled at any time, falling the network back to the
 "traditional" BGP decision model, thus allowing for a safe state to
 roll-back to. Next, knowing the link-state of the network may allow
 avoiding the BGP path-hunting problem, and improve global BGP
 convergence timing in a large group of heavily meshed ASNs.
 Additionally, to avoid the phenomena of routing micro-loops the
 controller could enforce certain ordering for the network device
 programming sequence. Specifically, every time a link-state change
 is proposed to the controller, the devices in the network are
 programmed starting with those farther away from the change in terms
 of the metric of the existing graph. The same logic applies to link-
 down conditions detected by the controller via the health probing
 mechanism described below.

2.2. Architectural Assumptions

 Firstly, the devices in the network are assumed (but not required) to
 have minimal BGP policy applied, enough for them to exchange routing
 information and compute best-paths based on shortest AS_PATH lengths.
 This means that the configured policy should not override best-path
 selection process using LOCAL_PREF or any other BGP attributes for
 enforcing a custom routing policy. The assumption of the "minimal
 policy" allows for making the BGP Controllers update logic less
 intrusive, as described further in the section Section 4.7. Next,
 every device is assumed to advertise a locally bound prefix into BGP
 for the purpose of BGP peering with the controller. That is, the
 controller peers "inband" with the devices it controls - either by
 initiating iBGP sessions to all devices or by passively accepting the
 sessions from the devices. As will be shown in the Section 5, inband
 peering requirement is important to avoid inconsistencies between
 multiple controllers programming the same network.

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 5]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 Another major assumption is how the link-state graph vertices are
 defined. From the BGP Controller perspective, there are two type of
 vertices:

 o Type 1, Individual Devices: BGP Speaker(s) that have the SAME BGP
 ASN configured, with the restriction that none of these speakers
 peers with each other, inside this ASN. This could be a single
 speaker in its own ASN as well. Each of these speakers is treated
 as a vertex on its own. Peering with other ASN's is not
 restricted. Notice how this is different from the traditional
 notion of BGP ASN, where all speakers are assumed to be part of
 the same iBGP mesh.

 o Type 2, Complete BGP ASN: BGP Speakers in the SAME BGP ASN with
 the normal requirement that they ALL exchange their BGP views via
 iBGP, using either full-mesh or any other approach for full
 internal BGP state synchronization. All of these BGP speakers are
 grouped into a single graph vertex.

 The following Figure 1 illustrates this concept:

 Legend
 ------- eBGP
 iBGP

 eBGP Peering
 |
 +-----+-----+
 | | |
 | +-+-+ |
 | |R3 | |
 | +-+-+ |
 | | |
 +-----+-----+
 |

 eBGP Peering

 | |
 +---------+------------+----------+
 | | AS1 | |
 | +-+-+ +-+-+ |
 | |R1 | |R2 | |
 | +-+-+ +-+-+ |
 | | | |
 +---------+------------+----------+
 | |

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 6]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 Type 1: Each device is individual graph vertex
 (three vertices, each with two edges).

 | |
 +----+-----------+----+
 | | | |
 | +-+-+ +-+-+ |
 | |R1 |.......|R2 | |
 | +---+. .+---+ |
 | |
 | . . . |
 | |
 | |
 | +---+ +---+ |
 | |R3 |.......|R4 | |
 | +-+-+ +---+ |
 | | | |
 +----+-----------+----+
 | |

 Type 2: All devices below are grouped into
 single vertex with four edges.

 Figure 1: Graph Vertices

 Routing information could be associated with a graph vertex either by
 means of static binding or dynamic discovery: this process is
 described in details in sections Section 4.3. When programming the
 network prefixes into the devices, the controller does not inject a
 prefix back in the vertex the prefix is associated with.

 The BGP Controller decision logic is independent of the address
 family, and could apply to both IPv4 and IPv6 prefixes equally. It
 is possible to run two independent controllers, one for each address
 family. This allows for full "fate decoupling" between the address
 families, though may result in duplication of the link state
 information.

 The edges of the constructed link-state graph may have two
 attributes: metric, which is additive, and capacity (bandwidth) that
 is non-additive. The former is used to compute shortest paths, and
 the latter could be used to compute ECMP weight values in case where
 multiple equal-cost paths exist to the same vertex. For every ECMP
 path, the minimum capacity value that occurs along that path will be
 used as its weight by the controller, if the underlying network
 supports weighted ECMP functionality.

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 7]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

2.3. BGP Controller

 The Figure 2 demonstrates the BGP Controller peering with the network
 devices. Multiple managed devices peer via eBGP following the
 traditional BGP design. For simplicity, we assume that every device
 belongs to it's own ASN - see Section 4.6 for more information on
 handling the "compound" Type-2 vertices consisting of multiple BGP
 speakers interconnected with iBGP mesh. Prefixes P3, P4 and P5 are
 associated with the devices (vertices) in ASNs 3, 4, and 5
 respectively using techniques described in Section 4.3. The other
 remaining vertices are assumed to be purely transit for the purpose
 of this discussion.

 These devices exchange routing information in the usual manner and
 the BGP Controller establishes iBGP peering sessions with every
 device. It uses the technique described in section Section 3.1 to
 build the inter-AS link-state graph. For now, it is sufficient to
 say that the discovery process uses special "beacon" prefixes
 dynamically injected into the network and relayed back to the
 controller to discover the state of the links interconnecting the
 graph vertices.

 Legend:

 ------- iBGP (controller to network)
 eBGP (ASN to ASN)

 BGP Controller
 +-------+
 | |
 +-------+
 || | ||
 || | ||
 +-------------+| | |+--------------+
 | +----+ | +----+ | | | | |
 | | | | |
 | v | v |
 | +---+ | +---+ |
 | |AS1|....|....|AS2| |
 v +---+ | +---+ v
 +---+ . | . . +---+
 P3 |AS3|........ | |AS4| P4
 +---+ | . +---+
 . V . .
 . +---+.... .
 |AS5|................
 +---+
 P5

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 8]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 Figure 2: BGP Controller

 At this point, the BGP Controller has knowledge of the link-state
 graph as well as the prefixes associated with every vertex, and can
 now run Dijkstra's SPF algorithm to compute shortest paths between
 vertices. A result of this computation would be routing tables built
 for every vertex. The Section 3.2 below demonstrates the adjacency
 list built by the controller for the above topology, as well as
 routing-tables computed for every vertex. The next-hops in the
 routing tables presented in the figure are simply the vertices to
 send the packets to. When programming the network devices, the
 actual IP addresses of the next-hops are computed as described in

Section 4.1 section. This routing state corresponds to the unaltered
 (default) topology.

3. Link-State Abstraction and Multiple Topologies

 This section provides detailed information on the link-state
 abstractions used by the controller and how those are used to perform
 traffic engineering in the underlying network.

3.1. Link-State Discovery Process

 The network devices that the controller peers with establish eBGP
 peering sessions with each other. The fact that there is one-to-one
 correspondence between eBGP sessions and underlying IP link allows
 using the state of the eBGP session as the indication of the IP link
 health. Specifically, this is accomplished by injecting special
 "beacon" prefixes into every vertex (which could be a device or
 collection of devices interconnected with iBGP mesh) and expecting
 those beacons to be re-advetised back to the controller by every
 vertex adjacent to the point of injection. If a particular BGP
 session is down, the injected prefix will not be re-advertised by the
 affected peer back to the controller, allowing us to conclude that
 the corresponding link is down.

 The Figure 3 demonstrates this process. For simplicity, we assume
 that every device belongs to its own BGP ASN. The BGP controller
 injects prefix X into device R1 and expects to hear this prefix from
 device R2. At the same time, it is desirable to prevent this prefix
 from leaking any farther than one hop away from R1, i.e. make sure it
 is not re-advertised to R3. To accomplish this, prefix X could be
 tagged with a special community value, which is replaced with the
 well-known community "no-export" when advertising over eBGP session.
 Because of this policy, the prefix will be announced back to the
 controller as it uses iBGP session for peering, but not any further
 to eBGP peers of router R2 in our case. An alternative to using the
 standard BGP communities could be leveraging the wide-communities

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 9]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 limiting the scope of the announced prefixes - see
 [I-D.raszuk-wide-bgp-communities] for more details on this technique.

 ------- iBGP (controller to network)
 eBGP (ASN to ASN)

 +------------+
 +------| Controller |<------+
 | +------------+ |
 X X
 | |
 V |
 +---+ +---+
 |R1 |...........X..........>|R2 |
 +---+ +---+
 .
 +---+ .
 |R3 |............
 +---+

 Figure 3: Link-State Discovery

 Using this technique, the controller is able to build a view of the
 links connecting the graph vertices. Notice that if two parallel
 links connect vertices, this method will not be able to differentiate
 between them. For simplicity, the proposal is that such parallel
 links should be grouped into a single logical IP link using, for
 example, [IEEE8023AD] technology.

3.2. The Default Topology

 When the controller starts, it discovers the current network graph
 and computes the routing table assuming that all links have the same
 metric value. The Figure 4 illustrates the adjacency list describing
 the graph taken from Figure 2 along with the routing table computed
 for every vertex/ASN. The numbers on the graph edges designate the
 link costs.

 Inter-AS Graph and Prefixes

 +---+ +---+
 |AS1|...(1)...|AS2|
 +---+ +---+
 +---+ . . . +---+
 P3 |AS3|..(1).. (1)..|AS4| P4
 +---+ . +---+

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 10]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 . (1) .
 . . .
 . +---+.... .
 (1)....|AS5|......(1).......
 +---+
 P5

 Inter-AS Graph Adjacency List Per-ASN Routing Table

 +-----+--------------+ +-----
+----------------------------+
 | Src | Dst ASNs | | AS | Prefix:Next-
Hop(s) |
 +-----+--------------+ +-----
+----------------------------+
 | AS1 | AS2,AS3 | | AS1 | P3:AS3,P4:AS2,P5:
[AS2,AS3] |
 +-----+--------------+ +-----
+----------------------------+
 | AS2 | AS1,AS4,AS5 | | AS2 |
P3:AS1,P4:AS4,P5:AS5 |
 +-----+--------------+ +-----
+----------------------------+
 | AS3 | AS1,AS5 | | AS3 |
P3:Self,P4:AS5,P5:AS5 |
 +-----+--------------+ +-----
+----------------------------+
 | AS4 | AS2,AS5 | | AS4 |
P3:AS5,P4:Self,P5:AS5 |
 +-----+--------------+ +-----
+----------------------------+
 | AS5 | AS4,AS2,AS3 | | AS5 |
P3:AS3,P4:AS4,P5:Self |
 +-----+--------------+ +-----
+----------------------------+

 Figure 4: Unaltered Routing State

3.3. Alternate Topologies

 Assume the following TE requirements for illustrative purposes:

 o Traffic from AS4 to P5 needs to traverse AS2.

 o Traffic to P4 from AS5 needs to ECMP over two paths: direct and
 via AS2.

 o Traffic from AS3 to P5 must not use the direct path.

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

 These requirements could be satisfied with two different topologies:

 o Topology 1 has "very large" metric assigned to the links between
 AS4,AS5 and AS3,AS5.

 o Topology 2 has metric value of 2 assigned to the link between AS4
 and AS5.

 The prefixes map to the topologies as following: P5->Topology1 and
 P4->Topology2. P3 should retain mapping to the default (unaltered)
 topology, which we would refer to as Topology 0 to refer to all
 topologies by their numbers. The assumption of "very large" metric

Lapukhov & Nkposong Expires March 06, 2014 [Page 11]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 is important - the path containing this link could still be used if
 all alternate paths are down because of physical failures. For
 simplicity, we assume "very large" equals to 100 in the case under
 consideration. The set of topologies and associated prefixes would
 look as on Figure 5, where numbers on the links designate their
 metrics.

 [Topology 0]

 +---+ +---+
 |AS1|...(1)...|AS2|
 +---+ +---+
 +---+ . . . +---+
 P3 |AS3|..(1).. . ..(1)...|AS4|
 +---+ . +---+
 . (1) .
 . . .
 . +---+.... .
 (1)......|AS5|......(1).......
 +---+

 [Topology 1]

 +---+ +---+
 |AS1|...(1)...|AS2|
 +---+ +---+
 +---+ . . . +---+
 P3 |AS3|..(1).. . ..(1)...|AS4|
 +---+ . +---+
 . (1) .
 . . .
 . +---+.... .
 (100).....|AS5|.......(100)....
 +---+
 P5

 [Topology 2]

 +---+ +---+
 |AS1|...(1)...|AS2|
 +---+ +---+
 +---+ . . . +---+
 |AS3|..(1).. . ..(1)...|AS4| P4
 +---+ . +---+
 . (1) .
 . . .
 . +---+.... .
 (1)......|AS5|.......(2)......

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 12]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 +---+

 Figure 5: Alternate Topologies

 Based on the set of topologies presented above, the BGP Controller
 will compute the routing tables shown in Figure 6, which reflects the
 desired traffic engineering goals defined previously. The entries
 that differ from the routing decisions in unaltered topology are
 highlighted with the asterisk (*) characters. Notice that AS3 now
 sees P4 as ECMP reachable via AS1 and AS5, because of the metric
 change in Topology 2. The original traffic engineering policy
 requirements did not call for that, but this result appears because
 of the change made between AS4 and AS5, which is a natural effect
 with shortest-path, destination-based forwarding techniques.

 Per-ASN Routing Table

 +-----+--------------------------------+
 | AS | Prefix:Next-Hop(s) |
 +-----+--------------------------------+
 | AS1 | P3:AS3,P4:AS2,*P5:AS2* |
 +-----+--------------------------------+
 | AS2 | P3:AS1,P4:AS4,P5:AS5 |
 +-----+--------------------------------+
 | AS3 | P3:Self,*P4:[AS5,AS1]*,P5:AS1 |
 +-----+--------------------------------+
 | AS4 | P3:AS5,P4:Self,*P5:AS2* |
 +-----+--------------------------------+
 | AS5 | P3:AS3,P4:*[AS4,AS2]*,P5:Self |
 +-----+--------------------------------+

 Figure 6: Multi-Topology Routing Tables

 The controller will push the computed routing tables to the network
 devices using higher LOCAL_PREF values to ensure that the new
 information overrides the routing decision that "traditional" BGP
 processes running on the BGP speakers have already made. It is
 possible to use other attributes to signal better preference, but
 LOCAL_PREF has the benefit of being used very early in the BGP tie-
 breaking process.

3.4. Overloading a Vertex

 This section illustrates a special, but important practical case of
 "overloading" a graph vertex, such that all traffic bypasses the
 vertex. This operation could be used in a scenario in which a
 particular network device needs an upgrade and requires all traffic
 to be dried out of it. The Figure 7 demonstrates the implementation

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 13]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 of this policy with respect to the AS5 vertex. The Topology-0 has no
 prefixes mapped to it, but all prefixes are mapped to Topology-2
 instead. This topology has the cost of 100 assigned to all links
 connected to AS5, which forces all traffic to avoid transiting AS5.

 [Topology 0]

 +---+ +---+
 |AS1|...(1)...|AS2|
 +---+ +---+
 +---+ . . . +---+
 |AS3|..(1).. . ..(1)...|AS4|
 +---+ . +---+
 . (1) .
 . . .
 . +---+.... .
 (1)......|AS5|......(1).......
 +---+

 [Topology 2]

 +---+ +---+
 |AS1|...(1)...|AS2|
 +---+ +---+
 +---+ . . . +---+
 P3 |AS3|..(1).. . ..(1)...|AS4| P4
 +---+ . +---+
 . (100) .
 . . .
 . +---+.... .
 (100).....|AS5|......(100).....
 +---+
 P5

 Per-ASN Routing Table

 +-----+--------------------------------+
 | AS | Prefix:Next-Hop(s) |
 +-----+--------------------------------+
 | AS1 | P3:AS3,P4:AS2,*P5:[AS2,AS3]* |
 +-----+--------------------------------+
 | AS2 | P3:AS1,P4:AS4,P5:AS5 |
 +-----+--------------------------------+
 | AS3 | P3:Self,*P4:AS1*,P5:AS5 |
 +-----+--------------------------------+
 | AS4 | P3:*AS2*,P4:Self,P5:AS5 |
 +-----+--------------------------------+
 | AS5 | P3:AS3,P4:AS4,P5:Self |

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 14]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 +-----+--------------------------------+

 Figure 7: Overloading a Vertex

4. Implementation Details

4.1. Programming Next-Hops

 As mentioned previously, the prefixes that the controller injects in
 the network needs to have their next-hops properly resolved. In the
 simplest case, the next-hops could be the remote IP addresses of the
 links directly connected to the device programmed by the controller.
 This, however, adds certain complexities due to the IP address
 variability on the point-to-point links connecting the network
 devices. An alternative could be injecting pre-generated next-hops
 into the devices - one per device - and resolving them recursively
 via BGP.

 Specifically, every graph vertex would have a host route (either IPv4
 or IPv6) associated with it. The controller would inject this prefix
 into the respective device(s) (see Section 4.6 associated with this
 vertex, tagged with the special community value discussed in the
 section Section 3.1. Moreover, for simplicity, it is possible to re-
 use the same prefix used for link-state discovery as the value of the
 next-hop attribute, thus reducing the amount of supplementary routing
 state injected by the controller.

 Next, it is easy to notice that using the special BGP community to
 limit the beacon/next-hop prefix propagation is not strictly
 necessary. Indeed, the controller may simply discard all "special"
 prefixes whose AS_PATH contains more than one AS-hop. However, this
 will result in unneeded routing state propagated in the network,
 which is not desirable from manageability perspective.

4.2. Equal-Cost Multipath Routing

 In many practical topologies, the controller may find multiple equal-
 cost paths from one vertext to another. It may then proceed
 programming multiple paths for the prefixes affected by this
 decision. Either of the two ways could accomplish the multiple-paths
 programming requirement:

 o Using the BGP Add-Path extension, [I-D.ietf-idr-add-paths]
 specifying multiple next-hops values.

 o Using the Diverse Path Advertisement method presented in [RFC6774]
 to inject multiple paths.

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn
https://datatracker.ietf.org/doc/html/rfc6774

Lapukhov & Nkposong Expires March 06, 2014 [Page 15]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 Furthermore, it is possible to implement weighted ECMP functionality
 with this approach, relying on [I-D.ietf-idr-link-bandwidth] for
 weight signaling. The graph edges could have weights associated with
 them, and a given path's weight computed as the minimum weight value
 along the path, as mentioned previously. The logic behind the weight
 selection is outside the scope of this document.

4.3. Prefix Discovery Process

 In order to build routing state information, the controller needs to
 know the "leaf" prefixes associated with the graph vertices. There
 are two ways of accomplishing this: either defining a static mapping
 of prefixes to vertices in the BGP controller configuration, or by
 letting the controller learn those prefixes in dynamic fashion. In
 both cases, the assumption is that the network reachability
 information is already advertised into BGP, such that regular "in-
 band" routing model is working.

 The controller may dynamically associate a prefix with a vertex by
 using two properties: firstly, by observing an empty AS_PATH in the
 prefix received from the managed device. Secondly, by filtering out
 prefixes injected for the purpose of network health discovery and
 next-hop programming. The controller treats everything that matches
 these two criteria as the routing information associated with the
 respective vertex.

4.4. Sequenced Device Programming

 Distributed routing systems are susceptible to transient
 inconsistencies when a network state changes in such a way that
 requires changing the best-paths election. Since a topological event
 (e.g. a link flap) is not propagated in an instant, devices that are
 closer to the origin of the event would update their forwarding
 tables faster, as compared to others. The devices directly adjacent
 to those that have their tables already updated would still be using
 old forwarding state. This would create transient routing loops for
 the time it takes to fully synchronize the forwarding state of all
 devices.

 Since the controller is aware of the full network topology, it may
 avoid the above scenario by pushing the routing updates in proper
 sequence - starting with the vertices that are farthest away from the
 location of the event. This way the newly programmed state will
 "implode" toward the change, as opposing to "exploding" from the
 events point of occurrence. Such sequencing is similar to the
 process outlined in [RFC6976], but relies on centralized programming,
 which makes it very simple to implement.

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn
https://datatracker.ietf.org/doc/html/rfc6976

Lapukhov & Nkposong Expires March 06, 2014 [Page 16]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

4.5. Mapping Prefixes to Topologies

 The controller needs a manageable way of associating discovered
 prefixes with any of the topologies defined by the third-party
 applications. As mentioned previously, all prefixes are by default
 mapped to the default topology, which corresponds to the actual
 network state. Once an alternate topology has been defined, prefixes
 could be mapped to this new topology. One possible way of
 implementing such mapping table could be by maintaining a radix tree
 data-structure, which associates a prefix with the corresponding
 topology. Using longest-match lookup in this table for each
 discovered prefix would then yield the topology that this prefix
 belongs to. This allows for easy and natural grouping of prefix-to-
 topology mappings, while maintaining familiar semantics of longest-
 match routing lookups. To implement the default mapping, the
 prefixes 0.0.0.0/0 and ::/128 should always be in the radix tree,
 pointing to one of the defined topologies. When those prefixes are
 deleted per application request, the BGP controller would need to re-
 insert them, linking back to default topology again.

4.6. Autonomous Systems with iBGP Peering Mesh

 The BGP Controller treats BGP ASN's that have a form of internal BGP
 mesh differently than systems that do not peer over iBGP. Such
 systems are perceived as an atomic opaque graph vertex for the
 purpose of next-hop and beacon prefix injection. The routing inside
 such ASN is not defined by the controller, but rather relies on some
 other mechanism, such as IGP. The controller only defines egress
 points out of the ASN, and possibly can specify weights associated
 with exit points, to allow for weighted ECMP load-distribution. This
 treatment naturally arises from the fact that iBGP injected beacon
 prefixes are not relayed to iBGP peers. Furthermore, the beacon
 prefixes learned from eBGP neighbors are propagated to all iBGP
 peers, but not relayed back to the BGP Controller when learned over
 iBGP session. Thus, the controller will discover peering links of
 every "edge" router in such BGP ASN with all external peers, but will
 not be able to see the internal iBGP peering mesh.

 If the underlying ASN implements iBGP route reflection or BGP
 Confederations, only the routers that form eBGP sessions with
 external ASN's need to have the routing information injected into
 them. The routing information will disseminate to the internal
 speakers by means of normal BGP replication process, with unmodified
 next-hops and LOCAL_PREF attribute value, thus ensuring that it
 overrides the normal "in-band" routing information.

 When programming ECMP paths, it may happen so that the egress points
 specified by the controller do not satisfy iBGP requirements for

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 17]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 multipath (e.g. IGP costs to reach the egress points could be
 different). In such case, normal BGP tie breaking will occur and
 only ECMP-equivalent paths will be installed in the RIB.
 Alternatively, if the underlying ASN implement tunneling techniques,
 it is possible to perform load sharing even if the IGP costs toward
 the BGP next-hops are different.

4.7. Minimizing Controller-Injected State

 The BGP Controller can push down all of the prefixes it computes
 paths for: that is, all prefixes known in the network. This means
 that for every prefix present in the "regular" eBGP interconnected
 topology the controller will inject the same prefix with different
 attributes. It is also possible for the controller to push down only
 the "delta" between the prefixes that need their next-hops/paths
 changed, based on the supplied policy. This mode of operation
 requires that the underlying network finds the best-paths between the
 graph vertices using the "shortest-path logic", where the path length
 equals the length of the AS_PATH attribute. This is equivalent to
 running Dijkstra's SPF algorithm on graph unit metric values assigned
 to the edges. This is needed since the controller performs path
 computation using SPF logic, and BGP could elect different paths if
 some policies are present. Ensuring that both the underlying network
 and the controller perform the same computations effectively allows
 for the "delta" mode operations.

 Publishing only the "delta" state to the network means more
 "intelligent" work on the controller side and special requirements to
 the network policies. However, the benefit is significantly reduced
 intervention in the regular forwarding since majority of the state is
 not likely to change in many cases. Once again, it is possible to
 implement the mode where the controller overrides all routing
 information.

5. Handling Failure Scenarios

 This section reviews two different type of failure scenarios:
 failures in the underlying network and the controller failures.

5.1. Underlying Network Failures

 Either vertex (if it's a device) or graph edge (network link) may
 fail. For the BGP Controller, underlying failure be it edge or
 vertex, is visible only after all eBGP session interconnecting two
 vertices have failed. This could be driven either by an event, such
 as link down condition, which is typically fast, or by BGP keepalive
 timer expiration, which is naturally slower. When this happens, the
 BGP processes withdraw the corresponding beacon prefixes and the

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 18]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 controller will declare the corresponding edge down. This will
 result in re-run of SPF for all active topologies and push of new
 routing information down to the network. Since the central
 controller is involved in reconvergence, the restoration time will be
 longer, compared to the restoration process driven purely by
 underlying BGP processes. Indeed, the restoration time now include
 failure detection time, SPF re-computations and new prefixes push.
 However, it could be observed that such centralized reconvergence is
 free from the BGP Path-Hunting problem, and hence improvements could
 be noticed in complex meshed topologies.

 Furthermore, recovery could be faster if multiple paths (ECMP) exist
 for a prefix, and only a single path fails. In this case, BGP
 process will simply invalidate the failed path even before the
 controller has signaled removal, and will continue with using only
 the active paths. The details of this reconvergence are complicated,
 as changing ECMP is a hardware dependent operation. Furthermore,
 some implementations may support the "consistent hashing" technique
 that minimizes impact of ECMP group base size change on flow
 affinities, as described in [RFC2992].

5.2. BGP Controller failures

 Under normal circumstances, an operator may shut down a controller
 for maintenance or other reasons. In this case, it is expected that
 BGP sessions be closed following normal BGP process, that is sending
 a BGP Notification message and terminating the TCP session. As a
 result, all routers will withdraw the prefixes injected by the
 controller and recalculate the best-path.

 If the controller fails abnormally, e.g. process crashes, the TCP
 sessions that connect it to the underlying devices either will be
 torn down, or be closed upon expiration of BGP keepalive timer. The
 latter will cause some delay before prefixes announced by the
 deceased controller are withdrawn. For the duration of that time,
 the network will be forwarding traffic using possibly stale
 information. Link/device failures will be handled locally, and in
 some cases may cause traffic black-holes, if the only programmed path
 fails. The duration of this "state" time is equal to the time it
 takes to detect the controller failure, and update the BGP LocRIB,
 followed by RIB/FIB reprogramming.

 It is possible to use a single BGP controller along with BGP routing
 persistence feature, to maintain the injected paths even after the
 BGP Controller failure (see [I-D.uttaro-idr-bgp-persistence]). After
 the controller restarts, it will simply refresh the "stale" routing
 information. In this scenario, forcing the network to revert to the
 traditional BGP-based routing could be accomplished by instructing

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn
https://datatracker.ietf.org/doc/html/rfc2992

Lapukhov & Nkposong Expires March 06, 2014 [Page 19]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 the controller to inject its paths with low LOCAL_PREF value, less
 than the default used in the network. The possible risk is that the
 controller may fail in such a fashion that it will not be able to
 inject any information in the network.

5.3. Multiple BGP Controllers

 If a single BGP Controller is present in the network that does not
 implement BGP route persistence, the controller failure would result
 in the network becoming unmanaged, and falling back to traditional
 BGP routing. To maintain resilience, it is possible to run multiple
 parallel BGP Controllers, assuming that they supply the network with
 the same routing information, and differentiate themselves as
 'primary' and 'backup'. The latter property could be accomplished by
 using different LOCAL_PREF attribute values for primary/secondary
 controllers - this allows having multiple controllers, backing up
 each other.

 With multiple BGP Controllers, it becomes critical for all of them to
 perform the same routing decisions. Even though only one controller
 is programming the network, the backup paths injected by the others
 must be consistent with the primary. To accomplish that, all
 controllers must:

 o Have the same view of the underlying network topology - i.e. build
 the same link-state graph. In the simplest case, this could be
 accomplished by relying on eventual consistency, that is assuming
 that under non-partitioned scenario the controllers will
 eventually receive the same link-state probe prefixes and build
 the same resulting link-state database. Alternatively, a
 consensus protocol, e.g. [PAXOS] could be executed amongst the
 members of the redundant group to synchronize the link-state
 database of the master process with the secondary processes. This
 would ensure strong consistency of the link-state database, but
 could be over-bearing in terms of the state that may need to be
 kept replicated reliably.

 o Maintain the same topology definition database and prefix-to-
 topology mapping table - as commanded by external applications.
 This is similar to the previous approach, but would involve much
 less state to synchronize. Specifically, the topology definitions
 (e.g. new link costs) and prefix to topology mapping information
 need to be distributed. This state is submitted to the
 controllers via an API defined for the third party applications.
 As before, it could be assumed a responsibility of an external
 application to program all controllers with the same state and
 ensure consistency. Alternatively, another strongly consistent
 database could be used, leveraging the same consensus protocol.

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 20]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

5.4. Network Partitioning

 This section reviews the possible "partitioning" scenarios, where
 parts of the network may become managed by different controllers.
 Situations like this are possible if the controllers are deployed
 diversely, and may end up in situation where one or more of the
 controllers lose iBGP peering sessions with some network devices.
 The main concern in such situations is programming the devices with
 inconsistent information that may cause routing loops.

 Firstly, notice that if device A can learn the "peering source"
 prefix announced by device B, and the BGP Controller can peer with A,
 then by transitivity the controller can also peer with B. This means
 that either the controller and device A cannot learn any routing
 information from B, or both of them can - excluding transient
 situations. This property ensures that under proper configuration a
 set of devices is either completely managed, or completely unmanaged
 - that is, they share the same fate. This eliminates the scenario
 where device A is programmed by the controller X, device B is
 programmed by the controller Y and the devices can each each other
 inband.

 Secondly, for the transient cases, when A and B have in-band
 connectivity, but for some time A is programmed by X and B is
 programmed by Y. Recall that absence of the iBGP session to the
 device translates into the fact that this device is declared as
 having "infinite" costs in the link-state database. Thus, X will
 always bypass B and Y will always bypass A, and hence a routing loop
 may never form between A and B.

6. Controller API

 This section provides a set of requirements and guidance to the BGP
 Controller API. The general recommendation is to base the API on
 stateless principles, such as found in [REST] model. This approach
 is efficient since no real-time event passing between the controller
 and third-party application is needed, e.g. for the purpose of active
 reaction to network failure events. The proposed controller model
 assumes those events are handled by the messages exchange in the
 network-controller loop. The following sections are structured the
 around "CRUD" - Create, Read, Update, Delete operations commonly used
 in REST model and use the HTTP verbs and pathnames for illustration.
 Furthermore, applications will be referenced as clients and the BGP
 Controller as the server in the text below interchangeably, though
 the API could be implemented by a module separate from the main BGP
 Controller logic.

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 21]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

6.1. Pathnames and document names

 The server presents the following pathnames to group various objects:

 o "/lsdb" - This is the document that stores the currently
 discovered inter-AS graph link state (link-state database). This
 document cannot be modified, only read. The LSDB data structure
 is a graph, represented in one of the common formats - e.g. as two
 collections: vertices and edges, where edges have associated
 states and weight (capacity).

 o "/topologies/" - This is a directory that stores documents
 corresponding to different topologies. Every document contains a
 topology definition.

 o "/mappings/ipv4" - This is the document that stores the IPv4
 mappings to the topologies. Notice that if the 0.0.0.0/0 prefix
 is not found it this file, it is implicitly mapped to the default
 topology. Internally in the BGP Controller this is stored as an
 efficient radix-tree, but the document represents the mappings as
 a collection of prefixes and associated topologies.

 o "/mappings/ipv6" - This is the document that stores the IPv6
 prefix mappings to the topologies. Same as IPv4 mappings, with
 except to different address family. As with the IPv4 case, if the
 ::/0 prefix is not found in this document, it is implicitly mapped
 to the default topology.

6.2. Encoding of the documents and objects

 Either JSON or XML is an acceptable format for encoding the document
 contents for programmability. JSON is preferred due to its
 lightweight nature and simpler semantics for transporting data
 structures. The documents passed with RESTful calls will contain
 logical descriptions of the graph vertices and edges. A vertex is
 uniquely identified by an opaque name, e.g. a text string. The
 mapping between this identifier and the underlying network devices is
 to be done elsewhere in the controller data structures, and does not
 need to be exposed to the applications.

6.3. Creating & Deleting State

 The only state that could be created is the collection of topology
 definitions, under the "/topology/" directory. The topology objects
 are to be created using the "POST" HTTP operation - supplying some
 basic content, e.g. empty set of the links and associated costs using
 the appropriate encoding. Correspondingly, a topology could be
 deleted using the DETELE operation. Notice that the default topology

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn

Lapukhov & Nkposong Expires March 06, 2014 [Page 22]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 is not present in this directory, and thus could never be deleted.
 Notice that the separate "mapping" documents will be referencing the
 topology names, and when a topology is delete such mapping will
 become invalid. It up to the implementation to handle such
 referential integrity - e.g. by ignoring such entries in the mapping
 document, or disallowing the topology file to be deleted as long as
 active references are present.

6.4. Reading State

 Every document described above could be read and transported to the
 client using the HTTP GET request. The document is transported
 completely in the corresponding encoding. It is up to the controller
 to implement proper read/write locking to avoid inconsistencies in
 data when multiple clients are present. No locking API should be
 ever exposed to the client, since that would affect the stateless
 nature of the communications. Notice that reading the link-state
 database is mostly informative to the client, since handling of the
 network failures is performed by the BGP Controller.

6.5. Writing State

 The topology definition documents and the IPv4/IPv6 mapping tables
 could be fully re-written using the HTTP PUT verb. This means that
 with every operation, the client must supply the full new document,
 not an incremental change. It's up to the client to perform the
 merge of the new change with the already existing information. If
 consistency across multiple writers is required, it should be
 implemented by the clients, possibly via the use of an external
 shared locking API. Referential integrity checks could be
 implemented in the controller, e.g. to validate that the topology
 references in the mapping actually exists, or alternatively could be
 left to the client.

 It is possible to implement incremental changes using the HTTP PATCH
 verb semantics (see [RFC5789]) in the server. In this case, it's up
 to the server to perform proper merge of the incremental change and
 ensure there is no conflicts or duplicates. This is a more complex
 model as compared to the simple "PUT" logic.

6.6. Typical API Call Sequence

 A typical sequence of actions for a client willing to perform traffic
 engineering could be as following (assuming absence of the PATCH
 operation):

 o Decide which prefixes are to be affected by this operation.

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn
https://datatracker.ietf.org/doc/html/rfc5789

Lapukhov & Nkposong Expires March 06, 2014 [Page 23]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 o Create a topology to perform the link-state operation, or re-use
 the one previously created by this application. Verify topology
 existence using the GET operation in the "/topologies" directory.

 o Add new links with the desired costs to the topology. If the
 topology alredy exists, read it first using GET operation, and
 then perform merge on the client side, later submitting the
 updated topology using PUT operation.

 o Obtain current prefix mappings for the desired address family
 using the GET operation. Parse the mappings and perform any
 consistency checks required, followed by adding the entries for
 prefixes to act upon, mapping them to the topology created/updated
 above.

 o HTTP PUT the new mappings file, updating the one that existing in
 the server as a whole.

6.7. Limitations

 The API is purposely focused only on routing information
 manipulation, and does not provide any ways to verify the requested
 operation has been accomplished. Such monitoring should be done
 separately, using either mechanics available in BGP (e.g. by learning
 of the prefixes' new paths via separate session) or outside of BGP,
 e.g. in BGP Monitoring Protocol ([I-D.ietf-grow-bmp]) or Multi-
 Threaded Routing Toolkit ([RFC6396]).

7. Security Considerations

 The design of the BGP Controller in its simplest form assumes no
 access control in the API is presents to the third-party
 applications. Access could be limited at the transport level, e.g.
 by using protocol (HTTP) authentication or access control
 capabilities, but the API itself does not provide any logic to
 segregate applications - i.e. there is currently no way to limit an
 application to manipulating only a certain subset of the IP address
 space.

8. Acknowledgements

 The authors would like to thank Robert Raszuk for reviewing the
 document and providing valueable feedback.

9. References

9.1. Normative References

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn
https://datatracker.ietf.org/doc/html/rfc6396

Lapukhov & Nkposong Expires March 06, 2014 [Page 24]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 [RFC4271] Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
 Protocol 4 (BGP-4)", RFC 4271, January 2006.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP", RFC
5789, March 2010.

 [RFC1997] Chandrasekeran, R., Traina, P., and T. Li, "BGP
 Communities Attribute", RFC 1997, August 1996.

9.2. Informative References

 [I-D.lapukhov-bgp-routing-large-dc]
 Lapukhov, P., Premji, A., and J. Mitchell, "Use of BGP for
 routing in large-scale data centers", draft-lapukhov-bgp-

routing-large-dc-06 (work in progress), August 2013.

 [I-D.ietf-grow-bmp]
 Scudder, J., Fernando, R., and S. Stuart, "BGP Monitoring
 Protocol", draft-ietf-grow-bmp-07 (work in progress),
 October 2012.

 [RFC4786] Abley, J. and K. Lindqvist, "Operation of Anycast
 Services", BCP 126, RFC 4786, December 2006.

 [RFC6774] Raszuk, R., Fernando, R., Patel, K., McPherson, D., and K.
 Kumaki, "Distribution of Diverse BGP Paths", RFC 6774,
 November 2012.

 [RFC6976] Shand, M., Bryant, S., Previdi, S., Filsfils, C.,
 Francois, P., and O. Bonaventure, "Framework for Loop-Free
 Convergence Using the Ordered Forwarding Information Base
 (oFIB) Approach", RFC 6976, July 2013.

 [RFC2992] Hopps, C., "Analysis of an Equal-Cost Multi-Path
 Algorithm", RFC 2992, November 2000.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)", RFC

6241, June 2011.

 [RFC6396] Blunk, L., Karir, M., and C. Labovitz, "Multi-Threaded
 Routing Toolkit (MRT) Routing Information Export Format",

RFC 6396, October 2011.

 [I-D.ietf-idr-add-paths]
 Walton, D., Retana, A., Chen, E., and J. Scudder,
 "Advertisement of Multiple Paths in BGP", draft-ietf-idr-

add-paths-08 (work in progress), December 2012.

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc1997
https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-routing-large-dc-06
https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-routing-large-dc-06
https://datatracker.ietf.org/doc/html/draft-ietf-grow-bmp-07
https://datatracker.ietf.org/doc/html/bcp126
https://datatracker.ietf.org/doc/html/rfc4786
https://datatracker.ietf.org/doc/html/rfc6774
https://datatracker.ietf.org/doc/html/rfc6976
https://datatracker.ietf.org/doc/html/rfc2992
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6396
https://datatracker.ietf.org/doc/html/draft-ietf-idr-add-paths-08
https://datatracker.ietf.org/doc/html/draft-ietf-idr-add-paths-08

Lapukhov & Nkposong Expires March 06, 2014 [Page 25]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 [I-D.ietf-idr-link-bandwidth]
 Mohapatra, P. and R. Fernando, "BGP Link Bandwidth
 Extended Community", draft-ietf-idr-link-bandwidth-06
 (work in progress), January 2013.

 [I-D.raszuk-wide-bgp-communities]
 Raszuk, R., Haas, J., Amante, S., Steenbergen, R.,
 Decraene, B., and P. Jakma, "Wide BGP Communities
 Attribute", draft-raszuk-wide-bgp-communities-03 (work in
 progress), July 2012.

 [I-D.uttaro-idr-bgp-persistence]
 Uttaro, J., Chen, E., Decraene, B., and J. Scudder,
 "Support for Long-lived BGP Graceful Restart", draft-

uttaro-idr-bgp-persistence-02 (work in progress), July
 2013.

 [JAKMA2008]
 Jakma, P., "BGP Path Hunting", 2008, <https://

blogs.oracle.com/paulj/entry/bgp_path_hunting>.

 [PAXOS] Wikipedia, ., "Paxos", ,
 <http://en.wikipedia.org/wiki/Paxos_(computer_science)>.

 [REST] Wikipedia, ., "Representational state transfer", , <http:/
 /en.wikipedia.org/wiki/Representational_state_transfer>.

 [RWHITE2005]
 White, R., "Graph Overlays on Path Vector: A Possible Next
 Step in BGP", June 2005, <http://www.cisco.com/web/about/

ac123/ac147/archived_issues/ipj_8-2/graph_overlays.html>.

 [KVALBEIN2007]
 Kvalbein, A. and O. Lysne, "How can Multi-Topology Routing
 be used for Intradomain Traffic Engineering?", 2007.

 [IEEE8023AD]
 IEEE 802.3ad, ., "IEEE Standard for Link aggregation for
 parallel links", October 2000.

 [RCP] Caesar, M., Caldwell, D., Feamster, N., and J. Rexford,
 "Design and Implementation of a Routing Control Platform
 ", March 2005,
 <http://www.cs.princeton.edu/~jrex/papers/rcp-nsdi.pdf>.

Authors' Addresses

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn
https://datatracker.ietf.org/doc/html/draft-ietf-idr-link-bandwidth-06
https://datatracker.ietf.org/doc/html/draft-raszuk-wide-bgp-communities-03
https://datatracker.ietf.org/doc/html/draft-uttaro-idr-bgp-persistence-02
https://datatracker.ietf.org/doc/html/draft-uttaro-idr-bgp-persistence-02
https://blogs.oracle.com/paulj/entry/bgp_path_hunting
https://blogs.oracle.com/paulj/entry/bgp_path_hunting
http://en.wikipedia
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_8-2/graph_overlays.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_8-2/graph_overlays.html
http://www.cs.princeton.edu/~jrex/papers/rcp-nsdi.pdf

Lapukhov & Nkposong Expires March 06, 2014 [Page 26]

Internet-Draft draft-lapukhov-bgp-sdn September 2013

 Petr Lapukhov
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 Phone: +1 425 7032723
 Email: petrlapu@microsoft.com
 URI: http://microsoft.com/

 Edet Nkposong
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 Phone: +1 425 7071045
 Email: edetn@microsoft.com
 URI: http://microsoft.com/

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-sdn
http://microsoft.com/
http://microsoft.com/

Lapukhov & Nkposong Expires March 06, 2014 [Page 27]

