
Network Working Group M. Larsen
Internet-Draft Ericsson
Expires: November 30, 2004 June 2004

Port Randomisation
draft-larsen-tsvwg-port-randomisation-00

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of section 3 of RFC 3667. By submitting this Internet-Draft, each
 author represents that any applicable patent or other IPR claims of
 which he or she is aware have been or will be disclosed, and any of
 which he or she become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on November 30, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2004).

Abstract

 The Internet protocols TCP and UDP are both vulnerable to data
 injection attacks. The consequences of injected data range from
 nuisance through broken connections and corrupted local data.

 This document describe a simple, efficient and client local method
 for random selection of the client port number, such that the
 possibility of an attacker guessing the exact value is reduced. This
 is not a replacement for cryptographic methods such as IPsec or the

https://datatracker.ietf.org/doc/html/rfc3667#section-3
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Larsen Expires November 30, 2004 [Page 1]

Internet-Draft Port Randomisation June 2004

 TCP MD5 signature option. However, the proposed method provides
 improved security/obfuscation with very little effort and without any
 key management overhead.

 The proposed algorithm has similarities with the algorithm proposed
 in [RFC1948].

Table of Contents

1. Introduction . 3
2. Randomising Ports . 4
2.1 Ephemeral Port Range 4
2.2 Choosing the Port . 4
2.3 Secret Key . 6
2.4 Choosing Algorithm . 7

3. Security Considerations 9
4. Acknowledgements . 10
5. References . 11
5.1 Normative References . 11
5.2 Informative References 11

 Author's Address . 12
 Intellectual Property and Copyright Statements 13

https://datatracker.ietf.org/doc/html/rfc1948

Larsen Expires November 30, 2004 [Page 2]

Internet-Draft Port Randomisation June 2004

1. Introduction

 The Internet protocols TCP [RFC793] and UDP [RFC768] are both
 vulnerable to data injection attacks. The consequences of injected
 data (which may be both control data and payload data) range from
 nuisance through broken connections and corrupted local data
 [TCPsecure][Watson].

 To make such attacks possible, the attacker must usually know both
 local and peer IP addresses and ports (the connection four-tuple) and
 any sequence numbers involved in the communication. Alternatively
 the attacker must make a good prediction of the these parameters to
 reduce the search space. The connection must also exist long enough
 for the attack to be executed. Such attacks are feasible as
 illustrated by [Watson].

 Besides IP addresses, Internet protocols like TCP and UDP use a set
 of ports (local and peer) to identify communication endpoints.
 Services are usually located at fixed, 'well-known' ports [IANA] at
 the host supplying the service (the server). Client applications
 connecting to any such service will contact the server by specifying
 the server IP address and service port number. The IP address and
 port number of the client are normally left unspecified by the client
 application and thus chosen automatically by the client networking
 stack. Ports chosen automatically by the networking stack are known
 as ephemeral ports [Stevens].

 While the well-known service port and both server and client IP
 address may be available to an attacker, the ephemeral port of the
 client are usually unknown and must be guessed.

 This document describe a method for random selection of the ephemeral
 port, thereby reducing the possibility of an off-path attacker
 guessing the exact value. This is not a replacement for
 cryptographic methods such as IPsec or the TCP MD5 signature option
 [RFC2385]. However, the proposed method provides improved
 obfuscation with very little effort and without any key management
 overhead.

 The mechanism is a local modification and may be incrementally
 deployed. The mechanism is fully compliant with both [RFC793] and
 [RFC768].

 Since the mechanism is an obfuscation technique, focus has been on a
 reasonable compromise between level of obfuscation and ease of
 implementation. Thus the algorithm must be computationally
 efficient, and not require substantial data structures.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc768

Larsen Expires November 30, 2004 [Page 3]

Internet-Draft Port Randomisation June 2004

2. Randomising Ports

2.1 Ephemeral Port Range

 The Internet Assigned Numbers Authority (IANA) assigns the unique
 parameters and values used in protocols developed by the Internet
 Engineering Task Force (IETF), including well-known ports [IANA].
 IANA has traditionally reserved the following use of the 16-bit port
 range of TCP and UDP:

 o The Well Known Ports, 0 through 1023.
 o The Registered Ports, 1024 through 49151
 o The Dynamic and/or Private Ports, 49152 through 65535

 The range for assigned ports managed by the IANA is 0-1023, the
 remainder is registered by IANA but not assigned.

 The ephemeral port range traditionally includes the 49152-65535
 range, and should also include the 1024-49151 range. However, since
 this range include user specific server ports this may not always be
 possible. A host should use the largest possible range, since this
 improves the obfuscation provided by randomising the ephemeral ports.

 Note that this method may also be used when dynamically reassigning
 ports as proposed by [Shepard].

2.2 Choosing the Port

 Choosing a random port can, if a suitable random source is available,
 be implemented as a simple random selection, i.e.:

 port = min_ephemeral + random() % (max_ephemeral - min_ephemeral)

 Figure 1

 Several well-know operating systems use this approach.

 However, since the resulting connection four-tuple must be unique,
 the chosen port may already be in use with identical IP addresses and
 server port, thus the four-tuple is not unique. Consequently
 multiple ports may have to be tried and verified against all existing
 connections before a port can be chosen.

 Although carefully chosen random sources and four-tuple lookup
 mechanisms optimised through e.g. hashing, will mitigate the cost of
 this verification, some systems may still not like to incur this
 unknown search time.

Larsen Expires November 30, 2004 [Page 4]

Internet-Draft Port Randomisation June 2004

 Systems that are specially vulnerable to this kind of repeated
 four-tuple collisions are systems that create many connections from a
 single local IP address to a single service (i.e. both IP addresses
 and peer port are fixed). Gateways such as proxy servers are an
 example of such a system.

 Finding ports that result in a unique four-tuple are handled by some
 operating systems by having a global 'next ephemeral port' variable
 that is equal to the previously chosen ephemeral port + 1, i.e. the
 selection process is:

 next_ephemeral_port = 1024; /*initialisation, could be random*/

 do {
 port = next_ephemeral_port;
 if (next_ephemeral_port == max_ephemeral_port) {
 next_ephemeral_port = min_ephemeral_port;
 } else {
 next_ephemeral_port++;
 }
 } until (four-tuple is unique);

 Figure 2

 We will refer to this as 'Algorithm 1'. Note that the loop
 prevention mechanism has been left out for clarity.

 This works well, since the number of connections (globally, across
 all four-tuples) that has a life-time longer than it takes to exhaust
 the total ephemeral port range is small, thus four-tuple collisions
 are rare.

 However, this method has the drawback, that the 'next_ephemeral_port'
 variable and thus the ephemeral port range is shared between all
 connections and it is easy to predict the next ports chosen by the
 client. If an attacker operates an innocent server to which the
 client connects, it is easy to obtain a reference point for the
 current value of 'next_ephemeral_port.

 Ideally, we would like a 'next_ephemeral_port' value for each set of
 (local/peer IP addresses, peer port). These should be initialised
 with random values within the ephemeral port range and would thus
 separate the ephemeral port ranges of the connections entirely.
 Since we do not want to store all these 'next_ephemeral_port' values,
 we propose an offset function F(), that can be computed from the
 local/peer IP addresses, peer port and a secret key. F() will yield
 (practically) different values for each set of arguments, i.e.:

Larsen Expires November 30, 2004 [Page 5]

Internet-Draft Port Randomisation June 2004

 next_ephemeral_port = 1024; /*initialisation, could be random*/

 offset = F(local_IP, remote_IP, remote_port, secret_key);
 do {
 port = min_ephemeral +
 (next_ephemeral_port + offset)
 % (max_ephemeral - min_ephemeral);
 next_ephemeral_port++;
 } until (four-tuple is unique);

 Figure 3

 We will refer to this as 'Algorithm 2'. Note that the loop
 prevention mechanism has been left out for clarity.

 In other words, the function F() provides a connection-local fixed
 offset of the global ephemeral port range controlled by
 'next_ephemeral_port'. Both the 'offset' and 'next_ephemeral_port'
 variables may take any value within the storage type range since we
 are restricting the resulting port similar to that shown in Figure 1.
 This allows us to simply increment the 'next_ephemeral_port' variable
 and rely on the unsigned integer to simply wrap-around.

 The function F() should be a cryptographic hash function like MD5
 [RFC1321]. The function should use both IP addresses, the peer port
 and a secret key value to compute the offset. The peer IP address is
 the primary separator and must be included in the offset calculation.
 The local IP address and peer port may in some cases be constant and
 not improve the connection separation, however, they should also be
 included in the offset calculation.

 Cryptographic algorithms stronger than e.g. MD5 should not be
 necessary, given that port randomisation is a pure obfuscation
 technique. The secret should be chosen as random as possible, see
 [RFC1750] for recommendations on choosing secrets.

 Note that on multiuser systems, the function F() could include user
 specific information, thereby providing protection not only on a host
 to host basis, but on user to service basis.

2.3 Secret Key

 Every complex manipulation (like MD5) is no more secure than the
 input values, and in the case of ephemeral ports, the secret key. If
 an attacker is aware of which cryptographic hash function is being
 used by the victim (which we should expect), and the attacker can
 obtain enough material (e.g. ephemeral ports chosen by the victim),
 the attacker may simply search the entire secret key space to find

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1750

Larsen Expires November 30, 2004 [Page 6]

Internet-Draft Port Randomisation June 2004

 matches.

 To protect against this, the secret key should be of a reasonable
 length. Key-lengths of 32-bits or 64-bits should be adequate, since
 a 32-bit secret would result in approximately 65k possible secrets if
 the attacker is able to obtain a single ephemeral port (assuming a
 good hash function). If the attacker is able to obtain more
 ephemeral ports 64-bits or more should be used.

 Another possible mechanism of protecting the secret key is to change
 it after some time. If the host platform is capable of producing
 reasonable good random data, the secret key can be changed.

 Changing the secret will cause abrupt shifts in the chosen ephemeral
 ports, and consequently collisions may occur. Thus the change in
 secret key should be done with consideration and could be performed
 whenever one of the following events occur:

 o Some predefined/random time has expired.
 o The secret has been used N times (i.e. we consider it insecure).
 o There are few active connections (possibility of collision is
 low).
 o There is little traffic (the performance overhead of collisions is
 tolerated).
 o There is enough random data available to change the secret key
 (pseudo-random changes should not be done).

2.4 Choosing Algorithm

 Algorithm 1 has the advantage, that it provides complete
 randomisation, but may not scale well with many simultaneous
 connections. Algorithm 2 provides complete separation in local/peer
 IP address and peer port space, and only limited separation in other
 dimensions (See Section Section 2.3), however, this algorithm scales
 well.

 Thus Algorithm 1 should be used when the cost of choosing an
 ephemeral port is not important, or when the ratio of used ports and
 available ports are low (for given local/peer IP addresses and peer
 port). A switch to algorithm 2 should happen if the cost of choosing
 an ephemeral port is important and when the ratio between used ports
 and available ports increase.

 Note that when the ratio between used ports and available ports
 increase, the obfuscation resulting from port randomisation decrease
 and has no effect when the entire port space is in use.

 The ratio where to switch between algorithms depend on the cost of

Larsen Expires November 30, 2004 [Page 7]

Internet-Draft Port Randomisation June 2004

 the four-tuple uniqueness test. Systems capable of handling many
 simultaneous connections normally has an efficient PCB-lookup.
 However, verifying a four-tuple for uniqueness requires a lookup
 against all existing connections, even unconnected (but bound).
 Additionally, options exist, that will allow reuse of ports, making
 the detection even more complex than a PCB-lookup. The the cost of a
 four-tuple verification may easily be many times that of a single PCB
 lookup.

 While the ratio is very implementation dependent and calculating the
 exact ratio may be difficult without using additional resources, an
 appropriate ratio can be estimated and used for an algorithm switch.
 E.g. if the ephemeral port range contain N possible ports, the
 switch to algorithm 2 may happen when the total number of connections
 reach N/2.

Larsen Expires November 30, 2004 [Page 8]

Internet-Draft Port Randomisation June 2004

3. Security Considerations

 Randomising ports is no replacement for cryptographic mechanisms,
 such as IPsec.

 An eavesdropper, which can monitor the ephemeral ports of other hosts
 (and thus also sequence numbers etc.) can easily hijack or corrupt
 the connection. Randomising ports does not provide any additional
 protection against this kind of attacks. In such situations stronger
 authentication techniques should be used.

 If the local offset function F() results in identical offsets for
 different inputs, the port-offset mechanism proposed in this document
 has no or reduced effect.

 If random numbers are used as the only source of the secret key, they
 must be chosen in accordance with the recommendations given in
 [RFC1750].

 If all ports available in the ephemeral port range are in use,
 randomisation provides no obfuscation.

 If an attacker use dynamically assigned IP addresses, the current
 ephemeral port offset (Algorithm 2) for a given four-tuple can be
 sampled and subsequently be used to attack an innocent peer reusing
 this address. However, this is only possible until a re-keying
 happens as described above. Also, since ephemeral ports are only
 used on the client side (e.g. the one initiating the connection),
 both the attacker and the new peer needs to be servers in the above
 scenario. Although servers using dynamic IP addresses exist, they
 are not very common and with an appropriate re-keying mechanism the
 effect of this attack is limited.

https://datatracker.ietf.org/doc/html/rfc1750

Larsen Expires November 30, 2004 [Page 9]

Internet-Draft Port Randomisation June 2004

4. Acknowledgements

 The offset function was inspired by the mechanism proposed for
 defending against TCP sequence number attacks [RFC1948].

Larsen Expires November 30, 2004 [Page 10]

https://datatracker.ietf.org/doc/html/rfc1948

Internet-Draft Port Randomisation June 2004

5. References

5.1 Normative References

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC1750] Eastlake, D., Crocker, S. and J. Schiller, "Randomness
 Recommendations for Security", RFC 1750, December 1994.

 [RFC1948] Bellovin, S., "Defending Against Sequence Number Attacks",
RFC 1948, May 1996.

 [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, August 1998.

5.2 Informative References

 [TCPsecure]
 Dalal, M., "Transmission Control Protocol security
 considerations", draft-ietf-tcpm-tcpsecure-01.txt (work in
 progress), June 2004.

 [Watson] Watson, P., "Slipping in the Window: TCP Reset attacks",
 december 2003.

 [IANA] "IANA Port Numbers",
 <http://www.iana.org/assignments/port-numbers>.

 [Stevens] Stevens, W., "Unix Network Programming, Volume 1:
 Networking APIs: Socket and XTI, Prentice Hall", 1998.

 [Shepard] Shepard, T., "Reassign Port Number option for TCP",
draft-shepard-tcp-reassign-port-number-00 (work in

 progress), July 2004.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc1948
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-tcpsecure-01.txt
http://www.iana.org/assignments/port-numbers
https://datatracker.ietf.org/doc/html/draft-shepard-tcp-reassign-port-number-00

Larsen Expires November 30, 2004 [Page 11]

Internet-Draft Port Randomisation June 2004

Author's Address

 Michael Vittrup Larsen
 Ericsson
 Skanderborgvej 232
 Aarhus DK-8260
 Denmark

 Phone: +45 8938 5100
 EMail: michael.vittrup.larsen@ericsson.com

Larsen Expires November 30, 2004 [Page 12]

Internet-Draft Port Randomisation June 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Larsen Expires November 30, 2004 [Page 13]

