
Network Working Group B. Laurie
Internet-Draft A. Langley
Expires: April 21, 2013 E. Kasper
 October 18, 2012

Certificate Transparency
draft-laurie-pki-sunlight-02

Abstract

 The aim of Certificate Transparency is to have every public end-
 entity and intermediate TLS certificate issued by a known Certificate
 Authority recorded in one or more certificate logs. In order to
 detect mis-issuance of certificates, all logs are publicly auditable.
 In particular, domain owners or their agents will be able to monitor
 logs for certificates issued on their own domain.

 To protect clients from unlogged mis-issued certificates, logs sign
 all recorded certificates, and clients can choose not to trust
 certificates that are not accompanied by an appropriate log
 signature. For privacy and performance reasons log signatures are
 embedded in the TLS handshake via the TLS authorization extension
 [RFC5878], or in the certificate itself via an X.509v3 certificate
 extension [RFC5280].

 To ensure a globally consistent view of the log, logs also provide a
 global signature over the entire log. Any inconsistency of logs can
 be detected through cross-checks on the global signature.
 Consistency between any pair of global signatures, corresponding to
 snapshots of the log at different times, can be efficiently shown.

 Logs are only expected to certify that they have seen a certificate,
 and thus we do not specify any revocation mechanism for log
 signatures in this document. Logs are append-only, and log
 signatures will be valid indefinitely.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

Laurie, et al. Expires April 21, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5878
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Certificate Transparency October 2012

 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Laurie, et al. Expires April 21, 2013 [Page 2]

Internet-Draft Certificate Transparency October 2012

Table of Contents

1. Cryptographic components 4
1.1. Merkle Hash Trees . 4
1.1.1. Merkle audit paths 4
1.1.2. Merkle consistency proofs 5
1.1.3. Example . 6

2. Log Format . 8
2.1. Log Entries . 8
2.2. Merkle Tree . 11
2.3. Audit Proofs . 13

3. Client Messages . 15
4. Security and Privacy Considerations 16
4.1. Misissued Certificates 16
4.2. Detection of Misissue 16
4.3. Misbehaving logs . 16

5. Efficiency Considerations 17
6. References . 18

 Authors' Addresses . 19

Laurie, et al. Expires April 21, 2013 [Page 3]

Internet-Draft Certificate Transparency October 2012

1. Cryptographic components

1.1. Merkle Hash Trees

 Logs use a binary Merkle hash tree for efficient auditing. The
 hashing algorithm is SHA-256. The input to the Merkle tree hash is a
 list of data entries; these entries will be hashed to form the leaves
 of the Merkle hash tree. The output is a single 32-byte root hash.
 Given an ordered list of n inputs, D[n] = {d(0), d(1), ..., d(n-1)},
 the Merkle Tree Hash (MTH) is thus defined as follows:

 The hash of an empty list is the hash of an empty string:

 MTH({}) = SHA-256().

 The hash of a list with one entry is:

 MTH({d(0)}) = SHA-256(0 || d(0)).

 For n > 1, let k be the largest power of two smaller than n. The
 Merkle Tree Hash of an n-element list D[n] is then defined
 recursively as

 MTH(D[n]) = SHA-256(1 || MTH(D[0:k]) || MTH(D[k:n])),

 where || is concatenation and D[k1:k2] denotes the length (k2 - k1)
 list {d(k1), d(k1+1),..., d(k2-1)}.

 Note that we do not require the length of the input list to be a
 power of two. The resulting Merkle tree may thus not be balanced,
 however, its shape is uniquely determined by the number of leaves.
 [This Merkle tree is essentially the same as the history tree [1]
 proposal, except our definition omits dummy leaves.]

1.1.1. Merkle audit paths

 A Merkle audit path for a leaf in a Merkle hash tree is the shortest
 list of additional nodes in the Merkle tree required to compute the
 Merkle Tree Hash for that tree. Each node in the tree is either a
 leaf node, or is computed from the two nodes immediately below it
 (i.e. towards the leaves). At each step up the tree (towards the
 root), a node from the audit path is combined with the node computed
 so far. In other words, the audit path consists of the list of
 missing nodes required to compute the nodes leading from a leaf to
 the root of the tree. If the root computed from the audit path
 matches the true root, then the audit path is proof that the leaf
 exists in the tree.

Laurie, et al. Expires April 21, 2013 [Page 4]

Internet-Draft Certificate Transparency October 2012

 Given an ordered list of n inputs to the tree, D[n] = {d(0), ...,
 d(n-1)}, the Merkle audit path PATH(m, D[n]) for the (m+1)th input
 d(m), 0 <= m < n, is defined as follows:

 The path for the single leaf in a tree with a one-element input list
 D[1] = {d(0)} is empty:

 PATH(0, {d(0)}) = {}

 For n > 1, let k be the largest power of two smaller than n. The
 path for the (m+1)th element d(m) in a list of n > m elements is then
 defined recursively as

 PATH(m, D[n]) = PATH(m, D[0:k]) : MTH(D[k:n]) for m < k; and

 PATH(m, D[n]) = PATH(m - k, D[k:n]) : MTH(D[0:k]) for m >= k,

 where : is concatenation of lists and D[k1:k2] denotes the length (k2
 - k1) list {d(k1), d(k1+1),..., d(k2-1)} as before.

1.1.2. Merkle consistency proofs

 Merkle consistency proofs prove the append-only property of the tree.
 A Merkle consistency proof for a Merkle Tree Hash MTH(D[n]) and a
 previously advertised hash MTH(D[0:m]) of the first m leaves, m <= n,
 is the list of nodes in the Merkle tree required to verify that the
 first m inputs D[0:m] are equal in both trees. Thus, a consistency
 proof must contain a set of intermediate nodes (i.e., commitments to
 inputs) sufficient to verify MTH(D[n]), such that (a subset of) the
 same nodes can be used to verify MTH(D[0:m]). We define an algorithm
 that outputs the (unique) minimal consistency proof.

 Given an ordered list of n inputs to the tree, D[n] = {d(0), ...,
 d(n-1)}, the Merkle consistency proof PROOF(m, D[n]) for a previous
 root hash MTH(D[0:m]), 0 < m < n, is defined as PROOF(m, D[n]) =
 SUBPROOF(m, D[n], true):

 The subproof for m = n is empty if m is the value for which PROOF was
 originally requested (meaning that the subtree root hash MTH(D[0:m])
 is known):

 SUBPROOF(m, D[m], true) = {}

 The subproof for m = n is the root hash committing inputs D[0:m]
 otherwise:

 SUBPROOF(m, D[m], false) = {MTH(D[m])}

Laurie, et al. Expires April 21, 2013 [Page 5]

Internet-Draft Certificate Transparency October 2012

 For m < n, let k be the largest power of two smaller than n. The
 subproof is then defined recursively.

 If m <= k, the right subtree entries D[k:n] only exist in the current
 tree. We prove that the left subtree entries D[0:k] are consistent
 and add a commitment to D[k:n]:

 SUBPROOF(m, D[n], b) = SUBPROOF(m, D[0:k], b) : MTH(D[k:n]).

 If m > k, the left subtree entries D[0:k] are identical in both
 trees. We prove that the right subtree entries D[k:n] are consistent
 and add a commitment to D[0:k].

 SUBPROOF(m, D[n], b) = SUBPROOF(m - k, D[k:n], false) : MTH(D[0:k]).

 Here : is concatenation of lists and D[k1:k2] denotes the length (k2
 - k1) list {d(k1), d(k1+1),..., d(k2-1)} as before.

 The number of nodes in the resulting proof is bounded above by
 ceil(log2(n)) + 1.

1.1.3. Example

 The binary Merkle tree with 7 leaves:

 hash
 / \
 / \
 / \
 / \
 / \
 k l
 / \ / \
 / \ / \
 / \ / \
 g h i j
 / \ / \ / \ |
 a b c d e f d6
 | | | | | |
 d0 d1 d2 d3 d4 d5

 The audit path for d0 is [b, h, l].

 The audit path for d3 is [c, g, l].

 The audit path for d4 is [f, j, k].

 The audit path for d6 is [i, k].

Laurie, et al. Expires April 21, 2013 [Page 6]

Internet-Draft Certificate Transparency October 2012

 The same tree, built incrementally in four steps:

 hash0 hash1=k
 / \ / \
 / \ / \
 / \ / \
 g c g h
 / \ | / \ / \
 a b d2 a b c d
 | | | | | |
 d0 d1 d0 d1 d2 d3

 hash2 hash
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 k i k l
 / \ / \ / \ / \
 / \ e f / \ / \
 / \ | | / \ / \
 g h d4 d5 g h i j
 / \ / \ / \ / \ / \ |
 a b c d a b c d e f d6
 | | | | | | | | | |
 d0 d1 d2 d3 d0 d1 d2 d3 d4 d5

 The consistency proof between hash0 and hash is PROOF(3, D[7]) = [c,
 d, g, l]. c, g are used to verify hash0, and d, l are additionally
 used to show hash is consistent with hash0.

 The consistency proof between hash1 and hash is PROOF(4, D[7]) = [l].
 hash can be verified, using hash1=k and l.

 The consistency proof between hash2 and hash is PROOF(6, D[7]) = [i,
 j, k]. k, i are used to verify hash1, and j is additionally used to
 show hash is consistent with hash2.

Laurie, et al. Expires April 21, 2013 [Page 7]

Internet-Draft Certificate Transparency October 2012

2. Log Format

 Anyone can submit certificates to certificate logs for public
 auditing, however, since certificates will not be accepted by clients
 unless logged, it is expected that certificate owners or their CAs
 will usually submit them. A log is a single, ever-growing, append-
 only Merkle Tree of such certificates.

 After accepting a certificate submission, the log MUST immediately
 return a Signed Certificate Timestamp (SCT). The SCT is the log's
 promise to incorporate the certificate in the Merkle Tree within a
 fixed amount of time known as the Maximum Merge Delay (MMD). Servers
 MUST present an SCT from one or more logs to the client together with
 the certificate. Clients MUST reject certificates that do not have a
 valid Signed Certificate Timestamp.

 Periodically, the log appends all new entries to the Merkle Tree, and
 signs the root of the tree. Clients and auditors can thus verify
 that each certificate for which an SCT has been issued indeed appears
 in the log. The log MUST incorporate a certificate in its Merkle
 Tree within the Maximum Merge Delay period after the issuance of the
 SCT.

2.1. Log Entries

 Anyone can submit a certificate to the log. In order to attribute
 each logged certificate to its issuer, the log shall publish a list
 of acceptable root certificates (this list should be the union of
 root certificates trusted by major browser vendors). Each submitted
 certificate MUST be accompanied by all additional certificates
 required to verify the certificate chain up to an accepted root
 certificate. The self-signed root certificate itself MAY be omitted
 from this list.

 In this case, the SCT must be included in the TLS handshake, either
 by using an Authorization Extension [RFC5878] with type [TBD]
 containing the SCT, or by using OCSP Stapling (section 8 of
 [RFC6066]), where the response includes an OCSP extension [RFC5280]
 with OID 1.3.6.1.4.1.11129.2.4.5 and body:

 SignedCertificateTimestamp ::= OCTET STRING

 Alternatively, (root as well as intermediate) Certificate Authorities
 may submit a certificate to the log prior to issuance. To do so, a
 Certificate Authority constructs a Precertificate by signing the leaf
 TBSCertificate [RFC5280] with a special-purpose (Extended Key Usage:
 Certificate Transparency, OID 1.3.6.1.4.1.11129.2.4.4) Precertificate
 Signing Certificate. The Precertificate Signing Certificate MUST be

https://datatracker.ietf.org/doc/html/rfc5878
https://datatracker.ietf.org/doc/html/rfc6066#section-8
https://datatracker.ietf.org/doc/html/rfc6066#section-8
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

Laurie, et al. Expires April 21, 2013 [Page 8]

Internet-Draft Certificate Transparency October 2012

 certified by the CA certificate. As above, the Precertificate
 submission MUST be accompanied by the Precertificate Signing
 Certificate and all additional certificates required to verify the
 chain up to an accepted root certificate. The signature on the
 TBSCertificate indicates the Certificate Authority's intent to issue
 a certificate. This intent is considered binding (i.e., misissuance
 of the Precertificate is considered equal to misissuance of the final
 certificate). The log verifies the Precertificate signature chain,
 and issues a Signed Certificate Timestamp on the corresponding
 TBSCertificate. The SCT can then be directly embedded in the final
 certificate, by inserting it in the TBSCertificate as an X.509v3
 certificate extension (OID 1.3.6.1.4.1.11129.2.4.2). Upon receiving
 the certificate, clients can reconstruct the original TBSCertificate
 to verify the SCT signature.

 The log MUST verify that the submitted leaf certificate or
 Precertificate has a valid signature chain leading back to a trusted
 root CA certificate, using the chain of intermediate CA certificates
 provided by the submitter. In case of Precertificates, the log MUST
 also verify that the Precertificate Signing Certificate has the
 correct Extended Key Usage extension. The log MAY accept
 certificates that have expired, are not yet valid, have been revoked
 or are otherwise not fully valid according to X.509 verification
 rules. However, the log MUST refuse to publish certificates without
 a valid chain to a known root CA. If a certificate is accepted and
 an SCT issued, the log MUST store the chain used for verification
 including the certificate or Precertificate itself, and MUST present
 this chain for auditing upon request.

 Each certificate entry in the log MUST include the following
 components:

Laurie, et al. Expires April 21, 2013 [Page 9]

Internet-Draft Certificate Transparency October 2012

 enum { x509_entry(0), precert_entry(1), (65535) } LogEntryType;

 struct {
 LogEntryType entry_type;
 select (entry_type) {
 case x509_entry: X509ChainEntry;
 case precert_entry: PrecertChainEntry;
 } entry;
 } LogEntry;

 opaque ASN.1Cert<1..2^24-1>;

 struct {
 ASN.1Cert leaf_certificate;
 ASN.1Cert certificate_chain<0..2^24-1>;
 } X509ChainEntry;

 struct {
 ASN.1Cert tbs_certificate;
 ASN.1Cert precertificate_chain<1..2^24-1>;
 } PrecertChainEntry;

 Logs MAY limit the length of chain they will accept.

 "leaf_certificate" is the end-entity certificate submitted for
 auditing.

 "certificate_chain" is a chain of additional certificates required to
 verify the leaf certificate. The first certificate MUST certify the
 leaf certificate. Each following certificate MUST directly certify
 the one preceding it. The self-signed root certificate MAY be
 omitted from the chain.

 "tbs_certificate" is the TBSCertificate component of the
 Precertificate (i.e., the original TBSCertificate, without the
 Precertificate signature and the SCT extension).

 "precertificate_chain" is a chain of certificates required to verify
 the Precertificate submission. The first certificate MUST be the
 original Precertificate, with its unsigned part matching the
 "tbs_certificate". The second certificate MUST be a valid
 Precertificate Signing Certificate, and MUST certify the first
 certificate. Each following certificate MUST directly certify the
 one preceding it. The self-signed root certificate MAY be omitted
 from the chain.

 Structure of the Signed Certificate Timestamp:

Laurie, et al. Expires April 21, 2013 [Page 10]

Internet-Draft Certificate Transparency October 2012

 enum { certificate_timestamp(0), tree_hash(1), 255 }
 SignatureType;

 enum { v1(0) }
 Version;

 struct {
 opaque key_id[32];
 } LogID;

 "key_id" is the SHA-256 hash of the log's public key [TODO: define
 how to calculate this].

 struct {
 Version version;
 LogID id;
 uint64 timestamp;
 digitally-signed struct {
 SignatureType signature_type = certificate_timestamp;
 uint64 timestamp;
 LogEntryType entry_type;
 select(entry_type) {
 case x509_entry: ASN.1Cert;
 case precert_entry: ASN.1Cert;
 } signed_entry;
 };
 } SignedCertificateTimestamp;

 The encoding of the digitally-signed element is defined in [RFC5246].

 "version" is the version of the protocol the SCT conforms to. This
 version is v1.

 "timestamp" is the current UTC time since epoch (January 1, 1970,
 00:00), in milliseconds.

 "signed_entry" is the "leaf_certificate" (in case of an
 X509ChainEntry), or "tbs_certificate" (in case of a
 PrecertChainEntry).

2.2. Merkle Tree

 A certificate log MUST periodically append all new log entries to the
 log Merkle Tree. The log MUST sign these entries by constructing a
 binary Merkle Tree with log entries as consecutive inputs to the
 tree, signing the corresponding Merkle Tree Hash, and publishing each
 update to the tree in a Signed Merkle Tree Update. The hashing
 algorithm for the Merkle Tree Hash is SHA-256.

https://datatracker.ietf.org/doc/html/rfc5246

Laurie, et al. Expires April 21, 2013 [Page 11]

Internet-Draft Certificate Transparency October 2012

 Structure of the Merkle Tree input:

 struct {
 uint64 timestamp;
 LogEntryType entry_type;
 select(entry_type) {
 case x509_entry: ASN.1Cert;
 case precert_entry: ASN.1Cert;
 } signed_entry;
 } MerkleTreeLeaf;

 Here "timestamp" is the timestamp of the corresponding SCT issued for
 this certificate.

 "signed_entry" is the "signed_entry" of the corresponding SCT.

 Structure of the Signed Merkle Tree Update:

 struct {
 Version version;
 LogID id;
 uint64 old_tree_size;
 uint64 timestamp;
 MerkleTreeLeaf new_leaves<0..2^64-1>;
 digitally-signed struct {
 SignatureType signature_type = tree_hash;
 uint64 timestamp;
 uint64 tree_size;
 opaque sha256_root_hash[32];
 } TreeHeadSignature;
 } SignedMerkleTreeUpdate;

 "version" is the version of the protocol the SignedMerkleTreeUpdate
 conforms to.

 "old_tree_size" is the size of the tree prior to this update.

 "timestamp" is the current time. The timestamp MUST be at least as
 recent as the most recent SCT timestamp in the tree. Each subsequent
 timestamp MUST be more recent than the timestamp of the previous
 update.

 "tree_size" equals the number of entries in the new tree.

 "new_leaves" is the list of leaves added to the tree in this update,
 ordered by leaf index. This order can be fixed arbitrarily amongst
 new entries.

Laurie, et al. Expires April 21, 2013 [Page 12]

Internet-Draft Certificate Transparency October 2012

 "sha256_root_hash" is the root of the Merkle Hash Tree.

 The log MUST produce a Signed Merkle Tree Update at least as often as
 the Maximum Merge Delay. In the unlikely event that it receives no
 new submissions during an MMD period, the log SHALL sign the same
 Merkle Tree Hash with a fresh timestamp.

2.3. Audit Proofs

 It is possible to audit the entire log by computing the current
 "sha256_root_hash" value from consecutive Signed Merkle Tree Updates,
 and verifying the Tree Head Signature. We rely on cross-checks of
 the Signed Tree Head between auditors to verify that their views of
 the log are consistent.

 Additionally, logs provide Merkle audit proofs for efficient partial
 checks. (In fact, anyone can compute audit proofs from the full
 log.) Merkle audit proofs allow auditors to efficiently verify that
 a certificate for which an SCT has been issued indeed appears in the
 log, without inspecting the entire log.

 Structure of the Merkle audit proof:

 struct {
 opaque sha256_hash[32];
 } MerkleNode;

 struct {
 Version version;
 LogID id;
 uint64 tree_size;
 uint64 timestamp;
 uint64 leaf_index;
 MerkleNode audit_path<0..2^16-1>;
 TreeHeadSignature tree_head_signature;
 } MerkleAuditProof;

 "tree_size" is the generation of the tree that this proof is for.

 "timestamp" is the corresponding timestamp.

 "leaf_index" is the index of the audited node in the Merkle tree,
 from 0 to "tree_size - 1".

 "audit_path" is a list of additional nodes in the Merkle tree
 required for reconstructing the root hash corresponding to the
 "tree_size". Nodes must be listed from leaf to root level, i.e., in

Laurie, et al. Expires April 21, 2013 [Page 13]

Internet-Draft Certificate Transparency October 2012

 the order they are used in the Merkle Tree Hash computation, as
 defined in Section 1.1.1. _Notice that the left-right ordering is
 determined by the position of the leaf._ The leaf node under audit as
 well as the root node shall be omitted from the path.

 "tree_head_signature" is the TreeHeadSignature for generation
 "tree_size".

 A valid audit proof for a Merkle Tree Leaf MUST satisfy the
 following:

 o The "tree_size" MUST be at least 1;

 o The "leaf_index" MUST NOT exceed "tree_size - 1";

 o The "tree_signature" MUST be a valid signature on the
 corresponding "timestamp", "tree_size", and the root hash
 reconstructed from the Merkle Tree Leaf, "leaf_index" and
 "audit_path".

Laurie, et al. Expires April 21, 2013 [Page 14]

Internet-Draft Certificate Transparency October 2012

3. Client Messages

 TBD. Messages that clients send to logs, e.g. to request an SCT or
 retrieve entries in the log.

Laurie, et al. Expires April 21, 2013 [Page 15]

Internet-Draft Certificate Transparency October 2012

4. Security and Privacy Considerations

4.1. Misissued Certificates

 Misissued certificates that have not been publicly logged, and thus
 do not have a valid SCT, will be rejected by clients. Misissued
 certificates that do have an SCT from a log will appear in the public
 log within the Maximum Merge Delay, assuming the log is operating
 correctly. Thus, the maximum period of time during which a misissued
 certificate can be used without being available for audit is the MMD.

4.2. Detection of Misissue

 The log does not itself detect misissued certificate, it relies
 instead on interested parties, such as domain owners, to monitor it
 and take corrective action when a misissue is detected.

4.3. Misbehaving logs

 A log can misbehave in two ways: (1), by failing to incorporate a
 certificate with an SCT in the Merkle Tree within the MMD; and (2),
 by violating its append-only property by presenting two different,
 conflicting views of the Merkle Tree at different times and/or to
 different parties. Both forms of violation will be promptly and
 publicly detectable.

 Violation of the MMD contract is detected by clients requesting a
 Merkle audit proof for each observed SCT. These checks can be
 asynchronous, and need only be done once per each certificate. In
 order to protect the clients' privacy, these checks need not reveal
 the exact certificate to the log. Clients can instead request the
 proof from a trusted auditor (since anyone can compute the audit
 proofs from the log), or request Merkle proofs for a batch of
 certificates around the SCT timestamp.

 Violation of the append-only property is detected by global
 gossiping, i.e., everyone auditing the log comparing their versions
 of the latest signed tree head. As soon as two conflicting signed
 tree heads are detected, this is cryptographic proof of the log's
 misbehaviour.

Laurie, et al. Expires April 21, 2013 [Page 16]

Internet-Draft Certificate Transparency October 2012

5. Efficiency Considerations

 The Merkle tree design serves the purpose of keeping communication
 overhead low.

 Auditing the log for integrity does not require third parties to
 maintain a copy of the entire log. The Signed Tree Head root hash
 can be updated incrementally as new entries become available, without
 recomputing the entire tree. Third party auditors need only store a
 logarithmic number of intermediate nodes in the Merkle Tree.

 Additionally, the Merkle consistency proofs defined in Section 1.1.2
 can be used to efficiently prove the append-only property of an
 incremental update to the Merkle Tree, without auditing the entire
 tree.

Laurie, et al. Expires April 21, 2013 [Page 17]

Internet-Draft Certificate Transparency October 2012

6. References

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5878] Brown, M. and R. Housley, "The Transport Layer Security
 (TLS) Authorization Extensions", RFC 5280, May 2010.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [1] <http://tamperevident.cs.rice.edu/Logging.html/>

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6066
http://tamperevident.cs.rice.edu/Logging.html/

Laurie, et al. Expires April 21, 2013 [Page 18]

Internet-Draft Certificate Transparency October 2012

Authors' Addresses

 Ben Laurie

 Email: benl@google.com

 Adam Langley

 Email: agl@google.com

 Emilia Kasper

 Email: ekasper@google.com

Laurie, et al. Expires April 21, 2013 [Page 19]

