
Workgroup: Independent Submission

Internet-Draft: draft-lcurley-warp-02

Published: 24 October 2022

Intended Status: Informational

Expires: 27 April 2023

Authors: L. Curley

Twitch

K. Pugin

Meta

S. Nandakumar

Cisco

Warp - Segmented Live Media Transport

Abstract

This document defines the core behavior for Warp, a segmented live

media transport protocol over QUIC. Media is split into segments

based on the underlying media encoding and transmitted independently

over QUIC streams. QUIC streams are prioritized based on the

delivery order, allowing less important segments to be starved or

dropped during congestion.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Terms and Definitions

2. Motivation

2.1. Latency

2.2. Universal

2.3. Relays

3. Segments

3.1. Media

3.2. Delivery Order

3.3. Dependencies

3.4. Decoder

4. QUIC

4.1. Establishment

4.2. Streams

4.3. Prioritization

4.4. Cancellation

4.5. Relays

4.6. Congestion Control

4.7. Termination

5. Messages

5.1. HEADERS

5.2. SEGMENT

5.3. APP

5.4. GOAWAY

6. Security Considerations

6.1. Resource Exhaustion

7. IANA Considerations

8. Appendix A. Video Encoding

8.1. Tracks

8.2. Init

8.3. Video

8.3.1. B-Frames

8.3.2. Timestamps

8.3.3. Group of Pictures

8.3.4. Scalable Video Coding

8.4. Audio

9. Appendix B. Segment Examples

9.1. Video

9.1.1. Group of Pictures

9.1.2. Scalable Video Coding

9.1.3. Frames

9.1.4. Init

9.2. Audio

9.3. Delivery Order

Contributors

References

Normative References

Bitstream:

Codec:

Congestion:

Consumer:

Container:

Decoder:

Decode Timestamp (DTS):

Encoder:

Frame:

Informative References

Authors' Addresses

1. Introduction

Warp is a live media transport protocol that utilizes the QUIC

network protocol [QUIC].

Section 2 covers the background and rationale behind Warp.

Section 3 covers how media is encoded and split into segments.

Section 4 covers how QUIC is used to transfer media.

Section 5 covers how messages are encoded on the wire.

1.1. Terms and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Commonly used terms in this document are described below.

A continunous series of bytes.

A compression algorithm for audio or video.

Packet loss and queuing caused by degraded or

overloaded networks.

A QUIC endpoint receiving media over the network. This

could be the media player or middleware.

A file format containing timestamps and the codec

bitstream

A endpoint responsible for a deflating a compressed media

stream into raw frames.

A timestamp indicating the order that

frames/samples should be fed to the decoder.

A component responsible for creating a compressed media

stream out of raw frames.

An video image or group of audio samples to be rendered at a

specific point in time.

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

I-frame:

Group of pictures (GoP):

Group of samples:

Player:

Presentation Timestamp (PTS):

Producer:

Rendition:

Slice:

Track:

A frame that does not depend on the contents of other

frames; effectively an image.

A I-frame followed by a sequential series

of dependent frames.

A sequential series of audio samples starting at

a given timestamp.

A component responsible for presenting frames to a viewer

based on the presentation timestamp.

A timestamp indicating when a frames/

samples should be presented to the viewer.

A QUIC endpoint sending media over the network. This

could be the media encoder or middleware.

One or more tracks with the same content but different

encodings.

A section of a video frame. There may be multiple slices per

frame.

An encoded bitstream, representing a single video/audio

component that makes up the larger broadcast.

2. Motivation

2.1. Latency

In a perfect world, we could deliver live media at the same rate it

is produced. The end-to-end latency of a broadcast would be fixed

and only subject to encoding and transmission delays. Unfortunately,

networks have variable throughput, primarily due to congestion.

Attempting to deliver media encoded at a higher bitrate than the

network can support causes queuing. This queuing can occur anywhere

in the path between the encoder and decoder. For example: the

application, the OS socket, a wifi router, within an ISP, or

generally anywhere in transit.

If nothing is done, new frames will be appended to the end of a

growing queue and will take longer to arrive than their

predecessors, increasing latency. Our job is to minimize the growth

of this queue, and if necessary, bypass the queue entirely by

dropping content.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The speed at which a media protocol can detect and respond to

queuing determines the latency. We can generally classify existing

media protocols into two categories based on the underlying network

protocol:

TCP-based media protocols (ex. RTMP, HLS, DASH) are popular due

to their simplicity. Media is served/consumed in decode order

while any networking is handled by the TCP layer. However, these

protocols primarily see usage at higher latency targets due to

their relatively slow detection and response to queuing.

UDP-based media protocols (ex. RTP, WebRTC, SRT) can side-step

the issues with TCP and provide lower latency with better queue

management. However the media protocol is now responsible for

fragmentation, congestion control, retransmissions, receiver

feedback, reassembly, and more. This added complexity

significantly raises the implementation difficulty and hurts

interoperability.

A goal of this draft is to get the best of both worlds: a simple

protocol that can still rapidly detect and respond to congestion.

This is possible emergence of QUIC, designed to fix the shortcomings

of TCP.

2.2. Universal

The media protocol ecosystem is fragmented; each protocol has it's

own niche. Specialization is often a good thing, but we believe

there's enough overlap to warrant consolidation.

For example, a service might simultaneously ingest via WebRTC, SRT,

RTMP, and/or a custom UDP protocol depending on the broadcaster. The

same service might then simultaneously distribute via WebRTC, LL-

HLS, HLS, (or the DASH variants) and/or a custom UDP protocol

depending on the viewer.

These media protocols are often radically different and not

interoperable; requiring transcoding or transmuxing. This cost is

further increased by the need to maintain separate stacks with

different expertise requirements.

A goal of this draft is to cover a large spectrum of use-cases.

Specifically:

Consolidated contribution and distribution. The primary

difference between the two is the ability to fanout. How does a

CDN know how to forward media to N consumers and how does it

reduce the encoded bitrate during congestion? A single protocol

can cover both use-cases provided relays are informed on how to

forward and drop media.

¶

*

¶

*

¶

¶

¶

¶

¶

¶

*

¶

A configurable latency versus quality trade-off. The producer

(broadcaster) chooses how to encode and transmit media based on

the desired user experience. Each consumer (viewer) chooses how

long to wait for media based on their desired user experience and

network. We want an experience that can vary from real-time and

lossy for one viewer, to delayed and loss-less for another

viewer, without separate encodings or protocols.

A related goal is to not reinvent how media is encoded. The same

codec bitstream and container should be usable between different

protocols.

2.3. Relays

The prevailing belief is that UDP-based protocols are more expensive

and don't "scale". While it's true that UDP is more difficult to

optimize than TCP, QUIC itself is proof that it is possible to reach

performance parity. In fact even some TCP-based protocols (ex. RTMP)

don't "scale" either and are exclusively used for contribution as a

result.

The ability to scale a media protocol actually depends on relay

support: proxies, caches, CDNs, SFUs, etc. The success of HTTP-based

media protocols is due to the ability to leverage traditional HTTP

CDNs.

It's difficult to build a CDN for media protocols that were not

designed with relays in mind. For example, an relay has to parse the

underlying codec to determine which RTP packets should be dropped

first, and the decision is not deterministic or consistent for each

hop. This is the fatal flaw of many UDP-based protocols.

A goal of this draft is to treat relays as first class citizens. Any

identification, reliability, ordering, prioritization, caching, etc

is written to the wire in a header that is easy to parse. This

ensures that relays can easily route/fanout media to the final

destination. This also ensures that congestion response is

consistent at every hop based on the preferences of the media

producer.

3. Segments

Warp works by splitting media into segments that can be transferred

over QUIC streams.

The encoder determines how to fragment the encoded bitstream into

segments (Section 3.1).

Segments are assigned an intended delivery order that should be

obeyed during congestion (Section 3.2)

*

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

Segments can be dependent on other segments, in which case

reordering is required (Section 3.3).

The decoder receives each segment and skips any segments that do

not arrive in time (Section 3.4).

3.1. Media

An encoder produces one or more codec bitstreams for each track. The

decoder processes the codec bitstreams in the same order they were

produced, with some possible exceptions based on the encoding. See

the appendix for an overview of media encoding (Section 8).

Warp works by fragmenting the bitstream into segments that can be

transmitted somewhat independently. Depending on how the segments

are fragmented, the decoder has the ability to safely drop media

during congestion. See the appendix for fragmentation examples

(Section 9)

A segment:

MUST contain a single track.

MUST be in decode order. This means an increasing DTS.

MAY contain any number of frames/samples.

MAY have gaps between frames/samples.

MAY overlap with other segments. This means timestamps may be

interleaved between segments.

MAY reference frames in other segments, but only if listed as a

dependency.

Segments are encoded using fragmented MP4 [ISOBMFF]. This is

necessary to store timestamps and various metadata depending on the

codec. A future draft of Warp may specify other container formats.

3.2. Delivery Order

Media is produced with an intended order, both in terms of when

media should be presented (PTS) and when media should be decoded

(DTS). As stated in motivation (Section 2.1), the network is unable

to maintain this ordering during congestion without increasing

latency.

The encoder determines how to behave during congestion by assigning

each segment a numeric delivery order. The delivery order SHOULD be

followed when possible to ensure that the most important media is

*

¶

*

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

¶

¶

delivered when throughput is limited. Note that the contents within

each segment are still delivered in order; this delivery order only

applies to the ordering between segments.

A segment MUST NOT have a smaller delivery order than a segment it

depends on. Delivering segments out of dependency order will

increase latency and can cause artifacting when memory limits are

tight. This is especially problematic and can cause a deadlock if

the receiver does not release flow control until dependencies are

received.

A sender MUST send each segment over a dedicated QUIC stream. The

QUIC library should support prioritization (Section 4.3) such that

streams are transmitted in delivery order.

A receiver MUST NOT assume that segments will be received in

delivery order for a number of reasons:

Newly encoded segments MAY have a smaller delivery order than

outstanding segments.

Packet loss or flow control MAY delay the delivery of individual

streams.

The sender might not support QUIC stream prioritization.

3.3. Dependencies

Media encoding uses references to improve the compression. This

creates hard and soft dependencies that need to be respected by the

transport. See the appendex for an overview of media encoding

(Section 8).

A segment MAY depend on any number of other segments. The encoder

MUST indicate these dependecies on the wire via the HEADERS message

(Section 5.1).

The sender SHOULD NOT use this list of dependencies to determine

which segment to transmit next. The sender SHOULD use the delivery

order instead, which MUST respect dependencies.

The decoder SHOULD process segments according to their dependencies.

This means buffering a segment until the relevent timestamps have

been processed in all dependencies. A decoder MAY drop dependencies

at the risk of producing decoding errors and artifacts.

3.4. Decoder

The decoder will receive multiple segments in parallel and out of

order.

¶

¶

¶

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

¶

Segments arrive in delivery order, but media usually needs to be

processed in decode order. The decoder SHOULD use a buffer to

reassmble segments into decode order and it SHOULD skip segments

after a configurable duration. The amount of time the decoder is

willing to wait for a segment (buffer duration) is what ultimately

determines the end-to-end latency.

Segments MUST synchronize frames within and between tracks using

presentation timestamps within the container. Segments are NOT

REQUIRED to be aligned and the decoder MUST be prepared to skip over

any gaps.

4. QUIC

4.1. Establishment

A connection is established using WebTransport [WebTransport].

To summarize: The client issues a HTTP CONNECT request with the

intention of establishing a new WebTransport session. The server

returns an 200 OK response if the WebTransport session has been

established, or an error status otherwise.

A WebTransport session exposes the basic QUIC service abstractions.

Specifically, either endpoint may create independent streams which

are reliably delivered in order until canceled.

WebTransport can currently operate via HTTP/3 and HTTP/2, using QUIC

or TCP under the hood respectively. As mentioned in the motivation

(Section 2) section, TCP introduces head-of-line blocking and will

result in a worse experience. It is RECOMMENDED to use WebTransport

over HTTP/3.

The application SHOULD use the CONNECT request for authentication.

For example, including a authentication token and some identifier in

the path.

4.2. Streams

Warp endpoints communicate over unidirectional QUIC streams. The

application MAY use bidirectional QUIC streams for other purposes.

A stream consists of sequential messages. See messages (Section 5)

for the list of messages and their encoding. These are similar to

QUIC and HTTP/3 frames, but called messages to avoid the media

terminology.

Each stream MUST start with a HEADERS message (Section 5.1) to

indicates how the stream should be transmitted.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Messages SHOULD be sent over the same stream if ordering is desired.

For example, PAUSE and PLAY messages SHOULD be sent on the same

stream to avoid a race.

4.3. Prioritization

Warp utilizes stream prioritization to deliver the most important

content during congestion.

The encoder may assign a numeric delivery order to each stream

(Section 3.2) This is a strict prioritization scheme, such that any

available bandwidth is allocated to streams in ascending priority

order. The sender SHOULD prioritize streams based on the delivery

order. If two streams have the same delivery order, they SHOULD

receive equal bandwidth (round-robin).

QUIC supports stream prioritization but does not standardize any

mechanisms; see Section 2.3 in [QUIC]. In order to support

prioritization, a QUIC library MUST expose a API to set the priority

of each stream. This is relatively easy to implement; the next QUIC

packet should contain a STREAM frame for the next pending stream in

priority order.

The sender MUST respect flow control even if means delivering

streams out of delivery order. It is OPTIONAL to prioritize

retransmissions.

4.4. Cancellation

A QUIC stream MAY be canceled at any point with an error code. The

producer does this via a RESET_STREAM frame while the consumer

requests cancellation with a STOP_SENDING frame.

When using order, lower priority streams will be starved during

congestion, perhaps indefinitely. These streams will consume

resources and flow control until they are canceled. When nearing

resource limits, an endpoint SHOULD cancel the lowest priority

stream with error code 0.

The sender MAY cancel streams in response to congestion. This can be

useful when the sender does not support stream prioritization.

4.5. Relays

Warp encodes the delivery information for each stream via a HEADERS

frame (Section 5.1). This MUST be at the start of each stream so it

is easy for a relay to parse.

¶

¶

¶

¶

¶

¶

¶

¶

¶

A relay SHOULD prioritize streams (Section 4.3) based on the

delivery order. A relay MAY change the delivery order, in which case

it SHOULD update the value on the wire for future hops.

A relay that reads from a stream and writes to stream in order will

introduce head-of-line blocking. Packet loss will cause stream data

to be buffered in the QUIC library, awaiting in order delivery,

which will increase latency over additional hops. To mitigate this,

a relay SHOULD read and write QUIC stream data out of order subject

to flow control limits. See section 2.2 in [QUIC].

4.6. Congestion Control

As covered in the motivation section (Section 2), the ability to

prioritize or cancel streams is a form of congestion response. It's

equally important to detect congestion via congestion control, which

is handled in the QUIC layer [QUIC-RECOVERY].

Bufferbloat is caused by routers queueing packets for an indefinite

amount of time rather than drop them. This latency significantly

reduces the ability for the application to prioritize or drop media

in response to congestion. Senders SHOULD use a congestion control

algorithm that reduces this bufferbloat (ex. [BBR]). It is NOT

RECOMMENDED to use a loss-based algorithm (ex. [NewReno]) unless the

network fully supports ECN.

Live media is application-limited, which means that the encoder

determines the max bitrate rather than the network. Most TCP

congestion control algorithms will only increase the congestion

window if it is full, limiting the upwards mobility when

application-limited. Senders SHOULD use a congestion control

algorithm that is designed for application-limited flows (ex. GCC).

Senders MAY periodically pad the connection with QUIC PING frames to

fill the congestion window.

4.7. Termination

The QUIC connection can be terminated at any point with an error

code.

The media producer MAY terminate the QUIC connection with an error

code of 0 to indicate the clean termination of the broadcast. The

application SHOULD use a non-zero error code to indicate a fatal

error.

Code Reason

0x0 Broadcast Terminated

0x1 GOAWAY (Section 5.4)

Table 1

¶

¶

¶

¶

¶

¶

¶

5. Messages

Messages consist of a type identifier followed by contents,

depending on the message type.

TODO document the encoding

ID Messages

0x0 HEADERS (Section 5.1)

0x1 SEGMENT (Section 5.2)

0x2 APP (Section 5.3)

0x10 GOAWAY (Section 5.4)

Table 2

5.1. HEADERS

The HEADERS message contains information required to deliver, cache,

and forward a stream. This message SHOULD be parsed and obeyed by

any Warp relays.

id. An unique identifier for the stream. This field is optional

and MUST be unique if set.

order. An integer indicating the delivery order (Section 3.2).

This field is optional and the default value is 0.

depends. An list of dependencies by stream identifier

(Section 3.3). This field is optional and the default value is an

empty array.

5.2. SEGMENT

A SEGMENT message consists of a segment in a fragmented MP4

container.

Each segment MUST start with an initialization fragment, or MUST

depend on a segment with an initialization fragment. An

initialization fragment consists of a File Type Box (ftyp) followed

by a Movie Box (moov). This Movie Box (moov) consists of Movie

Header Boxes (mvhd), Track Header Boxes (tkhd), Track Boxes (trak),

followed by a final Movie Extends Box (mvex). These boxes MUST NOT

contain any samples and MUST have a duration of zero. Note that a

Common Media Application Format Header [CMAF] meets all these

requirements.

Each segment MAY have a Segment Type Box (styp) followed by any

number of media fragments. Each media fragment consists of a Movie

Fragment Box (moof) followed by a Media Data Box (mdat). The Media

Fragment Box (moof) MUST contain a Movie Fragment Header Box (mfhd)

and Track Box (trak) with a Track ID (track_ID) matching a Track Box

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

in the initialization fragment. Note that a Common Media Application

Format Segment [CMAF] meets all these requirements.

Media fragments can be packaged at any frequency, causing a trade-

off between overhead and latency. It is RECOMMENDED that a media

fragment consists of a single frame to minimize latency.

5.3. APP

The APP message contains arbitrary contents. This is useful for

metadata that would otherwise have to be shoved into the media

bitstream.

Relays MUST NOT differentiate between streams containing SEGMENT and

APP frames. The same forwarding and caching behavior applies to both

as specified in theHEADERS frame.

5.4. GOAWAY

The GOAWAY message is sent by the server to force the client to

reconnect. This is useful for server maintenance or reassignments

without severing the QUIC connection. The server MAY be a producer

or consumer.

The server:

MAY initiate a graceful shutdown by sending a GOAWAY message.

MUST close the QUIC connection after a timeout with the GOAWAY

error code (Section 4.7).

MAY close the QUIC connection with a different error code if

there is a fatal error before shutdown.

SHOULD wait until the GOAWAY message and any pending streams have

been fully acknowledged, plus an extra delay to ensure they have

been processed.

The client:

MUST establish a new WebTransport session to the provided URL

upon receipt of a GOAWAY message.

SHOULD establish the connection in parallel which MUST use

different QUIC connection.

SHOULD remain connected for two servers for a short period,

processing segments from both in parallel.

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

6. Security Considerations

6.1. Resource Exhaustion

Live media requires significant bandwidth and resources. Failure to

set limits will quickly cause resource exhaustion.

Warp uses QUIC flow control to impose resource limits at the network

layer. Endpoints SHOULD set flow control limits based on the

anticipated media bitrate.

The media producer prioritizes and transmits streams out of order.

Streams might be starved indefinitely during congestion. The

producer and consumer MUST cancel a stream, preferably the lowest

priority, after reaching a resource limit.

7. IANA Considerations

TODO

8. Appendix A. Video Encoding

In order to transport media, we first need to know how media is

encoded. This section is an overview of media encoding.

8.1. Tracks

A broadcast consists of one or more tracks. Each track has a type

(audio, video, caption, etc) and uses a corresponding codec. There

may be multiple tracks, including of the same type for a number of

reasons.

For example:

A track for each codec.

A track for each resolution and bitrate.

A track for each language.

A track for each camera feed.

Tracks can be muxed together into a single container or stream. The

goal of Warp is to independently deliver tracks, and even parts of a

track, so this is not allowed. Each Warp segment MUST contain a

single track.

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

8.2. Init

Media codecs have a wide array of configuration options. For

example, the resolution, the color space, the features enabled, etc.

Before playback can begin, the decoder needs to know the

configuration. This is done via a short payload at the very start of

the media file. The initialization payload MAY be cached and reused

between segments with the same configuration.

8.3. Video

Video is a sequence of pictures (frames) with a presentation

timestamp (PTS).

An I-frame is a frame with no dependencies and is effectively an

image file. These frames are usually inserted at a frequent interval

to support seeking or joining a live stream. However they can also

improve compression when used at scene boundaries.

A P-frame is a frame that references on one or more earlier frames.

These frames are delta-encoded, such that they only encode the

changes (motion). This result in a massive file size reduction for

most content outside of few notorious cases (ex. confetti).

A common encoding structure is to only reference the previous frame,

as it is simple and minimizes latency:

There is no such thing as an optimal encoding structure. Encoders

tuned for the best quality will produce a tangled spaghetti of

references. Encoders tuned for the lowest latency can avoid

reference frames to allow more to be dropped.

8.3.1. B-Frames

The goal of video codecs is to maximize compression. One of the

improvements is to allow a frame to reference later frames.

A B-frame is a frame that can reference one or more frames in the

future, and any number of frames in the past. These frames are more

difficult to encode/decode as they require buffering and reordering.

A common encoding structure is to use B-frames in a fixed pattern.

Such a fixed pattern is not optimal, but it's simpler for hardware

encoding:

¶

¶

¶

¶

¶

¶

 I <- P <- P <- P I <- P <- P <- P I <- P ...¶

¶

¶

¶

¶

8.3.2. Timestamps

Each frame is assigned a presentation timestamp (PTS), indicating

when it should be shown relative to other frames.

The encoder outputs the bitstream in decode order, which means that

each frame is output after its references. This makes it easier for

the decoder as all references are earlier in the bitstream and can

be decoded immediately.

However, this causes problems with B-frames because they depend on a

future frame, and some reordering has to occur. In order to keep

track of this, frames have a decode timestamp (DTS) in addition to a

presentation timestamp (PTS). A B-frame will have higher DTS value

that its dependencies, while PTS and DTS will be the same for other

frame types.

For the example above, this would look like:

B-frames add latency because of this reordering so they are usually

not used for conversational latency.

8.3.3. Group of Pictures

A group of pictures (GoP) is an I-frame followed by any number of

frames until the next I-frame. All frames MUST reference, either

directly or indirectly, only the most recent I-frame.

This is a useful abstraction because GoPs can always be decoded

independently.

 B B B B B

 / \ / \ / \ / \ / \

 v v v v v v v v v v

 I <-- P <-- P I <-- P <-- P I <-- P ...

¶

¶

¶

¶

¶

 0 1 2 3 4 5 6 7 8 9 10

PTS: I B P B P I B P B P B

DTS: I PB PBI PB PB

¶

¶

¶

 GoP GoP GoP

+-----------------+-----------------+---------------

| B B | B B | B

| / \ / \ | / \ / \ | / \

| v v v v | v v v v | v v

| I <-- P <-- P | I <-- P <-- P | I <-- P ...

+-----------------+-----------------+--------------

¶

¶

8.3.4. Scalable Video Coding

Some codecs support scalable video coding (SVC), in which the

encoder produces multiple bitstreams in a hierarchy. This layered

coding means that dropping the top layer degrades the user

experience in a configured way. Examples include reducing the

resolution, picture quality, and/or frame rate.

Here is an example SVC encoding with 3 resolutions:

8.4. Audio

Audio is dramatically simpler than video as it is not typically

delta encoded. Audio samples are grouped together (group of samples)

at a configured rate, also called a "frame".

The encoder spits out a continuous stream of samples (S):

9. Appendix B. Segment Examples

Warp offers a large degree of flexibility on how segments are

fragmented and prioritized. There is no best solution; it depends on

the desired complexity and user experience.

This section provides a summary of some options available.

9.1. Video

9.1.1. Group of Pictures

A group of pictures (GoP) is consists of an I-frame and all frames

that directly or indirectly reference it (Section 8.3.3). The tail

of a GoP can be dropped without causing decode errors, even if the

encoding is otherwise unknown, making this the safest option.

¶

¶

 +-------------------------+------------------

 4k | P <- P <- P <- P <- P | P <- P <- P ...

 | | | | | | | | | |

 | v v v v v | v v v

 +-------------------------+------------------

1080p | P <- P <- P <- P <- P | P <- P <- P ...

 | | | | | | | | | |

 | v v v v v | v v v

 +-------------------------+------------------

 360p | I <- P <- P <- P <- P | I <- P <- P ...

 +-------------------------+------------------

¶

¶

¶

S S S S S S S S S S S S S ...¶

¶

¶

¶

It is RECOMMENDED that each segment consist of a single GoP. For

example:

Depending on the video encoding, this approach may introduce

unnecessary ordering and dependencies. A better option may be

available below.

9.1.2. Scalable Video Coding

Some codecs support scalable video coding (SVC), in which the

encoder produces multiple bitstreams in a hierarchy (Section 8.3.4).

When SVC is used, it is RECOMMENDED that each segment consist of a

single layer and GoP. For example:

9.1.3. Frames

With full knowledge of the encoding, the encoder MAY can split a GoP

into multiple segments based on the frame. However, this is highly

dependent on the encoding, and the additional complexity might not

improve the user experience.

For example, we could split our example B-frame structure

(Section 8.3.1) into 13 segments:

¶

 segment 1 segment 2 segment 3

+---------------+---------------+---------

| I P B P B | I P B P B | I P B

+---------------+---------------+---------

¶

¶

¶

¶

 segment 3 segment 6

 +-------------------------+---------------

 4k | P <- P <- P <- P <- P | P <- P <- P

 | | | | | | | | | |

 | v v v v v | v v v

 +-------------------------+--------------

 segment 2 segment 5

 +-------------------------+---------------

1080p | P <- P <- P <- P <- P | P <- P <- P

 | | | | | | | | | |

 | v v v v v | v v v

 +-------------------------+--------------

 segment 1 segment 4

 +-------------------------+---------------

 360p | I <- P <- P <- P <- P | I <- P <- P

 +-------------------------+---------------

¶

¶

¶

To reduce the number of segments, segments can be merged with their

dependency. QUIC streams will deliver each segment in order so this

produces the same result as reordering within the application.

The same GoP structure can be represented using eight segments:

We can further reduce the number of segments by combining frames

that don't depend on each other. The only restriction is that frames

can only reference frames earlier in the segment, or within a

dependency segment. For example, non-reference frames can have their

own segment so they can be prioritized or dropped separate from

reference frames.

The same GoP structure can also be represented using six segments,

although we've removed the ability to drop individual B-frames:

9.1.4. Init

Initialization data (Section 8.2) is required to initialize the

decoder. Each segment MAY start with initialization data although

this adds overhead.

Instead, it is RECOMMENDED to create a init segment. Each media

segment can then depend on the init segment to avoid the redundant

overhead. For example:

 2 4 7 9 12

+--------+--------+--------+--------+-----------+

| B | B | B | B | B |

|-----+--+--+-----+-----+--+--+-----+-----+-----+

| I | P | P | I | P | P | I | P |

+-----+-----+-----+-----+-----+-----+-----+-----+

 1 3 5 6 8 10 11 13

¶

¶

¶

 2 3 5 6 8

+--------+--------+-----------------+------------

| B | B | B | B | B |

+--------+--------+--------+--------+-----------+

| I P P | I P P | I P

+-----------------+-----------------+------------

 1 4 7

¶

¶

¶

 segment 2 segment 4 segment 6

+-------------+-------------+---------

| B B | B B | B

+-------------+-------------+---------

| I P P | I P P | I P

+-------------+-------------+---------

 segment 1 segment 3 segment 5

¶

¶

¶

9.2. Audio

Audio (Section 8.4) is much simpler than video so there's fewer

options.

The simplest configuration is to use a single segment for each audio

track. This may seem inefficient given the ease of dropping audio

samples. However, the audio bitrate is low and gaps cause quite a

poor user experience, when compared to video.

An improvement is to periodically split audio samples into separate

segments. This gives the consumer the ability to skip ahead during

severe congestion or temporary connectivity loss.

This frequency of audio segments is configurable, at the cost of

additional overhead. It's NOT RECOMMENDED to create a segment for

each audio frame because of this overhead.

Since video can only recover from severe congestion with an I-frame,

so there's not much point recovering audio at a separate interval.

It is RECOMMENDED to create a new audio segment at each video I-

frame.

 segment 2 segment 3 segment 5

+---------------+---------------+---------

| I P B P B | I P B P B | I P B

+---------------+---------------+---------

| init | init

+-------------------------------+---------

 segment 1 segment 4

¶

¶

¶

 segment 1

+---------------------------

| S S S S S S S S S S S S S

+---------------------------

¶

¶

 segment 1 segment 2 segment 3

+---------------+---------------+---------

| S S S S S | S S S S S | S S S

+---------------+---------------+---------

¶

¶

¶

 segment 1 segment 3 segment 5

+---------------+---------------+---------

| S S S S S | S S S S S | S S S

+---------------+---------------+---------

| I P B P B | I P B P B | I P B

+---------------+---------------+---------

 segment 2 segment 4 segment 6

¶

[ISOBMFF]

[QUIC]

[QUIC-RECOVERY]

[RFC2119]

9.3. Delivery Order

The delivery order (Section 3.2 depends on the desired user

experience during congestion:

if media should be skipped: delivery order = PTS

if media should not be skipped: delivery order = -PTS

if video should be skipped before audio: audio delivery order <

video delivery order

The delivery order may be changed if the content changes. For

example, switching from a live stream (skippable) to an

advertisement (unskippable).

Contributors

Alan Frindell

Charles Krasic

Cullen Jennings

James Hurley

Jordi Cenzano

Mike English

References

Normative References

"Information technology — Coding of audio-visual objects

— Part 12: ISO Base Media File Format", December 2015.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

info/rfc9000>.

Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss

Detection and Congestion Control", RFC 9002, DOI

10.17487/RFC9002, May 2021, <https://www.rfc-editor.org/

info/rfc9002>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

* ¶

* ¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc9002

[RFC8174]

[WebTransport]

[BBR]

[CMAF]

[NewReno]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Frindell, A., Kinnear, E., and V. Vasiliev,

"WebTransport over HTTP/3", Work in Progress, Internet-

Draft, draft-ietf-webtrans-http3-03, 6 July 2022,

<https://www.ietf.org/archive/id/draft-ietf-webtrans-

http3-03.txt>.

Informative References

Cardwell, N., Cheng, Y., Yeganeh, S. H., Swett, I., and

V. Jacobson, "BBR Congestion Control", Work in Progress,

Internet-Draft, draft-cardwell-iccrg-bbr-congestion-

control-02, 7 March 2022, <https://www.ietf.org/archive/

id/draft-cardwell-iccrg-bbr-congestion-control-02.txt>.

"Information technology -- Multimedia application format

(MPEG-A) -- Part 19: Common media application format

(CMAF) for segmented media", March 2020.

Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida,

"The NewReno Modification to TCP's Fast Recovery

Algorithm", RFC 6582, DOI 10.17487/RFC6582, April 2012,

<https://www.rfc-editor.org/info/rfc6582>.

Authors' Addresses

Luke Curley

Twitch

Email: kixelated@gmail.com

Kirill Pugin

Meta

Email: ikir@meta.com

Suhas Nandakumar

Cisco

Email: snandaku@cisco.com

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.ietf.org/archive/id/draft-ietf-webtrans-http3-03.txt
https://www.ietf.org/archive/id/draft-ietf-webtrans-http3-03.txt
https://www.ietf.org/archive/id/draft-cardwell-iccrg-bbr-congestion-control-02.txt
https://www.ietf.org/archive/id/draft-cardwell-iccrg-bbr-congestion-control-02.txt
https://www.rfc-editor.org/info/rfc6582
mailto:kixelated@gmail.com
mailto:ikir@meta.com
mailto:snandaku@cisco.com

	Warp - Segmented Live Media Transport
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terms and Definitions

	2. Motivation
	2.1. Latency
	2.2. Universal
	2.3. Relays

	3. Segments
	3.1. Media
	3.2. Delivery Order
	3.3. Dependencies
	3.4. Decoder

	4. QUIC
	4.1. Establishment
	4.2. Streams
	4.3. Prioritization
	4.4. Cancellation
	4.5. Relays
	4.6. Congestion Control
	4.7. Termination

	5. Messages
	5.1. HEADERS
	5.2. SEGMENT
	5.3. APP
	5.4. GOAWAY

	6. Security Considerations
	6.1. Resource Exhaustion

	7. IANA Considerations
	8. Appendix A. Video Encoding
	8.1. Tracks
	8.2. Init
	8.3. Video
	8.3.1. B-Frames
	8.3.2. Timestamps
	8.3.3. Group of Pictures
	8.3.4. Scalable Video Coding

	8.4. Audio

	9. Appendix B. Segment Examples
	9.1. Video
	9.1.1. Group of Pictures
	9.1.2. Scalable Video Coding
	9.1.3. Frames
	9.1.4. Init

	9.2. Audio
	9.3. Delivery Order

	Contributors
	References
	Normative References
	Informative References

	Authors' Addresses

