
Workgroup: Independent Submission

Internet-Draft: draft-lcurley-warp-04

Published: 13 March 2023

Intended Status: Informational

Expires: 14 September 2023

Authors: L. Curley

Twitch

K. Pugin

Meta

S. Nandakumar

Cisco

V. Vasiliev

Google

Warp - Live Media Transport over QUIC

Abstract

This document defines the core behavior for Warp, a live media

transport protocol over QUIC. Media is split into objects based on

the underlying media encoding and transmitted independently over

QUIC streams. QUIC streams are prioritized based on the delivery

order, allowing less important objects to be starved or dropped

during congestion.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


Table of Contents

1.  Introduction

1.1.  Terms and Definitions

1.2.  Notational Conventions

2.  Model

2.1.  Objects

2.2.  Groups

2.3.  Track

2.4.  Track Bundle

2.5.  Session

2.6.  Example

3.  Motivation

3.1.  Latency

3.2.  Universal

3.3.  Relays

4.  Objects

4.1.  Media

4.2.  Delivery Order

4.3.  Decoder

5.  QUIC

5.1.  Establishment

5.1.1.  CONNECT

5.2.  Streams

5.3.  Prioritization

5.4.  Cancellation

5.5.  Relays

5.6.  Congestion Control

5.7.  Termination

6.  Messages

6.1.  SETUP

6.2.  OBJECT

6.3.  CATALOG

6.4.  SUBSCRIBE

6.5.  GOAWAY

7.  SETUP Parameters

7.1.  ROLE parameter

8.  Containers

8.1.  fMP4

9.  Security Considerations

9.1.  Resource Exhaustion

10. IANA Considerations

11. Appendix A. Video Encoding

11.1.  Tracks

11.2.  Init

11.3.  Video

11.3.1.  B-Frames

11.3.2.  Timestamps

11.3.3.  Group of Pictures



Bitstream:

Client:

Codec:

Congestion:

11.3.4.  Scalable Video Coding

11.4.  Audio

12. Appendix B. Object Examples

12.1.  Video

12.1.1.  Group of Pictures

12.1.2.  Scalable Video Coding

12.1.3.  Frames

12.1.4.  Init

12.2.  Audio

12.3.  Delivery Order

Contributors

References

Normative References

Informative References

Authors' Addresses

1. Introduction

Warp is a live media transport protocol that utilizes the QUIC

network protocol [QUIC].

Section 3 covers the background and rationale behind Warp.

Section 2.1 covers how media is fragmented into objects.

Section 5 covers how QUIC is used to transfer media.

Section 6 covers how messages are encoded on the wire.

Section 8 covers how media tracks are packaged.

1.1. Terms and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Commonly used terms in this document are described below.

A continunous series of bytes.

The party initiating a Warp session.

A compression algorithm for audio or video.

Packet loss and queuing caused by degraded or

overloaded networks.

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶



Consumer:

Container:

Decoder:

Decode Timestamp (DTS):

Encoder:

Frame:

I-frame:

Group of pictures (GoP):

Group of samples:

Player:

Presentation Timestamp (PTS):

Producer:

Server:

Slice:

Track:

Variant:

A QUIC endpoint receiving media over the network. This

could be the media player or middleware.

A file format containing timestamps and the codec

bitstream

A endpoint responsible for a deflating a compressed media

stream into raw frames.

A timestamp indicating the order that

frames/samples should be fed to the decoder.

A component responsible for creating a compressed media

stream out of raw frames.

An video image or group of audio samples to be rendered at a

specific point in time.

A frame that does not depend on the contents of other

frames; effectively an image.

A I-frame followed by a sequential series

of dependent frames.

A sequential series of audio samples starting at

a given timestamp.

A component responsible for presenting frames to a viewer

based on the presentation timestamp.

A timestamp indicating when a frames/

samples should be presented to the viewer.

A QUIC endpoint sending media over the network. This

could be the media encoder or middleware.

The party accepting an incoming Warp session.

A section of a video frame. There may be multiple slices per

frame.

An encoded bitstream, representing a single media component

(ex. audio, video, subtitles) that makes up the larger broadcast.

A track with the same content but different encoding as

another track. For example, a different bitrate, codec, language,

etc.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



x (b):

1.2. Notational Conventions

This document uses the conventions detailed in Section 1.3 of 

[RFC9000] when describing the binary encoding.

This document also defines an additional field type for binary data:

Indicates that x consists of a variable length integer,

followed by that many bytes of binary data.

2. Model

2.1. Objects

The basic element of Warp is an object. An object is a single

addressable cacheable unit whose payload is a sequence of bytes. An

object MAY depend on other objects to be decoded. An object MUST

belong to a group Section 2.2. Objects carry associated metadata

such as priority, TTL or other information usable by a relay, but

relays MUST treat object payloads as opaque.

DISCUSS: Can an object be partially decodable by an endpoint?

Authors agree that an object is always partially forwardable by a

relay but disagree on whether a partial object can be used by a

receiving endpoint.

Option 1: A receiver MAY start decoding an object before it has been

completely received

Example: sending an entire GOP as a single object. A receiver can

decode the GOP from the beginning without having the entire object

present, and the object's tail could be dropped. Sending a GOP as a

group of not-partially-decodable objects might incur additional

overhead on the wire and/or additional processing of video segments

at a sender to find object boundaries.

Partial decodability could be another property of an object.

Option 2: A receiver MUST NOT start decoding an object before it has

completely arrived

Objects could be end-to-end encrypted and the receiver might not be

able to decrypt or authenticate an object until it is fully present.

Allowing Objects to span more than one useable unit may create more

than one viable application mapping from media to wire format, which

could be confusing for protocol users.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



2.2. Groups

An object group is a sequence of media objects. Beginning of an

object group can be used as a point at which the receiver can start

consuming a track without having any other object groups available.

Object groups have an ID that identifies them uniquely within a

track.

DISCUSS: We need to determine what are the exact requirements we

need to impose on how the media objects depend on each other. Such

requirements would need to address the use case (a join point),

while being flexible enough to accomodate scenarios like B-frames

and temporal scaling.

2.3. Track

A media track in Warp is a combination of an init object and a

sequence of media object groups. An init object is a format-specific

self-contained description of the track that is required to decode

any media object contained within the track, but can also be used as

the metadata for track selection. If two media tracks carry

semantically equivalent but differently encoded media, they are

referred to as variants of each other.

2.4. Track Bundle

A track bundle is a collection of tracks intended to be delivered

together. Objects within a track bundle may be prioritized relative

to each other via the delivery order property. This allows objects

to be prioritized within a track (ex. newer > older) and between

tracks (ex. audio > video). The track bundle contains a catalog

indicating the available tracks.

2.5. Session

A WebTransport session is established for each track bundle. The

client issues a CONNECT request with a URL which the server uses for

identification and authentication. All control messages and

prioritization occur within the context of a single WebTransport

session, which means a single track bundle. Multiple WebTransport

sessions may be pooled over a single QUIC connection for efficiency.

2.6. Example

As an example, consider a scenario where example.org hosts a simple

live stream that anyone can subscribe to. That live stream would be

a single track bundle, accessible via the WebTransport URL: https://

example.org/livestream. In a simple scenario, the track bundle would

contain only two media tracks, one with audio and one with video. In

a more complicated scenario, the track bundle could multiple tracks

¶

¶

¶

¶

¶



with different formats, encodings, bitrates, and quality levels,

possibly for the same content. The receiver learns about each

available track within the bundle via the catalog, and can choose to

subscribe to a subset.

3. Motivation

3.1. Latency

In a perfect world, we could deliver live media at the same rate it

is produced. The end-to-end latency of a broadcast would be fixed

and only subject to encoding and transmission delays. Unfortunately,

networks have variable throughput, primarily due to congestion.

Attempting to deliver media encoded at a higher bitrate than the

network can support causes queuing. This queuing can occur anywhere

in the path between the encoder and decoder. For example: the

application, the OS socket, a wifi router, within an ISP, or

generally anywhere in transit.

If nothing is done, new frames will be appended to the end of a

growing queue and will take longer to arrive than their

predecessors, increasing latency. Our job is to minimize the growth

of this queue, and if necessary, bypass the queue entirely by

dropping content.

The speed at which a media protocol can detect and respond to

queuing determines the latency. We can generally classify existing

media protocols into two categories based on the underlying network

protocol:

TCP-based media protocols (ex. RTMP, HLS, DASH) are popular due

to their simplicity. Media is served/consumed in decode order

while any networking is handled by the TCP layer. However, these

protocols primarily see usage at higher latency targets due to

their relatively slow detection and response to queuing.

UDP-based media protocols (ex. RTP, WebRTC, SRT) can side-step

the issues with TCP and provide lower latency with better queue

management. However the media protocol is now responsible for

fragmentation, congestion control, retransmissions, receiver

feedback, reassembly, and more. This added complexity

significantly raises the implementation difficulty and hurts

interoperability.

A goal of this draft is to get the best of both worlds: a simple

protocol that can still rapidly detect and respond to congestion.

This is possible with the emergence of QUIC, designed to fix the

shortcomings of TCP.

¶

¶

¶

¶

¶

*

¶

*

¶

¶



3.2. Universal

The media protocol ecosystem is fragmented; each protocol has it's

own niche. Specialization is often a good thing, but we believe

there's enough overlap to warrant consolidation.

For example, a service might simultaneously ingest via WebRTC, SRT,

RTMP, and/or a custom UDP protocol depending on the broadcaster. The

same service might then simultaneously distribute via WebRTC, LL-

HLS, HLS, (or the DASH variants) and/or a custom UDP protocol

depending on the viewer.

These media protocols are often radically different and not

interoperable; requiring transcoding or transmuxing. This cost is

further increased by the need to maintain separate stacks with

different expertise requirements.

A goal of this draft is to cover a large spectrum of use-cases.

Specifically:

Consolidated contribution and distribution. The primary

difference between the two is the ability to fanout. How does a

CDN know how to forward media to N consumers and how does it

reduce the encoded bitrate during congestion? A single protocol

can cover both use-cases provided relays are informed on how to

forward and drop media.

A configurable latency versus quality trade-off. The producer

(broadcaster) chooses how to encode and transmit media based on

the desired user experience. Each consumer (viewer) chooses how

long to wait for media based on their desired user experience and

network. We want an experience that can vary from real-time and

lossy for one viewer, to delayed and loss-less for another

viewer, without separate encodings or protocols.

A related goal is to not reinvent how media is encoded. The same

codec bitstream and container should be usable between different

protocols.

3.3. Relays

The prevailing belief is that UDP-based protocols are more expensive

and don't "scale". While it's true that UDP is more difficult to

optimize than TCP, QUIC itself is proof that it is possible to reach

performance parity. In fact even some TCP-based protocols (ex. RTMP)

don't "scale" either and are exclusively used for contribution as a

result.

The ability to scale a media protocol actually depends on relay

support: proxies, caches, CDNs, SFUs, etc. The success of HTTP-based

¶

¶

¶

¶

*

¶

*

¶

¶

¶



media protocols is due to the ability to leverage traditional HTTP

CDNs.

It's difficult to build a CDN for media protocols that were not

designed with relays in mind. For example, an relay has to parse the

underlying codec to determine which RTP packets should be dropped

first, and the decision is not deterministic or consistent for each

hop. This is the fatal flaw of many UDP-based protocols.

A goal of this draft is to treat relays as first class citizens. Any

identification, reliability, ordering, prioritization, caching, etc

is written to the wire in a header that is easy to parse. This

ensures that relays can easily route/fanout media to the final

destination. This also ensures that congestion response is

consistent at every hop based on the preferences of the media

producer.

4. Objects

Warp works by splitting media into objects that can be transferred

over QUIC streams.

The encoder determines how to fragment the encoded bitstream into

objects (Section 4.1).

Objects are assigned an intended delivery order that should be

obeyed during congestion (Section 4.2)

The decoder receives each objects and skips any objects that do

not arrive in time (Section 4.3).

4.1. Media

An encoder produces one or more codec bitstreams for each track. The

decoder processes the codec bitstreams in the same order they were

produced, with some possible exceptions based on the encoding. See

the appendix for an overview of media encoding (Section 11).

Warp works by fragmenting the bitstream into objects that can be

transmitted somewhat independently. Depending on how the objects are

fragmented, the decoder has the ability to safely drop media during

congestion. See the appendix for fragmentation examples (Section 12)

A media object:

MUST contain a single track.

MUST be in decode order. This means an increasing DTS.

MAY contain any number of frames/samples.

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

* ¶

* ¶

* ¶



MAY have gaps between frames/samples.

MAY overlap with other objects. This means timestamps may be

interleaved between objects.

Media objects are encoded using a specified container (Section 8).

4.2. Delivery Order

Media is produced with an intended order, both in terms of when

media should be presented (PTS) and when media should be decoded

(DTS). As stated in motivation (Section 3.1), the network is unable

to maintain this ordering during congestion without increasing

latency.

The encoder determines how to behave during congestion by assigning

each object a numeric delivery order. The delivery order SHOULD be

followed when possible to ensure that the most important media is

delivered when throughput is limited. Note that the contents within

each object are still delivered in order; this delivery order only

applies to the ordering between objects.

A sender MUST send each object over a dedicated QUIC stream. The

QUIC library should support prioritization (Section 5.3) such that

streams are transmitted in delivery order.

A receiver MUST NOT assume that objects will be received in delivery

order for a number of reasons:

Newly encoded objects MAY have a smaller delivery order than

outstanding objects.

Packet loss or flow control MAY delay the delivery of individual

streams.

The sender might not support QUIC stream prioritization.

4.3. Decoder

The decoder will receive multiple objects in parallel and out of

order.

Objects arrive in delivery order, but media usually needs to be

processed in decode order. The decoder SHOULD use a buffer to

reassmble objects into decode order and it SHOULD skip objects after

a configurable duration. The amount of time the decoder is willing

to wait for an object (buffer duration) is what ultimately

determines the end-to-end latency.

* ¶

*

¶

¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

¶

¶



Objects MUST synchronize frames within and between tracks using

presentation timestamps within the container. Objects are NOT 

REQUIRED to be aligned and the decoder MUST be prepared to skip over

any gaps.

5. QUIC

5.1. Establishment

A connection is established using WebTransport [WebTransport].

To summarize: The client issues a HTTP CONNECT request to a URL. The

server returns an "200 OK" response to establish the WebTransport

session, or an error status code otherwise.

A WebTransport session exposes the basic QUIC service abstractions.

Specifically, either endpoint may create independent streams which

are reliably delivered in order until canceled.

WebTransport can currently operate via HTTP/3 and HTTP/2, using QUIC

or TCP under the hood respectively. As mentioned in the motivation

(Section 3) section, TCP introduces head-of-line blocking and will

result in a worse experience. It is RECOMMENDED to use WebTransport

over HTTP/3.

5.1.1. CONNECT

The server uses the HTTP CONNECT request for identification and

authorization of a track bundle. The specific mechanism is left up

to the application. For example, an identifier and authentication

token could be included in the path.

The server MAY return an error status code for any reason, for

example a 403 when the client is forbidden. Otherwise the server 

MUST respond with a "200 OK" to establish the WebTransport session.

5.2. Streams

Warp endpoints communicate over QUIC streams. Every stream is a

sequence of messages, framed as described in Section 6.

The first stream opened is a client-initiated bidirectional stream

where the peers exchange SETUP messages (Section 6.1). The

subsequent streams MAY be either unidirectional and bidirectional.

For exchanging media, an application would typically send a

unidirectional stream containing a single OBJECT message

(Section 6.2).

Messages SHOULD be sent over the same stream if ordering is desired.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



5.3. Prioritization

Warp utilizes stream prioritization to deliver the most important

content during congestion.

The producer may assign a numeric delivery order to each object

(Section 4.2) This is a strict prioritization scheme, such that any

available bandwidth is allocated to streams in ascending priority

order. The sender SHOULD prioritize streams based on the delivery

order. If two streams have the same delivery order, they SHOULD

receive equal bandwidth (round-robin).

QUIC supports stream prioritization but does not standardize any

mechanisms; see Section 2.3 in [QUIC]. In order to support

prioritization, a QUIC library MUST expose a API to set the priority

of each stream. This is relatively easy to implement; the next QUIC

packet should contain a STREAM frame for the next pending stream in

priority order.

The sender MUST respect flow control even if means delivering

streams out of delivery order. It is OPTIONAL to prioritize

retransmissions.

5.4. Cancellation

A QUIC stream MAY be canceled at any point with an error code. The

producer does this via a RESET_STREAM frame while the consumer

requests cancellation with a STOP_SENDING frame.

When using order, lower priority streams will be starved during

congestion, perhaps indefinitely. These streams will consume

resources and flow control until they are canceled. When nearing

resource limits, an endpoint SHOULD cancel the lowest priority

stream with error code 0.

The sender MAY cancel streams in response to congestion. This can be

useful when the sender does not support stream prioritization.

5.5. Relays

Warp encodes the delivery information for a stream via OBJECT

headers (Section 6.2).

A relay SHOULD prioritize streams (Section 5.3) based on the

delivery order. A relay MAY change the delivery order, in which case

it SHOULD update the value on the wire for future hops.

A relay that reads from a stream and writes to stream in order will

introduce head-of-line blocking. Packet loss will cause stream data

to be buffered in the QUIC library, awaiting in order delivery,

¶

¶

¶

¶

¶

¶

¶

¶

¶



which will increase latency over additional hops. To mitigate this,

a relay SHOULD read and write QUIC stream data out of order subject

to flow control limits. See section 2.2 in [QUIC].

5.6. Congestion Control

As covered in the motivation section (Section 3), the ability to

prioritize or cancel streams is a form of congestion response. It's

equally important to detect congestion via congestion control, which

is handled in the QUIC layer [QUIC-RECOVERY].

Bufferbloat is caused by routers queueing packets for an indefinite

amount of time rather than drop them. This latency significantly

reduces the ability for the application to prioritize or drop media

in response to congestion. Senders SHOULD use a congestion control

algorithm that reduces this bufferbloat (ex. [BBR]). It is NOT

RECOMMENDED to use a loss-based algorithm (ex. [NewReno]) unless the

network fully supports ECN.

Live media is application-limited, which means that the encoder

determines the max bitrate rather than the network. Most TCP

congestion control algorithms will only increase the congestion

window if it is full, limiting the upwards mobility when

application-limited. Senders SHOULD use a congestion control

algorithm that is designed for application-limited flows (ex. GCC).

Senders MAY periodically pad the connection with QUIC PING frames to

fill the congestion window.

5.7. Termination

The WebTransport session can be terminated at any point with

CLOSE_WEBTRANSPORT_SESSION capsule, consisting of an integer code

and string message.

The application MAY use any error message and SHOULD use a relevant

code, as defined below:

Code Reason

0x0 Session Terminated

0x1 Generic Error

0x2 Unauthorized

0x10 GOAWAY

Table 1

Session Terminated No error occured, however the endpoint no

longer desires to send or receive media.

Generic Error An unclassified error occured.

¶

¶

¶

¶

¶

¶

*

¶

* ¶



Unauthorized: The endpoint breached an agreement, which MAY have

been pre-negotiated by the application.

GOAWAY: The endpoint successfully drained the session after a

GOAWAY was initiated (Section 6.5).

6. Messages

Both unidirectional and bidirectional Warp streams are sequences of

length-deliminated messages.

Figure 1: Warp Message

The Message Length field contains the length of the Message Payload

field in bytes. A length of 0 indicates the message is unbounded and

continues until the end of the stream.

ID Messages

0x0 OBJECT (Section 6.2)

0x1 SETUP (Section 6.1)

0x2 CATALOG (Section 6.3)

0x3 SUBSCRIBE (Section 6.4)

0x10 GOAWAY (Section 6.5)

Table 2

6.1. SETUP

The SETUP message is the first message that is exchanged by the

client and the server; it allows the peers to establish the mutually

supported version and agree on the initial configuration. It is a

sequence of key-value pairs called SETUP parameters; the semantics

and the format of individual parameter values MAY depend on what

party is sending it.

The wire format of the SETUP message is as follows:

*

¶

*

¶

¶

Warp Message {

  Message Type (i),

  Message Length (i),

  Message Payload (..),

}

¶

¶

¶



Figure 2: Warp SETUP Message

The Parameter Value Length field indicates the length of the

Parameter Value.

The client offers the list of the protocol versions it supports; the

server MUST reply with one of the versions offered by the client. If

the server does not support any of the versions offered by the

client, or the client receives a server version that it did not

offer, the corresponding peer MUST close the connection.

The SETUP parameters are described in the Section 7 section.

6.2. OBJECT

A OBJECT message contains a single media object associated with a

specified track, as well as associated metadata required to deliver,

cache, and forward it.

The format of the OBJECT message is as follows:

SETUP Parameter {

  Parameter Key (i),

  Parameter Value Length (i),

  Parameter Value (..),

}

Client SETUP Message Payload {

  Number of Supported Versions (i),

  Supported Version (i) ...,

  SETUP Parameters (..) ...,

}

Server SETUP Message Payload {

  Selected Version (i),

  SETUP Parameters (..) ...,

}

¶

¶

¶

¶

¶

OBJECT Message {

  Track ID (i),

  Group Sequence (i),

  Object Sequence (i),

  Object Delivery Order (i),

  Object Payload (b),

}



Figure 3: Warp OBJECT Message

Track ID: The track identifier as declared in CATALOG

(Section 6.3).

Group Sequence : An integer always starts at 0 and increases

sequentially at the original media publisher. Group sequences are

scoped under a Track.

Object Sequence: An integer always starts at 0 with in a Group

and increases sequentially. Object Sequences are scoped to a

Group.

Object Delivery Order: An integer indicating the object delivery

order (Section 4.2).

Object Payload: The format depends on the track container

(Section 8). This is a media bitstream intended for the decoder

and SHOULD NOT be processed by a relay.

6.3. CATALOG

The sender advertises tracks via the CATALOG message. The receiver

can then SUBSCRIBE to the indiciated tracks by ID.

The format of the CATALOG message is as follows:

Figure 4: Warp CATALOG Message

Track Count: The number of tracks within the catalog.

For each track, there is a track descriptor with the format:

Figure 5: Warp Track Descriptor

Track ID: A unique identifier for the track within the track

bundle.

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

CATALOG Message {

  Track Count (i),

  Track Descriptors (..)

}

* ¶

¶

Track Descriptor {

  Track ID (i),

  Container Format (i),

  Container Init Payload (b)

}

*

¶



Container Format: The container format as defined in Section 8.

Container Init Payload: A container-specific payload as defined

in Section 8. This contains base information required to decode

OBJECT messages, such as codec parameters.

An endpoint MUST NOT send multiple CATALOG messages. A future draft

will add the ability to add/remove/update tracks.

6.4. SUBSCRIBE

After receiving a CATALOG message (Section 6.3, the receiver sends a

SUBSCRIBE message to indicate that it wishes to receive the

indicated tracks.

The format of SUBSCRIBE is as follows:

Figure 6: Warp SUBSCRIBE Message

Track Count: The number of track IDs that follow. This MAY be

zero to unsubscribe to all tracks.

Track IDs: A list of varint track IDs.

Only the most recent SUBSCRIBE message is active. SUBSCRIBE messages

MUST be sent on the same QUIC stream to preserve ordering.

6.5. GOAWAY

The GOAWAY message is sent by the server to force the client to

reconnect. This is useful for server maintenance or reassignments

without severing the QUIC connection. The server MAY be a producer

or consumer.

The server:

MAY initiate a graceful shutdown by sending a GOAWAY message.

MUST close the QUIC connection after a timeout with the GOAWAY

error code (Section 5.7).

MAY close the QUIC connection with a different error code if

there is a fatal error before shutdown.

* ¶

*

¶

¶

¶

¶

SUBSCRIBE Message {

  Track Count (i),

  Track IDs (..),

}

*

¶

* ¶

¶

¶

¶

* ¶

*

¶

*

¶



0x01:

0x02:

0x03:

SHOULD wait until the GOAWAY message and any pending streams have

been fully acknowledged, plus an extra delay to ensure they have

been processed.

The client:

MUST establish a new WebTransport session to the provided URL

upon receipt of a GOAWAY message.

SHOULD establish the connection in parallel which MUST use

different QUIC connection.

SHOULD remain connected for two servers for a short period,

processing objects from both in parallel.

7. SETUP Parameters

The SETUP message (Section 6.1) allows the peers to exchange

arbitrary parameters before any media is exchanged. It is the main

extensibility mechanism of Warp. The peers MUST ignore unknown

parameters. TODO: describe GREASE for those.

Every parameter MUST appear at most once within the SETUP message.

The peers SHOULD verify that and close the connection if a parameter

appears more than once.

The ROLE parameter is mandatory for the client. All of the other

parameters are optional.

7.1. ROLE parameter

The ROLE parameter (key 0x00) allows the client to specify what

roles it expects the parties to have in the Warp connection. It has

three possible values:

Only the client is expected to send media on the connection.

This is commonly referred to as the ingestion case.

Only the server is expected to send media on the connection.

This is commonly referred to as the delivery case.

Both the client and the server are expected to send media.

The client MUST send a ROLE parameter with one of the three values

specified above. The server MUST close the connection if the ROLE

parameter is missing, is not one of the three above-specified

values, or it is different from what the server expects based on the

application in question.

*

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶



8. Containers

The container format describes how the underlying codec bitstream is

encoded. This includes timestamps, metadata, and generally anything

required to decode and display the media.

This draft currently specifies only a single container format.

Future drafts and extensions may specifiy additional formats.

ID Container Format

0x0 fMP4 (Section 8.1)

Table 3

8.1. fMP4

A fragmented MP4 container [ISOBMFF].

The "Container Init Payload" in a CATALOG message (Section 6.3) MUST

consist of a File Type Box (ftyp) followed by a Movie Box (moov).

This Movie Box (moov) consists of Movie Header Boxes (mvhd), Track

Header Boxes (tkhd), Track Boxes (trak), followed by a final Movie

Extends Box (mvex). These boxes MUST NOT contain any samples and 

MUST have a duration of zero. A Common Media Application Format

Header [CMAF] meets all these requirements.

The "Object Payload" in an OBJECT message (Section 6.2) MUST consist

of a Segment Type Box (styp) followed by any number of media

fragments. Each media fragment consists of a Movie Fragment Box

(moof) followed by a Media Data Box (mdat). The Media Fragment Box

(moof) MUST contain a Movie Fragment Header Box (mfhd) and Track Box

(trak) with a Track ID (track_ID) matching a Track Box in the

initialization fragment. A Common Media Application Format Segment 

[CMAF] meets all these requirements.

Media fragments can be packaged at any frequency, causing a trade-

off between overhead and latency. It is RECOMMENDED that a media

fragment consists of a single frame to minimize latency.

9. Security Considerations

9.1. Resource Exhaustion

Live media requires significant bandwidth and resources. Failure to

set limits will quickly cause resource exhaustion.

Warp uses QUIC flow control to impose resource limits at the network

layer. Endpoints SHOULD set flow control limits based on the

anticipated media bitrate.

¶

¶

¶

¶

¶

¶

¶

¶



The media producer prioritizes and transmits streams out of order.

Streams might be starved indefinitely during congestion. The

producer and consumer MUST cancel a stream, preferably the lowest

priority, after reaching a resource limit.

10. IANA Considerations

TODO: fill out currently missing registries: * Warp version numbers

* SETUP parameters * Track format numbers * Message types * Object

headers

11. Appendix A. Video Encoding

In order to transport media, we first need to know how media is

encoded. This section is an overview of media encoding.

11.1. Tracks

A broadcast consists of one or more tracks. Each track has a type

(audio, video, caption, etc) and uses a corresponding codec. There

may be multiple tracks, including of the same type for a number of

reasons.

For example:

A track for each codec.

A track for each resolution and bitrate.

A track for each language.

A track for each camera feed.

Tracks can be muxed together into a single container or stream. The

goal of Warp is to independently deliver tracks, and even parts of a

track, so this is not allowed. Each Warp object MUST contain a

single track.

11.2. Init

Media codecs have a wide array of configuration options. For

example, the resolution, the color space, the features enabled, etc.

Before playback can begin, the decoder needs to know the

configuration. This is done via a short payload at the very start of

the media file. The initialization payload MAY be cached and reused

between objects with the same configuration.

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶



11.3. Video

Video is a sequence of pictures (frames) with a presentation

timestamp (PTS).

An I-frame is a frame with no dependencies and is effectively an

image file. These frames are usually inserted at a frequent interval

to support seeking or joining a live stream. However they can also

improve compression when used at scene boundaries.

A P-frame is a frame that references on one or more earlier frames.

These frames are delta-encoded, such that they only encode the

changes (motion). This result in a massive file size reduction for

most content outside of few notorious cases (ex. confetti).

A common encoding structure is to only reference the previous frame,

as it is simple and minimizes latency:

There is no such thing as an optimal encoding structure. Encoders

tuned for the best quality will produce a tangled spaghetti of

references. Encoders tuned for the lowest latency can avoid

reference frames to allow more to be dropped.

11.3.1. B-Frames

The goal of video codecs is to maximize compression. One of the

improvements is to allow a frame to reference later frames.

A B-frame is a frame that can reference one or more frames in the

future, and any number of frames in the past. These frames are more

difficult to encode/decode as they require buffering and reordering.

A common encoding structure is to use B-frames in a fixed pattern.

Such a fixed pattern is not optimal, but it's simpler for hardware

encoding:

11.3.2. Timestamps

Each frame is assigned a presentation timestamp (PTS), indicating

when it should be shown relative to other frames.

The encoder outputs the bitstream in decode order, which means that

each frame is output after its references. This makes it easier for

¶

¶

¶

¶

 I <- P <- P <- P   I <- P <- P <- P   I <- P ...¶

¶

¶

¶

¶

    B     B         B     B         B

   / \   / \       / \   / \       / \

  v   v v   v     v   v v   v     v   v

 I <-- P <-- P   I <-- P <-- P   I <-- P ...

¶

¶



the decoder as all references are earlier in the bitstream and can

be decoded immediately.

However, this causes problems with B-frames because they depend on a

future frame, and some reordering has to occur. In order to keep

track of this, frames have a decode timestamp (DTS) in addition to a

presentation timestamp (PTS). A B-frame will have higher DTS value

that its dependencies, while PTS and DTS will be the same for other

frame types.

For the example above, this would look like:

B-frames add latency because of this reordering so they are usually

not used for conversational latency.

11.3.3. Group of Pictures

A group of pictures (GoP) is an I-frame followed by any number of

frames until the next I-frame. All frames MUST reference, either

directly or indirectly, only the most recent I-frame.

This is a useful abstraction because GoPs can always be decoded

independently.

11.3.4. Scalable Video Coding

Some codecs support scalable video coding (SVC), in which the

encoder produces multiple bitstreams in a hierarchy. This layered

coding means that dropping the top layer degrades the user

experience in a configured way. Examples include reducing the

resolution, picture quality, and/or frame rate.

Here is an example SVC encoding with 3 resolutions:

¶

¶

¶

     0 1 2 3 4 5 6 7 8 9 10

PTS: I B P B P I B P B P B

DTS: I   PB  PBI   PB  PB

¶

¶

¶

        GoP               GoP            GoP

+-----------------+-----------------+---------------

|     B     B     |     B     B     |     B

|    / \   / \    |    / \   / \    |    / \

|   v   v v   v   |   v   v v   v   |   v   v

|  I <-- P <-- P  |  I <-- P <-- P  |  I <-- P ...

+-----------------+-----------------+--------------

¶

¶

¶

¶



11.4. Audio

Audio is dramatically simpler than video as it is not typically

delta encoded. Audio samples are grouped together (group of samples)

at a configured rate, also called a "frame".

The encoder spits out a continuous stream of samples (S):

12. Appendix B. Object Examples

Warp offers a large degree of flexibility on how objects are

fragmented and prioritized. There is no best solution; it depends on

the desired complexity and user experience.

This section provides a summary of some options available.

12.1. Video

12.1.1. Group of Pictures

A group of pictures (GoP) is consists of an I-frame and all frames

that directly or indirectly reference it (Section 11.3.3). The tail

of a GoP can be dropped without causing decode errors, even if the

encoding is otherwise unknown, making this the safest option.

It is RECOMMENDED that each object consist of a single GoP. For

example:

Depending on the video encoding, this approach may introduce

unnecessary ordering and dependencies. A better option may be

available below.

      +-------------------------+------------------

   4k |  P <- P <- P <- P <- P  |  P <- P <- P ...

      |  |    |    |    |    |  |  |    |    |

      |  v    v    v    v    v  |  v    v    v

      +-------------------------+------------------

1080p |  P <- P <- P <- P <- P  |  P <- P <- P ...

      |  |    |    |    |    |  |  |    |    |

      |  v    v    v    v    v  |  v    v    v

      +-------------------------+------------------

 360p |  I <- P <- P <- P <- P  |  I <- P <- P ...

      +-------------------------+------------------

¶

¶

¶

S S S S S S S S S S S S S ...¶

¶

¶

¶

¶

     object 1        object 2     object 3

+---------------+---------------+---------

| I  P  B  P  B | I  P  B  P  B | I  P  B

+---------------+---------------+---------

¶

¶



12.1.2. Scalable Video Coding

Some codecs support scalable video coding (SVC), in which the

encoder produces multiple bitstreams in a hierarchy

(Section 11.3.4).

When SVC is used, it is RECOMMENDED that each object consist of a

single layer and GoP. For example:

12.1.3. Frames

With full knowledge of the encoding, the encoder MAY can split a GoP

into multiple objects based on the frame. However, this is highly

dependent on the encoding, and the additional complexity might not

improve the user experience.

For example, we could split our example B-frame structure

(Section 11.3.1) into 13 objects:

Objects can be merged with their dependency to reduce the total

number of objects. QUIC streams will deliver each object in order so

the QUIC library performs the reordering.

¶

¶

                object 3              object 6

      +-------------------------+---------------

   4k |  P <- P <- P <- P <- P  |  P <- P <- P

      |  |    |    |    |    |  |  |    |    |

      |  v    v    v    v    v  |  v    v    v

      +-------------------------+--------------

                object 2              object 5

      +-------------------------+---------------

1080p |  P <- P <- P <- P <- P  |  P <- P <- P

      |  |    |    |    |    |  |  |    |    |

      |  v    v    v    v    v  |  v    v    v

      +-------------------------+--------------

                object 1              object 4

      +-------------------------+---------------

 360p |  I <- P <- P <- P <- P  |  I <- P <- P

      +-------------------------+---------------

¶

¶

¶

      2     4           7     9           12

+--------+--------+--------+--------+-----------+

|     B  |  B     |     B  |  B     |     B     |

|-----+--+--+-----+-----+--+--+-----+-----+-----+

|  I  |  P  |  P  |  I  |  P  |  P  |  I  |  P  |

+-----+-----+-----+-----+-----+-----+-----+-----+

   1     3     5     6     8     10    11    13

¶

¶



The same GoP structure can be represented using eight objects:

We can further reduce the number of objects by combining frames that

don't depend on each other. The only restriction is that frames can

only reference frames earlier in the object. For example, non-

reference frames can have their own object so they can be

prioritized or dropped separate from reference frames.

The same GoP structure can also be represented using six objects,

although we've removed the ability to drop individual B-frames:

12.1.4. Init

Initialization data (Section 11.2) is required to initialize the

decoder. Each object MAY start with initialization data although

this adds overhead.

Instead, it is RECOMMENDED to create a init object. Each media

object can then depend on the init object to avoid the redundant

overhead. For example:

12.2. Audio

Audio (Section 11.4) is much simpler than video so there's fewer

options.

¶

      2     3           5     6           8

+--------+--------+-----------------+------------

|     B  |  B     |     B  |  B     |     B     |

+--------+--------+--------+--------+-----------+

|  I     P     P  |  I     P     P  |  I     P

+-----------------+-----------------+------------

         1                 4              7

¶

¶

¶

    object 2      object 4    object 6

+-------------+-------------+---------

|    B   B    |    B   B    |    B

+-------------+-------------+---------

|  I   P   P  |  I   P   P  |  I   P

+-------------+-------------+---------

    object 1      object 3    object 5

¶

¶

¶

     object 2        object 3     object 5

+---------------+---------------+---------

| I  P  B  P  B | I  P  B  P  B | I  P  B

+---------------+---------------+---------

|              init             |  init

+-------------------------------+---------

              object 1            object 4

¶

¶



The simplest configuration is to use a single object for each audio

track. This may seem inefficient given the ease of dropping audio

samples. However, the audio bitrate is low and gaps cause quite a

poor user experience, when compared to video.

An improvement is to periodically split audio samples into separate

objects. This gives the consumer the ability to skip ahead during

severe congestion or temporary connectivity loss.

This frequency of audio objects is configurable, at the cost of

additional overhead. It's NOT RECOMMENDED to create a object for

each audio frame because of this overhead.

Since video can only recover from severe congestion with an I-frame,

so there's not much point recovering audio at a separate interval.

It is RECOMMENDED to create a new audio object at each video I-

frame.

12.3. Delivery Order

The delivery order (Section 4.2 depends on the desired user

experience during congestion:

if media should be skipped: delivery order = PTS

if media should not be skipped: delivery order = -PTS

if video should be skipped before audio: audio delivery order <

video delivery order

¶

          object 1

+---------------------------

| S S S S S S S S S S S S S

+---------------------------

¶

¶

     object 1        object 2     object 3

+---------------+---------------+---------

| S  S  S  S  S | S  S  S  S  S | S  S  S

+---------------+---------------+---------

¶

¶

¶

     object 1        object 3     object 5

+---------------+---------------+---------

| S  S  S  S  S | S  S  S  S  S | S  S  S

+---------------+---------------+---------

| I  P  B  P  B | I  P  B  P  B | I  P  B

+---------------+---------------+---------

     object 2        object 4     object 6

¶

¶

* ¶

* ¶

*

¶



[ISOBMFF]

[QUIC]

[QUIC-RECOVERY]

[RFC2119]

[RFC8174]

[RFC9000]

The delivery order may be changed if the content changes. For

example, switching from a live stream (skippable) to an

advertisement (unskippable).

Contributors

Alan Frindell

Charles Krasic

Cullen Jennings

James Hurley

Jordi Cenzano

Mike English

Will Law

Ali Begen

References

Normative References

"Information technology — Coding of audio-visual objects

— Part 12: ISO Base Media File Format", December 2015. 

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

info/rfc9000>. 

Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss

Detection and Congestion Control", RFC 9002, DOI

10.17487/RFC9002, May 2021, <https://www.rfc-editor.org/

info/rfc9002>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/info/rfc8174>. 

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174


[URI]

[WebTransport]

[BBR]

[CMAF]

[NewReno]

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

info/rfc9000>. 

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>. 

Frindell, A., Kinnear, E., and V. Vasiliev, 

"WebTransport over HTTP/3", Work in Progress, Internet-

Draft, draft-ietf-webtrans-http3-05, 13 March 2023, 

<https://datatracker.ietf.org/doc/html/draft-ietf-

webtrans-http3-05>. 

Informative References

Cardwell, N., Cheng, Y., Yeganeh, S. H., Swett, I., and 

V. Jacobson, "BBR Congestion Control", Work in Progress, 

Internet-Draft, draft-cardwell-iccrg-bbr-congestion-

control-02, 7 March 2022, <https://datatracker.ietf.org/

doc/html/draft-cardwell-iccrg-bbr-congestion-control-02>.

"Information technology -- Multimedia application format

(MPEG-A) -- Part 19: Common media application format

(CMAF) for segmented media", March 2020. 

Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, 

"The NewReno Modification to TCP's Fast Recovery

Algorithm", RFC 6582, DOI 10.17487/RFC6582, April 2012, 

<https://www.rfc-editor.org/info/rfc6582>. 

Authors' Addresses

Luke Curley

Twitch

Email: kixelated@gmail.com

Kirill Pugin

Meta

Email: ikir@meta.com

Suhas Nandakumar

Cisco

Email: snandaku@cisco.com

Victor Vasiliev

Google

https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-05
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-05
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
https://www.rfc-editor.org/info/rfc6582
mailto:kixelated@gmail.com
mailto:ikir@meta.com
mailto:snandaku@cisco.com


Email: vasilvv@google.com

mailto:vasilvv@google.com

	Warp - Live Media Transport over QUIC
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terms and Definitions
	1.2. Notational Conventions

	2. Model
	2.1. Objects
	2.2. Groups
	2.3. Track
	2.4. Track Bundle
	2.5. Session
	2.6. Example

	3. Motivation
	3.1. Latency
	3.2. Universal
	3.3. Relays

	4. Objects
	4.1. Media
	4.2. Delivery Order
	4.3. Decoder

	5. QUIC
	5.1. Establishment
	5.1.1. CONNECT

	5.2. Streams
	5.3. Prioritization
	5.4. Cancellation
	5.5. Relays
	5.6. Congestion Control
	5.7. Termination

	6. Messages
	6.1. SETUP
	6.2. OBJECT
	6.3. CATALOG
	6.4. SUBSCRIBE
	6.5. GOAWAY

	7. SETUP Parameters
	7.1. ROLE parameter

	8. Containers
	8.1. fMP4

	9. Security Considerations
	9.1. Resource Exhaustion

	10. IANA Considerations
	11. Appendix A. Video Encoding
	11.1. Tracks
	11.2. Init
	11.3. Video
	11.3.1. B-Frames
	11.3.2. Timestamps
	11.3.3. Group of Pictures
	11.3.4. Scalable Video Coding

	11.4. Audio

	12. Appendix B. Object Examples
	12.1. Video
	12.1.1. Group of Pictures
	12.1.2. Scalable Video Coding
	12.1.3. Frames
	12.1.4. Init

	12.2. Audio
	12.3. Delivery Order

	Contributors
	References
	Normative References
	Informative References

	Authors' Addresses


