
 CIFS Printing Specification

Network Working Group Paul J. Leach, Microsoft
INTERNET-DRAFT Dilip C. Naik, Microsoft
draft-leach-cifs-print-spec-00.txt
Category: Informational
Expires June 31, 1997 January 31, 1997

CIFS Printing Specification
Preliminary Draft

STATUS OF THIS MEMO

THIS IS A PRELIMINARY DRAFT OF AN INTERNET-DRAFT. IT DOES NOT REPRESENT
THE CONSENSUS OF ANY WORKING GROUP.

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas, and
its working groups. Note that other groups may also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress".

To learn the current status of any Internet-Draft, please check the
"1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
ftp.isi.edu (US West Coast).

Distribution of this document is unlimited. Please send comments to the
authors or the CIFS mailing list at <cifs@listserv.msn.com>.
Discussions of the mailing list are archived at
<URL:http://microsoft.ease.lsoft.com/archives/cifs.html>.

ABSTRACT

This specification defines how clients may submit print requests to a
server using SMBs . The specification also details how clients may
administer printing of the print requests they create, using SMBs
defined in the Common Internet File System specification.

Table of Contents

https://datatracker.ietf.org/doc/html/draft-leach-cifs-print-spec-00.txt

1. OBJECTIVE...3

2. PREREQUISITES AND SUGGESTED READING.................................3

Leach, Naik 1

 CIFS Printing Specification

3. PRINTING OVERVIEW...3

4. CREATING A PRINT JOB..3

4.1 OPEN_PRINT_FILE: CREATE PRINT SPOOL FILE4
4.2 CLOSE_PRINT_FILE: CLOSE AND SPOOL PRINT JOB5

5. REMOTE ADMINISTRATION PROTOCOL AND DOCUMENTATION CONVENTIONS........5

6. PRINT QUEUES AND RELATED FUNCTIONS..................................6

6.1 DATA STRUCTURES RELATED TO PRINT QUEUES6
6.1.1 Printer Queue Information (Level 3)6
6.1.2 Printer Queue Information (Level 4)7
6.1.3 Printer Queue Information (Level 5)8
6.2 DOSPRINTQENUM ..8
6.3 DOSPRINTQGETINFO ..10

7. PRINT JOBS AND MANIPULATING PRINT JOBS.............................12

7.1 DATA STRUCTURES RELATED TO PRINT JOBS12
7.2 DOSPRINTJOBENUM ...14
7.3 DOSPRINTJOBGETINFO ..16
7.4 DOSPRINTJOBCONTINUE ...19
7.5 DOSPRINTJOBDEL ..20

8. AUTHOR'S ADDRESSES...21

9. REMOTE ADMINISTRATION PROTOCOL OVERVIEW............................21

10. APPENDIX A - REMOTE ADMINISTRATION PROTOCOL.......................22

10.1 NOTATION ...23
10.2 DESCRIPTORS ..23
10.2.1 Request Parameter Descriptors23
10.2.2 Response Parameter Descriptors24

10.2.3 Data Descriptors ..24
10.3 TRANSACTION REQUEST PARAMETERS SECTION25
10.4 TRANSACTION REQUEST DATA SECTION25
10.5 TRANSACTION RESPONSE PARAMETERS SECTION26
10.6 TRANSACTION RESPONSE DATA SECTION26

11. APPENDIX B..26

11.1.1 TRANSACTIONS ..28

Leach, Naik 2

 CIFS Printing Specification

1. Objective
This document describes
. how CIFS clients accomplish printing on CIFS servers acting as print
 servers.
. how CIFS clients administer printing on CIFS servers.

For convenience, some sections from the CIFS specification have been
reproduced in part within this document. Note that the CIFS
specification should be considered to be the authoritative reference, in
case of any doubts, rather than this document.

2. Prerequisites and suggested reading
. Familiarity with Common Internet File Systems specification (CIFS) in
 general and the CIFS Remote Administration Protocol in particular.

3. Printing overview
A CIFS client opens a print file on a CIFS server in a manner similar to
opening an ordinary file, but using a different SMB (described in
section 4.1). The CIFS client then writes to the file. When the CIFS
client closes the file, the CIFS print server considers the file to be a
print job or print request that needs to be printed.

The CIFS print server implements a concept of print queues. A print
queue is simply an ordered set of print requests or print jobs. Every
print job is associated with a print queue. A client can control which
print queue a print job is associated with. A printer queue stores print
jobs and sends them one by one to a printer. A print queue may have

multiple physical printers associated with it. Different queues may
share the same printer. Print queues allow administrative convenience
such as selection of a printer, priority assignment for printing,
controlling times during which jobs may print, etc. .

Section 4 describes how a client may generate a print job.

Section 6 describes how a client may enumerate print queues and retrieve
information about a particular print queue.

Section 7 describes how a client may manipulate print jobs, causing
print jobs to be paused, resumed or deleted.

Print queues and print jobs are manipulated using the CIFS Remote
Administration protocol. The CIFS specification includes details on
Remote Administration protocol. For convenience, details have been
duplicated (from the CIFS specification) into Appendix A and Appendix B.
Note that the CIFS specification should be considered a more
authoriative source of information, as compared to Appendix A and B.

4. Creating a Print Job

A CIFS client creates a print job (or a print request) by opening a
print file, writing to the print file and then closing it. A print file

Leach, Naik 3

 CIFS Printing Specification

differs from an ordinary file in that a CIFS server tracks a print file
and deletes it automatically when the printing is complete.

A print job is associcated with a print queue. Different print queues
may have different characteristics and may print on different printers.
A client can control which print queue a print job (created by the
client) is associated with. The CIFS print server shares different
queues. A client first creates a connection via a SessionSetupAndX
followed by a TreConnectAndX SMB, specifying the appropriate print queue
share in the TreeConnectAndX SMB. Refer to the CIFS document for details
on the TreeConnectAndX SMB. The TreeConnectAndX will return a Tree Id
(Tid) if the SMB succeeds. This Tid is used when opening a print file.

4.1 OPEN_PRINT_FILE: Create Print Spool file

This message is sent to create a new printer file which will be deleted
once it has been closed and printed. Complete understanding of this
message requires familiarity with the CIFS specification.

Client Request Description
================================== =================================

UCHAR WordCount; Count of parameter words = 2
USHORT SetupLength; Length of printer setup data
USHORT Mode; 0 = Text mode (DOS expands TABs)
 1 = Graphics mode
USHORT ByteCount; Count of data bytes; min = 2
UCHAR BufferFormat; 0x04
STRING IdentifierString[]; Identifier string

TID in the SMB header must refer to a printer resource type.

SETUPLENGTH is the number of bytes in the first part of the resulting
print spool file which contains printer-specific control strings.

MODE can have the following values:
 0 Text mode. The server may optionally
 expand tabs to a series of spaces.
 1 Graphics mode. No conversion of data
 should be done by the server.

IDENTIFIERSTRING can be used by the server to provide some sort of per-
client identifying component to the print file.

Server Response Description
================================== =================================

UCHAR WordCount; Count of parameter words = 1
USHORT Fid; File handle

Leach, Naik 4

 CIFS Printing Specification

USHORT ByteCount; Count of data bytes = 0

FID is the returned handle which may be used by subsequent write and
close operations. When the file is finally closed, it will be sent to
the spooler and printed.

4.2 CLOSE_PRINT_FILE: Close and Spool Print Job

This message invalidates the specified file handle and queues the file
for printing. Complete understanding of this message requires

familiarity with the CIFS specification.

Client Request Description
================================== =================================

UCHAR WordCount; Count of parameter words = 1
USHORT Fid; File handle
USHORT ByteCount; Count of data bytes = 0

FID refers to a file previously created with SMB_COM_OPEN_PRINT_FILE.
On successful completion of this request, the file is queued for
printing by the server.

Server Response Description
================================== =================================

UCHAR WordCount; Count of parameter words = 0
USHORT ByteCount; Count of data bytes = 0

Servers which negotiate dialects of LANMAN1.0 and newer allow all the
other types of FID closing requests to invalidate the FID and begin
spooling.

5. Remote Administration Protocol and Documentation Conventions

Print queue and print job related management functions are accomplished
using the CIFS Remote Administration Protocol (RAP). Complete details
may be found in the CIFS specification and in Appendix A. Persons
unfamiliar with the RAP specification are strongly advised to read the
CIFS specification or at least Appendix A at this stage. Sections that
follow describe how a CIFS client queries information about print queues
and print jobs and administers print jobs These descriptions assume
knowledge of the CIFS RAP specification.

Leach, Naik 5

 CIFS Printing Specification

6. Print Queues and related functions

A CIFS server can enumerate all print queues on a given server using the
DosPrintQEnum function. Once the CIFS client knows the names of each
print queue, the CIFS client can then obtain information about each
print queue using the DosPrintQGetInfo function. Both of these functions
are executed on the remote print server using the CIFS Remote
Administration Protocol, fully detailed in the CIFS document as well as
Appendix A and Appendix B.

6.1 Data structures related to Print queues

This section describes data structures used to describe print queues.
Data structures corresponding to print queue levels 0 , 1 and 2 are
obsolete.

6.1.1 Printer Queue Information (Level 3)

The PRQINFO_3 data structure describes a particular printer queue. The
DosPrintQEnum and DosPrintQGetInfo functions (described below) return
data in this format when the desired level of information is set to
level 3.

 struct PRQINFO_3 {
 char *pszName;
 unsigned short Priority;
 unsigned short Starttime;
 unsigned short UntilTime;
 unsigned short Pad1;
 char *pszSepFile;
 char *pszPrProc;
 char *pszParms;
 char *pszComment;
 unsigned short Status;
 AUXCOUNT cJobs;
 char *pszPrinters;
 char *pszDriverName
 void *pDriverData;
 }

where:

 pszName points to a null terminated ASCII string that contains the
 queue name.

 Priority contains an unsigned short integer specifying the printer
 queue priority. The value can range from 1(highest) to 9 (lowest).
 When two printer queues print to the same printer, the print jobs
 from the one with the higher priority print first.

 Untiltime contains an unsigned short integer specifying the time
 of day a printer queue becomes inactive and stops sending print
 jobs to printers. This value represents the number of minutes

 since midnight (00:00).

Leach, Naik 6

 CIFS Printing Specification

 Starttime contains an unsigned short integer specifying the time
 of day a printer queue can start sending print jobs to printers.
 This value represents the number of minutes since midnight
 (00:00).

 pszSepFile points to a null terminated ASCII string that
 represents the pathname to a seperator page file. The seperator
 page contains formatting information about the pages that separate
 print jobs.

 pszPrProc points to a null terminated ASCII string that
 represents the name of the print preprocessor. A null pointer or
 null string inidcates the default print preprocessor.

 pszDestinations points to a null terminated ASCII string that
 contains a list of print destinations for the print queue. This is
 a multi-valued property and the values are separated by spaces.

 pszParms points to a null terminated ASCII string that contains
 parameters required by printer queues.

 pszComment points to a null terminated ASCII string that contains
 a comment about the print queue.

 Status contains an unsigned short integer that specifies the
 status of a printer queue. Possible values are:

 Code Value Description

 PRQ_ACTIVE 0 Active
 PRQ_PAUSE 1 Paused
 PRQ_ERROR 2 Error Occurred
 PRQ_PENDING 3 Deletion pending

 cJobs contains an unsigned short integer representing the number
 of print jobs currently in the print queue.

 pszDriverName points to a null terminated ASCII string
 representing the default device driver for the queue. If this
 field is null, the pDriverData field is not used.

 pDriverData points to the device driver data for the default
 driver.

6.1.2 Printer Queue Information (Level 4)

At this level, the returned information consists of a level 3 print
queue data structure (as described in section 5.1.1) followed by a
PRJINFO_2 data structure for each print job in the queue. The PRJINFO_2
data structure is described in section 7.1.

Leach, Naik 7

 CIFS Printing Specification

6.1.3 Printer Queue Information (Level 5)

At level 5, the returned data structure is defined as:

 struct PRQINFO_5 {
 char *pszName;
 }

where:
 pszName points to a null terminated ASCII string that contains the
 queue name.

6.2 DosPrintQEnum

 The DosPrintQEnum function lists all printer queues on a server. The
 definition is:

 unsigned short DosPrintQEnum(
 unsigned short sLevel;
 RCVBUF pbBuffer;
 RCVBUFLEN cbBuffer;
 ENTCOUNT pcReturned;
 unsigned short *pcTotalAvail;
);

 where:

 sLevel specifies the level of detail returned. Legal values are
 3, 4 and 5 .

 pbBuffer points to the buffer to receive the returned data.

 cbBuffer specifies the size, in bytes, of the buffer pointed to by

 the pbBuffer parameter.

 pcReturned points to a 16 bit variable that receives a count of
 the total number of entries (queues) returned. This count is valid
 only if DosPrintQEnum returns the NERR_Success or ERROR_MORE_DATA
 values.

 pcTotalAvail points to a 16 bit variable that receives a count of
 the total number of entries (queues) available. This count is
 valid only if DosPrintQEnum returns the NERR_Success or
 ERROR_MORE_DATA values.

 Transaction Request Parameters section

The Transaction request parameters section in this instance contains:

. The function number for DosPrintQEnum which is 69.

. The parameter descriptor string which is _WrLeh_

. The data descriptor string for the returned data is _zWWWWzzzzWWzzl_
 if sLevel (the level of desired information) is 3. This corresponds

Leach, Naik 8

 CIFS Printing Specification

 to the data structure PRQINFO_3There is no auxiliary data in the
 response when the level of desired information is 3.
. The data descriptor string for the returned data is _zWWWWzzzzWNzzl_
 if sLevel (the level of desired information) is 4. This corresponds
 to the data structure PRQINFO_3. The descriptor for the auxiliary
 data returned is _WWzWWDDzz_ when the level of desired information
 is 4. This corresponds to the PRJINFO_2 data structure.
. The data descriptor string for the returned data is _z_ if sLevel
 (the level of desired information) is 5. The _z_ indicates a null
 terminated ASCII string representing the name of the print queue. .
 There is no auxiliary data descriptor for this level of information.
. The actual parameters as described by the parameter descriptor
 string. These are:
" A 16 bit integer with a value of 3, 4 or 5 (corresponding to the _W_
 in the parameter descriptor string. This represents the level of
 detail the server is expected to return
" A 16 bit integer that contains the size of the receive buffer.

Transaction Request Data section

There is no data or auxiliary data to send as part of the request.

Transaction Response Parameters section

The transaction response parameters section consists of:
. A 16 bit word indicating the return status. The possible values are:

Code Value Description
 NERR_Success 0 No errors encountered
ERROR_ACCESS_DENIED 5 The user does not have required
 priveleges
ERROR_MORE_DATA 234 Additional data is available
NERR_SpoolerNotLoaded 2161 The spooler is not started on
 the remote server
NERR_BadTransactConfig 2141 The server is not configured
 for transactions, IPC$ is not
 shared

. A 16 bit _converter_ word.

. A 16 bit number representing the number of entries returned.

. A 16 bit number representing the total number of available entries.
 If the supplied buffer is large enough, this will equal the number of
 entries returned.

Transaction Response Data section

The Transaction response data section consists of a series of data
structures. The number of the data structures is equal to the number or
entries being returned, which is the third value in the Transaction
response parameter section.

At information level 3, a series of PRQINFO_3 data structures are
returned. There is no auxiliary data at this information level.

Leach, Naik 9

 CIFS Printing Specification

At information level 4, a series of PRQINFO_3 data structures are
returned. There is also auxiliary data present in this case. For each
print job in each print queue, a PRJINFO_2 structure is returned in the
auxiliary data. For each print queue, the data descriptor string element
N denotes the number of PRJINFO_2 data structures present in the
auxiliary data for that queue. This also denotes the number of print
jobs associated with that print queue.

At information level 5, a PRQINFO_5 data structure is returned for each
print queue. There is no auxiliary data in the response when the level
of desired information is 5.

As per the RAP specification, all pointers in any of the data
structures returned need to be treated specially in the prescribed
manner.

6.3 DosPrintQGetInfo

The DosPrintQGetInfo function retrieves information about a particular
print queue on a CIFS server. The definition is:

 unsigned short DosPrintQGetInfo(
 char *pszQueueName;
 short sLevel;
 RCVBUF pbBuffer;
 RCVBUFLEN cbBuffer;
 unsigned short *pcbTotalAvail;
);

where:

 pszQueueName points to an ASCII null-terminated string specifying the
 name of the queue for which information should be retrieved.

 sLevel specifies the level of detail returned. (Legal values are 3,
 4, and 5)

 pbBuffer points to the buffer to receive the returned data.

 cbBuffer specifies the size, in bytes, of the buffer pointed to by the
 pbBuffer parameter.

 pcbTotalAvail points to a 16-bit variable that receives a count of the
 total number of bytes of information available. This count is valid
 only if DosPrintQGetInfo returns the NERR_Success or ERROR_MORE_DATA
 values.

 Transaction Request Parameters section

The Transaction request parameters section in this instance contains:

. The function number for DosPrintQGetInfo which is 70.

. The parameter descriptor string which is _zWrLh_

Leach, Naik 10

 CIFS Printing Specification

. The data descriptor string for the returned data is _zWWWWzzzzWWzzl_
 if sLevel (the level of desired information) is 3. This corresponds
 to the data structure PRQINFO_3. There is no auxiliary data in the

 response when the level of desired information is 3.
. The data descriptor string for the returned data is _zWWWWzzzzWNzzl_
 if sLevel (the level of desired information) is 4. This corresponds
 to the data structure PRQINFO_3. The descriptor for the auxiliary
 data returned is _WWzWWDDzz_ when the level of desired information
 is 4. This corresponds to the PRJINFO_2 data structure.
. The data descriptor string for the returned data is _z_ if sLevel
 (the level of desired information) is 5. The _z_ indicates a null
 terminated ASCII string representing the name of the print queue. .
 There is no auxiliary data descriptor for this level of information.
. The actual parameters as described by the parameter descriptor
 string. These are:
 . A null terminated ASCII string denoting the name of the print
 queue for which information should be retrieved.
 . A 16 bit integer with a value of 3, 4 or 5 . This represents
 the level of detail the server is expected to return
 . A 16 bit integer that contains the size of the receive
 buffer.

Transaction Request Data section

There is no data or auxiliary data to send as part of the request.

Transaction Response Parameters section

The transaction response parameters section consists of:
. A 16 bit word indicating the return status. The possible values are:

Code Value Description
 NERR_Success 0 No errors encountered
ERROR_ACCESS_DENIED 5 User has insufficient
 privilege
ERROR_MORE_DATA 234 Additional data is
 available
NERR_QNotFound 2150 The specified queue name
 is invalid
NERR_SpoolerNotLoaded 2161 The spooler is not started
 on the remote server

. A 16 bit _converter_ word. The value is up to the server to decide.

. A 16 bit number representing the total number of available bytes.
 This has meaning only if the return status is NERR_Success,
 ERROR_MORE_DATA or NERR_BufTooSmall

Transaction Response Data Section

The Transaction response data section consists of a single data
structure

Leach, Naik 11

 CIFS Printing Specification

At information level 3, a PRQINFO_3 data structure is returned. There
is no auxiliary data at this information level.

At information level 4, a PRQINFO_3 data structure is returned. This
data structure describes the print queue of interest. There is also
auxiliary data present in this case. For each print job in the print
queue, a PRJINFO_2 structure is returned in the auxiliary data. The data
descriptor string element _N_ denotes the number of PRJINFO_2 data
structures present in the auxiliary data for that queue. This also
denotes the number of print jobs associated with that print queue.

At information level 5, a PRQINFO_5 data structure is returned for each
print queue. There is no auxiliary data in the response when the level
of desired information is 5.

As per the RAP specification, all pointers in any of the data
structures returned need to be treated specially in the prescribed
manner.

7. Print Jobs and manipulating Print Jobs

Once a CIFS client has located a print queue, the client can then
enumerate jobs within that queue using the DosPrintJobEnum function. A
CIFS client may also obtain print job information by means of the
DosPrintQEnum and DosPrintQGetInfo services, specifying a desired
information level of 4. Once the CIFS client has a list of job
identifiers, it can obtain detailed information about any print job
using the DosPrintJobGetInfo function. For print jobs initiated by the
client, and which are not yet printing, the CIFS client can pause,
resume or delete the print jobs using DosPrintJobPause,
DosPrintJobContinue and DosPrintJobDel functions respectively. All of
these DosPrintJobX services are executed on the remote print server
using the CIFS Remote Administration Protocol described in the CIFS
document as well as in Appendix A and Appendix B.

7.1 Data Structures related to Print Jobs

 struct PRJINFO_0 {
 unsigned short JobId
 }

where:

 JobId is a 16 bit integer that uniquely specifies a print job
 within a printer queue. The JobID is unique on a server. A
 combination of the server name and JobId is sufficient to uniquely
 identify a particular print job.

Leach, Naik 12

 CIFS Printing Specification

 struct PRJINFO_2 {
 unsigned short JobId;
 unsigned short Priority;
 char *pszUserName;
 unsigned short Position;
 unsigned short Status;
 unsigned long Submitted;
 unsigned long Size;
 char *pszComment;
 char *pszDocument;
 }

where:

 JobId is a 16 bit integer that uniquely specifies a print job
 within a printer queue. The JobID is unique on a server. A
 combination of the server name and JobId is sufficient to uniquely
 identify a particular print job.

 Priority is a 16 bit integer that specifies the print job
 priority. This varies from a value of 1 (lowest priority) to 99
 (highest priority. Higher priority jobs print first. When 2 jobs
 have the same priority, the older job prints first.

 pszUserName is a pointer to a null terminated ASCII string that
 specifies the name of the user who submitted the print job.

 Position specifies the position of the print job within the print
 queue. If the value is 1, this print job prints next.

 Status is an integer used as a status flag. The values and
 meanings of the various bits are:

Bits Code Value Description
0-1 PRJ_QS_QUEUED 0 Print job is queued

0-1 PRJ_QS_PAUSED 1 Print job is paused
0-1 PRJ_QS_SPOOLING 2 Print job is spooling
0-1 PRJ_QS_PRINTING 3 Print job is printing,
 bits 2-11 are valid

Bit Code Value Description
2 PRJ_COMPLETE 0x0004 Print job is complete
3 PRJ_INTERV 0x0008 an error occurred, pszStatus
 may contain a comment explaining
 the error
4 PRJ_ERROR 0x0010 Print job is spooling
5 PRJ_DESTOFFLINE 0x0020 The print destination is offline
6 PRJ_DESTPAUSED 0x0040 The print destination is paused
7 PRJ_NOTIFY 0x0080 An alert is raised
8 PRJ_DESTNOPAPER 0x0100 The print destination is out of
 paper
9 PRJ_DESTFORMCHG 0x0200 The printer is waiting for a
 form change
10 PRJ_DESTCRTCHG 0x0400 The printer is waiting for a

Leach, Naik 13

 CIFS Printing Specification

 cartridge change
11 PRJ_DESTENCHG 0x0800 The printer is waiting for a pen
 change
15 PRJ_ PRINTING 0x8000 An alert indicates the job was
 deleted

 pszStatus points to an ASCII string that contains a comment about
 the status of the job. This element contains valid data only when
 the job is printing and an error occurs. This element may be null
 or point to a null string.

 Submitted contains an unsigned long integer specifying when the
 user submitted the job. This is stored as the number of seconds
 elapsed since 00:00:00 Jan 1st, 1970.

 Size contains an unsigned long integer that specifies the size of
 the print job in terms of number of bytes.

 pszComment points to a null terminated ASCII string that contains
 a comment about the print job.

 pszDocument points to a null terminated ASCII string that contains
 the name of the document.

7.2 DosPrintJobEnum

The DosPrintJobEnum service lists print jobs in the specified printer
queue. The definition is:

 unsigned short DosPrintJobEnum(
 char *pszQueueName;
 short sLevel;
 RCVBUF pbBuffer;
 RCVBUFLEN cbBuffer;
 unsigned short *pcbTotalAvail;
);

 where:

 pszQueuename points to a null-terminated string specifying the
 name of the print queue for which print jobs should be enumerated.

 sLevel specifies the level of detail returned. (Legal values are
 0 and 2)

 pbBuffer points to the buffer to receive the returned data.

 cbBuffer specifies the size, in bytes, of the buffer pointed to by
 the pbBuffer parameter.

Leach, Naik 14

 CIFS Printing Specification

 pcbTotalAvail points to a 16 bit variable that receives a count of
 the total number of bytes of information available. This count is
 valid only if the return value is NERR_Success or ERROR_MORE_DATA .

Transaction Request Parameters section

The Transaction request parameters section in this instance contains:

. The function number for DosPrintJobEnum which is 76.

. The parameter descriptor string which is _zWrLeh_

. The data descriptor string for the returned data is _z_ if sLevel
 (the level of desired information) is 0. This corresponds to the data
 structure PRJINFO_0 already described.
. The data descriptor string for the returned data is _WWzWWDDzz_ if
 sLevel (the level of desired information) is 2. This corresponds to

 the PRJINFO_2 data structure.already described.
. The actual parameters as described by the parameter descriptor
 string. These are:
 . A null terminated ASCII string denoting the name of the print
 queue which contains the print job of interest.
 . A 16 bit integer with a value of 0 or 2 . This represents the
 level of detail the server is expected to return
 . A 16 bit integer that contains the size of the receive
 buffer.

There is no data or auxiliary data that is sent as part of the
Transaction request.

Transaction Request Data section

There is no data or auxiliary data to send as part of the request.

Transaction Response Parameters section

The transaction response parameters section consists of:
. A 16 bit word indicating the return status. The possible values are:

 Code Value Description

 NERR_Success 0 No errors encountered
 ERROR_ACCESS_DENIED 5 User has insufficient
 privilege
 ERROR_MORE_DATA 234 Additional data is
 available
 NERR_QNotFound 2150 The specified queue name
 is invalid
 NERR_SpoolerNotLoaded 2161 The spooler is not started
 on the remote server

. A 16 bit _converter_ word.

Leach, Naik 15

 CIFS Printing Specification

. A 16 bit number representing the total number of available entries.
 This has meaning only if the return status is NERR_Success,
 ERROR_MORE_DATA or NERR_BufTooSmall

Transaction Response Data Section

The Transaction response data section consists of a data structures.

At information level 0, a series of PRJINFO_0 data structures are
returned. The number of structure is equal to the value in the third
parameter in the response parameter section. There is no auxiliary data
at this information level.

At information level 2, a series of PRJINFO_2 data structures are
returned. The number of such data structures returned is equal to the
value in the third parameter of the response parameter section. There is
no auxiliary data present in this case.

As per the RAP specification, all pointers in any of the data
structures returned need to be treated specially in the prescribed
manner.

There is no auxiliary data in the response.

7.3 DosPrintJobGetInfo

The DosPrintJobGetInfo service retrieves information about a particular
print job. The definition is:

 unsigned short DosPrintJobGetInfo(
 unsigned short JobId;
 unsigned short sLevel;
 RCVBUF pbBuffer;
 RCVBUFLEN cbBuffer;
 unsigned short *pcbTotalAvail;
);

 where:

 JobId specifies identity of the print job for which information
 should be retrieved.

 Level specifies the level of detail returned. (Legal values are 0
 and 2)

 pbBuffer points to the buffer to receive the returned data.

 cbBuffer specifies the size, in bytes, of the buffer pointed to by
 the pbBuffer parameter.

Leach, Naik 16

 CIFS Printing Specification

 pcbTotalAvail points to a 16 bit variable that receives a count of
 the total number of bytes of information available. This count is
 valid only if DosPrintJobGetInfo returns the
 NERR_Success or ERROR_MORE_DATA values.

Transaction Request Parameters section

The Transaction request parameters section in this instance contains:

. The function number for DosPrintJobGetInfo which is 77.

. The parameter descriptor string which is _WWrLh_

. The data descriptor string for the returned data is _z_ if sLevel
 (the level of desired information) is 0. This corresponds to the data
 structure PRJINFO_0 already described.
. The data descriptor string for the returned data is _WWzWWDDzz_ if
 sLevel (the level of desired information) is 2. This corresponds to
 the PRJINFO_2 data structure.already described.
. The actual parameters as described by the parameter descriptor
 string. These are:
 . A 16 bit integer specifying the identity of the job for which
 information should be retrieved.
 . A 16 bit integer with a value of 0 or 2 . This represents the
 level of detail the server is expected to return
 . A 16 bit integer that contains the size of the receive
 buffer.

There is no data or auxiliary data that is sent as part of the
Transaction request.

Transaction Request Data section

There is no data or auxiliary data to send as part of the request.

Transaction Response Parameters section

The transaction response parameters section consists of:
. A 16 bit word indicating the return status. The possible values are:
Code Value Description
 NERR_Success 0 No errors encountered
ERROR_ACCESS_DENIED 5 The user does not have required
 priveleges
ERROR_MORE_DATA 234 Additional data is available
NERR_SpoolerNotLoaded 2161 The spooler is not started on the
 remote server
NERR_BadTransactConfig 2141 The server is not configured for
 transactions, IPC$ is not shared

. A 16 bit _converter_ word.

. A 16 bit number representing the total number of available bytes.
 This has meaning only if the return status is NERR_Success,
 ERROR_MORE_DATA or NERR_BufTooSmall

Leach, Naik 17

 CIFS Printing Specification

Transaction Response Data Section

The return data section consists of a PRJINFO_0 data structure if the
desired level of information is 0. The return data section consists of a
PRJINFO_2 data structure if the desired level of information is 2. These
have already been detailed.

Note that the pointers in the data structure in data structure PRJINFO_2
need to be treated specially. The high 16 bit word needs to be ignored.
The converter word returned in the response parameters section needs to
be subtracted from the low 16 bit value to locate the actual offset of
the item within the response buffer sent by the server.

There is no auxiliary data to receive.

DosPrintJobPause

DosPrintJobPause pauses a print job in a printer queue. The definition
is:

 unsigned short DosPrintJobPause(
 unsigned short JobId;
);

 where:

 JobId specifies the identity of the print job that should be
 paused

Transaction Request Parameters section

The Transaction request parameters section in this instance contains:

. The function number for DosPrintJobPause which is 82.

. The parameter descriptor string which is _W_

. The data descriptor string is null.

. The actual parameters as described by the parameter descriptor
 string. This consists of just a 16 bit integer representing the

 JobId, identifying the job to be paused.

Transaction Request Data section

There is no data or auxiliary data to send as part of the request.

Transaction Response Parameters section

The transaction response parameters section consists of:
. A 16 bit word indicating the return status. The possible values are:

Code Value Description
 NERR_Success 0 No errors encountered
ERROR_ACCESS_DENIED 5 User has insufficient

Leach, Naik 18

 CIFS Printing Specification

 privilege
ERROR_NETWORK_ACCESS_DENIED 65 Network access is denied
NERR_BadTransactConfig 2141 The server is not configured
 for transactions, IPC$ is not
 shared
NERR_JobNotFound 2151 The specified print job could
 not be located
NERR_SpoolerNotLoaded 2161 The spooler is not started on
 the remote server
NERR_JobInvalidState 2164 The operation cannot be
 performed on the job in it's
 current state(job is already
 printing)

Transaction Response Data Section

There is no data or auxiliary data in the response.

7.4 DosPrintJobContinue

DosPrintJobContinue allows a paused print job to resume printing. The
definition is:

 unsigned short DosPrintJobContinue(
 unsigned short JobId;
);

 where:

 JobId specifies the identity of the print job that should resume
 printing

Transaction Request Parameters section

The Transaction request parameters section in this instance contains:

. The function number for DosPrintJobContinue which is 83.

. The parameter descriptor string which is _W_

. The data descriptor string is null.

. The actual parameters as described by the parameter descriptor
 string. This consists of just a 16 bit integer representing the JobId
 (identifies job to be paused)

Transaction Request Data section

There is no data or auxiliary data to send as part of the request.

Transaction Response Parameters section

The transaction response parameters section consists of:

Leach, Naik 19

 CIFS Printing Specification

. A 16 bit word indicating the return status. The possible values are:

Code Value Description
 NERR_Success 0 No errors encountered
ERROR_ACCESS_DENIED 5 User has insufficient
 privilege
ERROR_NETWORK_ACCESS_DENIED 65 Network access is denied
NERR_BadTransactConfig 2141 The server is not configured
 for transactions, IPC$ is not
 shared
NERR_JobNotFound 2151 The specified print job could
 not be located
NERR_SpoolerNotLoaded 2161 The spooler is not started on
 the remote server
NERR_JobInvalidStatus 2164 The operation cannot be
 performed on the print job in
 it's current state

Transaction Response Data Section

There is no data or auxiliary data in the response.

7.5 DosPrintJobDel

DosPrintJobDel deletes a print job from a printer queue. The definition
is:

 unsigned short DosPrintJobDel(
 unsigned short JobId;
);

 where:

 JobId specifies the identity of the print job that should be
 deleted

Transaction Request Parameters section

The Transaction request parameters section in this instance contains:

. The function number for DosPrintJobDel which is 81.

. The parameter descriptor string which is _W_

. The data descriptor string is null.

. The actual parameters as described by the parameter descriptor
 string. This consists of just a 16 bit integer representing the JobId
 , identifying the job to be paused.

Transaction Request Data section

There is no data or auxiliary data to send as part of the request.

Transaction Response Parameters section

Leach, Naik 20

 CIFS Printing Specification

The transaction response parameters section consists of:
. A 16 bit word indicating the return status. The possible values are:

 Code Value Description

 NERR_Success 0 No errors encountered
 ERROR_ACCESS_DENIED 5 User has insufficient
 privilege
 ERROR_NETWORK_ACCESS_DENIED 65 Network access is denied

 NERR_BadTransactConfig 2141 The server is not
 configured for
 transactions, IPC$
 is not shared
 NERR_JobNotFound 2151 The specified print job
 could not be located
 NERR_ProcNotRespond 2160 The print process is not
 responding
 NERR_SpoolerNotLoaded 2161 The spooler is not
 started on the
 remote server

Transaction Response Data Section

There is no data or auxiliary data in the response.

8. Author's Addresses

Paul Leach
Dilip Naik
Microsoft
1 Microsoft Way
Redmond, WA 98052
 paulle@microsoft.com
v-dilipn@microsoft.com

9. Remote Administration Protocol overview
The Remote Administration Protocol (RAP) is similar to an RPC protocol,
in that:
. it is an at-most-once synchronous request-response protocol
. it is a framework that can be used for remotely requesting many
 different kinds of services
. it is designed to allow (but not require) the programming interface
 to the protocol to be that of remotely executed procedure calls _
 which means that one thinks if the protocol in terms of marshaling
 and unmarshaling procedure call input and output arguments into
 messages and reliably transporting the messages to and from the
 client and server
Each RAP request is characterized by a set of ASCII descriptor strings
that are sufficient to be used to interpretively drive the marshaling

Leach, Naik 21

 CIFS Printing Specification

and unmarshaling process, if an implementation wanted to use them for
that purpose. These descriptor strings are included in each request
packet, and make the requests self-describing.

RAP is layered on the CIFS Transact2 SMB, which provides reliable
message delivery, security, and messages larger than the underlying
network maximum packet size. When used for RAP, the name field in the
Transact2 SMB is always set to "\PIPE\LANMAN". The Transact2 SMB is sent
on a session/connection that is established to the remote server using a
SessionSetupAndX SMB, and using a TID obtained by doing a
TreeConnectAndX SMB to a share named "IPC$".

[Refer to the CIFS specification for complete details on SMBs in
general, and the Transact2 SMB in particular. For convenience, relevant
portions from the CIFS specification have been reproduced here in
Appendix A. Note that the CIFS specification should be considered the
authoritative source of information, rather than Appendix A as far as
details on the Transact2 SMB are concerned.]

The model of a RAP service is that there are a few parameters as inputs
and outputs to the service, exactly one of which may be a buffer
descriptor that indicates the presence of a potentially much larger
input or output data buffer. An argument may be a scalar, pointer, fixed
length small array or struct, or a buffer descriptor. The data buffer
consists of entries followed by a heap. An entry consists of a primary
data struct and a sequence of 0 or more auxiliary data structs. An
input buffer must contain exactly one entry; an output buffer may
contain 0 or more. The heap is where data is stored that is referenced
by pointers in the entries. The parameters are described by a parameter
descriptor string; the primary data struct by a data descriptor string;
and the auxiliary data structs by an auxiliary data descriptor string.

10. Appendix A - Remote Administration Protocol
A RAP service request is sent to the server encapsulated in a Transact2
request SMB and the server sends back a Transact2 SMB response. An
attribute of the Transact2 SMB is that it divides the payload of request
and response messages into two sections: a parameters section and a data
section. As might be expected from the nomenclature, RAP service
parameters are sent in the parameters section of a Transact2 SMB, and
the data buffer in the data section. Therefore, to define a service
protocol, it is necessary to define the formats of the parameter and
data sections of the Transact2 request and response.

This is done in two stages. First, a C-like declaration notation is used
to define descriptor strings, and then the descriptor strings define the
formats of the parameter and data sections.. Note well: even though the
declarations may look like a programming interface, they are not: they
are a notation for describing the contents of RAP requests and
responses; an implementation on any particular system can use any
programming interface to RAP services that is appropriate to that

system.

Leach, Naik 22

 CIFS Printing Specification

10.1 Notation
Parameter descriptor strings are defined using a C-like function
declaration; data descriptor and auxiliary data descriptor strings are
defined using a C-like structure declaration.

Parameter descriptor strings are defined with the following C-like
function declaration syntax:
 rap-service = "unsigned short" service-name "(" parameters ");"
 service-name = <upper and lower case alpha and numeric>
The return type of the function is always "unsigned short", and
represents the status code from the function. The service-name is for
documentation purposes.
 parameters = parameter [";" parameter]
The parameter descriptor string for the service is the concatenation of
the descriptor characters for the parameters.
 parameter = ["const"] param-data-type parameter-name
 ["[" size "]"]
 param-data-type = <from parameter descriptor tables below>
 parameter-name = <upper and lower case alpha and numeric>
 size = <string of ASCII 0-9>
The descriptor character for a parameter is determined by looking up the
data-type in the tables below for request or response parameter
descriptors. The parameter-name is for documentation purposes. If there
is a size following the parameter-name, then it is placed in the
descriptor string following the descriptor character.

Data and auxiliary data descriptor strings are defined with the
following C-like structure declaration syntax:
 rap-struct = "struct" struct-name "{" members "}"
The descriptor string for the struct is the concatenation of the
descriptor characters for the members. The struct-name is for
documentation purposes.
 members = member [";" member]
 member = member-data-type member-name ["[" size "]"]
 member-data-type = <from data descriptor tables below>
The descriptor character for a member is determined by looking up the
data-type in the tables below for data descriptors. The member-name is
for documentation purposes. If there is a size following the member-
name, then it is placed in the descriptor string following the
descriptor character.

10.2 Descriptors
The following section contain tables that specify the descriptor
character and the notation for each data type for that data type.

10.2.1 Request Parameter Descriptors

Descriptor Data Type Format
========== ========= =====
W unsigned short indicates parameter type of 16 bit integer
 (word).
D unsigned long indicates parameter type of 32 bit integer
 (dword).

Leach, Naik 23

 CIFS Printing Specification

b BYTE indicates bytes (octets). May be followed
 by an ASCII number indicating number of
 bytes..
O NULL indicates a NULL pointer
z char indicates a NULL terminated ASCII string
 present in the parameter area
F PAD indicates Pad bytes (octets). May be
 followed by an ASCII number indicating the
 number of bytes
r RCVBUF pointer to receive data buffer in response
 parameter section
L RCVBUFLEN 16 bit integer containing length of
 receive data buffer in (16 bit) words
s SNDBUF pointer to send data buffer in request
 parameter section
T SNDBUFLEN 16 bit integer containing length of send
 data buffer in words

10.2.2 Response Parameter Descriptors

Descriptor Data Type Format
========== ========= =====
g BYTE * indicates a byte is to be received. May
 be followed by an ASCII number indicating
 number of bytes to receive
h unsigned short * indicates a word is to be received
i unsigned long * indicates a dword is to be received
e ENTCOUNT indicates a word is to be received which
 indicates the number of entries returned

10.2.3 Data Descriptors

Descriptor Data Type Format
========== ========= =====
W unsigned short indicates data type of 16 bit integer
 (word). Descriptor char may be followed by
 an ASCII number indicating the number of
 16 bit words present
D unsigned long indicates data type of 32 bit integer
 (dword). Descriptor char may be followed
 by an ASCII number indicating the number
 of 32 bit words present
B BYTE indicates item of data type 8 bit byte
 (octet). The indicated number of bytes are
 present in the data. Descriptor char may
 be followed by an ASCII number indicating
 the number of 8 bit bytes present
O NULL indicates a NULL pointer
z char * indicates a 32 bit pointer to a NULL
 terminated ASCII string is present in the

Leach, Naik 24

 CIFS Printing Specification

 response parameter area. The actual string
 is in the response data area and the
 pointer in the parameter area points to
 the string in the data area. The high word
 of the pointer should be ignored. The
 converter word present in the response
 parameter section should be subtracted
 from the low 16 bit value to obtain an
 offset into the data area indicating where
 the data area resides.
N AUXCOUNT indicates number of auxiliary data
 structures. The transaction response data
 section contains an unsigned 16 bit number
 corresponding to this data item.

10.3 Transaction Request Parameters section
The parameters and data being sent and received are described by ASCII
descriptor strings. These descriptor strings are described in section
4.2.

The parameters section of the Transact2 SMB request contains the
following (in the order described)
. The function number: an unsigned short 16 bit integer identifying the
 function being remoted
. The parameter descriptor string: a null terminated ASCII string
. The data descriptor string: a null terminated ASCII string.
. The request parameters, as described by the parameter descriptor
 string, in the order that the request parameter descriptor characters
 appear in the parameter descriptor string
. An optional auxiliary data descriptor string: a null terminated ASCII
 string. It will be present if there is an auxiliary data structure
 count in the primary data struct (an "N" descriptor in the data
 descriptor string).

RAP requires that the length of the return parameters be less than or
equal to the length of the parameters being sent; this requirement is
made to simply buffer management in implementations. This is reasonable
as the functions were designed to return data in the data section and
use the return parameters for items like data length, handles, etc. If
need be, this restriction can be circumvented by filling in some pad
bytes into the parameters being sent.

10.4 Transaction Request Data section
The Data section for the transaction request is present if the parameter
description string contains an "s" (SENDBUF) descriptor. If present, it
contains:
. A primary data struct, as described by the data descriptor string
. Zero or more instances of the auxiliary data struct, as described by
 the auxiliary data descriptor string. The number of instances is
 determined by the value of the an auxiliary data structure count
 member of the primary data struct, indicated by the "N" (AUXCOUNT)
 descriptor. The auxiliary data is present only if the auxiliary data
 descriptor string is non null.

Leach, Naik 25

 CIFS Printing Specification

. Possibly some pad bytes

. The heap: the data referenced by pointers in the primary and
 auxiliary data structs.

10.5 Transaction Response Parameters section
The response sent by the server contains a parameter section which
consists of:
. A 16 bit integer indicating the status or return code. The possible
 values for different functions are different.
. A 16 bit converter word, used adjust pointers to information in the

 response data section. Pointers returned within the response buffer
 are 32 bit pointers. The high order 16 bit word should be ignored.
 The converter word needs to be subtracted from the low order 16 bit
 word to arrive at an offset into the response buffer.
. The response parameters, as described by the parameter descriptor
 string, in the order that the response parameter descriptor
 characters appear in the parameter descriptor string.

10.6 Transaction Response Data section
The Data section for the transaction response is present if the
parameter description string contains an "r" (RCVBUF) descriptor. If
present, it contains:
. Zero or more entries. The number of entries is determined by the
 value of the entry count parameter, indicated by the "e"(ENTCOUNT)
 descriptor. Each entry contains:
 . A primary data struct, as described by the data descriptor
 string
 . Zero or more instances of the auxiliary data struct, as
 described by the auxiliary data descriptor string. The number
 of instances is determined by the value of the AUXCOUNT
 member of the primary data struct (whose descriptor is "N").
 The auxiliary data is present only if the auxiliary data
 descriptor string is non null.
. Possibly some pad bytes
. The heap: the data referenced by pointers in the primary and
 auxiliary data structs.

11. Appendix B
Transaction SMBs

These SMBs are used both to retrieve bulk data from the server (e.g.:
enumerate shares, etc.) and to change the server's state (EG: add a new
share, change file permissions, etc.) Transaction requests are also
unusual because they can have a multiple part request and/or a multiple
part response. For this reason, transactions are handled as a set of
sequenced commands to the server. Each part of a request is sent as a
sequenced command using the same Mid value and an increasing Seq value.
The server responds to each request piece except the last one with a
response indicating that the server is ready for the next piece. The
last piece is responded to with the first piece of the result data. The
client then sends a transaction secondary SMB with ParameterDisplacement
set to the number of parameter bytes received so far and
DataDisplacement set to the number of data bytes received so far and
ParameterCount, ParameterOffset, DataCount, and DataOffset set to zero

Leach, Naik 26

 CIFS Printing Specification

(0). The server responds with the next piece of the transaction result.
The process is repeated until all of the response information has been
received. When the transaction has been completed, the redirector must
send another sequenced command (an echo SMB will do fine) to the server
to allow the server to know that the final piece was received and that
resources allocated to the transaction command may be released.
The flow is as follows, where (S) is the SequenceNumber, (N) is the
number of request packets to be sent from the client to the server, and
(M) is the number of response packets to be sent by the server to the
client:

 Client <-> Server
 ======================= === ===========================

 SMB(S) Transact ->
 <- OK (S) send more data
 [repeat N-1 times:
 SMB(S+1) Transact ->
 secondary
 <- OK (S+1) send more data
 SMB(S+N-1)
]
 <- OK (S+N-1) transaction
 response (1)
 [repeat M-1 times:
 SMB(S+N) Transact ->
 secondary
 <- OK (S+N) transaction
 response (2)
 SMB(S+N+M-2) Transact ->
 secondary
 <- OK (S+N+M-2] transaction
 response (M)
]
 SMB(S+N+M-1) Echo ->
 <- OK (S+N+M-1) echoed

In order to allow the server to detect clients which have been powered
off, have crashed, etc., the client must send commands to the server
periodically if it has resources open on the server. If nothing has
been received from a client for awhile, the server will assume that the
client is no longer running and disconnect the client. This includes
closing any files that the client had open at the time and releasing any
resources being used on behalf of the client. Clients should at least
send an echo SMB to the server every four (4) minutes if there is
nothing else to send. The server will disconnect clients after a
configurable amount of time which cannot be less than five (5) minutes.
(Note: the NT server has a default timeout value of 15 minutes.)

Leach, Naik 27

 CIFS Printing Specification

11.1.1 TRANSACTIONS

SMB_COM_TRANSACTION performs a symbolically named transaction. This
transaction is known only by a name (no file handle used).
SMB_COM_TRANSACTION2 likewise performs a transaction, but a word
parameter is used to identify the transaction instead of a name.
SMB_COM_NT_TRANSACTION is used for commands that potentially need to
transfer a large amount of data (greater than 64K bytes).

11.1.1.1 SMB_COM_TRANSACTION AND SMB_COM_TRANSACTION2 FORMATS

 Primary Client Request Description
 =============================== ====================================

 Command SMB_COM_TRANSACTION or
 SMB_COM_TRANSACTION2

 UCHAR WordCount; Count of parameter words; value =
 (14 + SetupCount)
 USHORT TotalParameterCount; Total parameter bytes being sent
 USHORT TotalDataCount; Total data bytes being sent
 USHORT MaxParameterCount; Max parameter bytes to return
 USHORT MaxDataCount; Max data bytes to return
 UCHAR MaxSetupCount; Max setup words to return
 UCHAR Reserved;
 USHORT Flags; Additional information:
 bit 0 - also disconnect TID in TID
 bit 1 - one-way transaction (no
 resp)
 ULONG Timeout;
 USHORT Reserved2;
 USHORT ParameterCount; Parameter bytes sent this buffer
 USHORT ParameterOffset; Offset (from header start) to
 Parameters
 USHORT DataCount; Data bytes sent this buffer
 USHORT DataOffset; Offset (from header start) to data
 UCHAR SetupCount; Count of setup words
 UCHAR Reserved3; Reserved (pad above to word)
 USHORT Setup[SetupCount]; Setup words (# = SetupWordCount)

 USHORT ByteCount; Count of data bytes
 STRING Name[]; Name of transaction (NULL if
 SMB_COM_TRANSACTION2)
 UCHAR Pad[]; Pad to SHORT or LONG
 UCHAR Parameters[Parameter bytes (# = ParameterCount)
 ParameterCount];
 UCHAR Pad1[]; Pad to SHORT or LONG
 UCHAR Data[DataCount]; Data bytes (# = DataCount)

Leach, Naik 28

 CIFS Printing Specification

 Interim Server Response Description
 =============================== ====================================

 UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes = 0

 Secondary Client Request Description
 =============================== ====================================

 Command SMB_COM_TRANSACTION_SECONDARY

 UCHAR WordCount; Count of parameter words = 8
 USHORT TotalParameterCount; Total parameter bytes being sent
 USHORT TotalDataCount; Total data bytes being sent
 USHORT ParameterCount; Parameter bytes sent this buffer
 USHORT ParameterOffset; Offset (from header start) to
 Parameters
 USHORT ParameterDisplacement; Displacement of these Parameter
 bytes
 USHORT DataCount; Data bytes sent this buffer
 USHORT DataOffset; Offset (from header start) to data
 USHORT DataDisplacement; Displacement of these data bytes
 USHORT Fid; FID for handle based requests, else
 0xFFFF. This field is present only
 if this is an SMB_COM_TRANSACTION2
 request.
 USHORT ByteCount; Count of data bytes

 UCHAR Pad[]; Pad to SHORT or LONG
 UCHAR Parameter bytes (# = ParameterCount)
 Parameters[ParameterCount];
 UCHAR Pad1[]; Pad to SHORT or LONG
 UCHAR Data[DataCount]; Data bytes (# = DataCount)

Leach, Naik 29

 CIFS Printing Specification

 Server Response Description
 =============================== ====================================

 UCHAR WordCount; Count of data bytes; value = 10 +
 SETUPCOUNT
 USHORT TotalParameterCount; Total parameter bytes being sent
 USHORT TotalDataCount; Total data bytes being sent
 USHORT Reserved;
 USHORT ParameterCount; Parameter bytes sent this buffer
 USHORT ParameterOffset; Offset (from header start) to
 Parameters
 USHORT ParameterDisplacement; Displacement of these Parameter
 bytes
 USHORT DataCount; Data bytes sent this buffer
 USHORT DataOffset; Offset (from header start) to data
 USHORT DataDisplacement; Displacement of these data bytes
 UCHAR SetupCount; Count of setup words
 UCHAR Reserved2; Reserved (pad above to word)
 USHORT Setup[SetupWordCount]; Setup words (# = SetupWordCount)
 USHORT ByteCount; Count of data bytes

 UCHAR Pad[]; Pad to SHORT or LONG
 UCHAR Parameter bytes (# = ParameterCount)
 Parameters[ParameterCount];
 UCHAR Pad1[]; Pad to SHORT or LONG
 UCHAR Data[DataCount]; Data bytes (# = DataCount)

Leach, Naik 30

