
Network Working Group J. Butler
Internet-Draft
Intended status: Informational W. Lee
Expires: May 1, 2017
 B. McQuade

 K. Mixter
 October 28, 2016

A Proposal for Shared Dictionary Compression over HTTP
draft-lee-sdch-spec-00

Abstract

 This paper proposes an HTTP/1.1-compatible extension that supports
 inter-response data compression by means of a reference dictionary
 shared between user agent and server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 1, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Butler, et al. Expires May 1, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft sdch-spec October 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 In order to reduce payload size, HTTP/1.1 supports response
 compression via the Accept-Encoding and Content-Encoding headers.
 The most commonly used HTTP response compression encoding is gzip,
 which compresses data that is repeated within a given response.
 However, HTTP/1.1 does not provide a mechanism for compressing data
 that is repeated between responses. A different class of encoding
 technique, known as delta encoding, has proven effective at
 compressing inter-response data.

 Previous efforts to extend HTTP/1.1 to support delta compression have
 focused on encoding an HTTP response as a delta of a previous version
 of that response. One such approach is discussed in RFC 3229 "Delta
 encoding in HTTP" [RFC3229]. While RFC 3229 is effective at reducing
 payload size for many types of resources, it may not be suitable for
 certain classes of responses.

 Specifically, under RFC 3229, deltas can only be applied to responses
 originating from the same URL, and the means of identifying the
 instance to delta "from" is by a Last-Modified timestamp or entity-
 tag. This makes RFC 3229 unsuitable for compressing dynamically
 generated responses to a given URL with varying query parameters
 (e.g. a search results page), since these types of responses are
 difficult to identify uniquely using entity tags or last modified
 timestamps. Content hashes can be used, but false positives are
 possible. Also, storing all previous responses on the server may not
 be practical.

2. Proposal: Shared Dictionary Compression over HTTP

 Existing techniques compress each response in isolation, and so
 cannot take advantage of cross-payload redundancy. For example,
 retrieving a set of HTML pages with the same header, footer, inlined
 JavaScript and CSS requires the retransmission of the same data
 multiple times. This paper proposes a compression technique that
 leverages this cross-payload redundancy.

 In this proposal, a dictionary is a file downloaded by the user agent
 from the server that contains strings which are likely to appear in
 subsequent HTTP responses. In the case described above, if the
 header, footer, JavaScript and CSS are stored in a dictionary
 possessed by both user agent and server, the server can substitute
 these elements with references to the dictionary, and the user agent
 can reconstruct the original page from these references. By

https://datatracker.ietf.org/doc/html/rfc3229
https://datatracker.ietf.org/doc/html/rfc3229
https://datatracker.ietf.org/doc/html/rfc3229
https://datatracker.ietf.org/doc/html/rfc3229
https://datatracker.ietf.org/doc/html/rfc3229

Butler, et al. Expires May 1, 2017 [Page 2]

Internet-Draft sdch-spec October 2016

 substituting dictionary references for repeated elements in HTTP
 responses, the payload size can be reduced.

 If either the user agent or the server does not support the
 extension, then ordinary HTTP responses are served.

 If both the user agent and the server support the extension but the
 user agent does not have an applicable dictionary (as described in
 detail below), the server responds with an ordinary HTTP response
 that includes a header advertising the location of a relevant
 dictionary. This dictionary can be retrieved out-of-band by the user
 agent.

 If both the user agent and the server support the extension and the
 user agent has an applicable dictionary, then each HTTP response
 includes references to strings in the dictionary, rather than
 repeating those strings in the response. The references require
 fewer bytes to encode than the strings themselves, reducing the
 payload size.

 The HTTP header-based protocol for negotiating the presence of
 dictionaries on user agent and server is referred to in this proposal
 as the SDCH protocol. The compression scheme based on a particular
 dictionary shared between user agent and server is referred to as the
 SDCH encoding, and is built upon the VCDIFF compression data format
 [RFC3284].

3. Syntax

 The grammar descriptions in the sections that follow depend on the
 following syntax: DIGIT (decimal digit), BASE64URLDIGIT (alphanumeric
 digit or "-" or "_"), PAYLOADBYTE (a byte), token (informally, a
 sequence of non-special, non-white space characters), rest-of-line
 (informally, a sequence of characters not including carriage return
 or line-feed). In the grammar below, HTTP_url, abs_path, and query
 are defined in RFC 7230 [RFC7230].

 header = attr ":" value "\n"
 attr = token
 value = rest-of-line
 dictionary-client-id = 1*BASE64URLDIGIT
 dictionary-server-id = 1*BASE64URLDIGIT
 payload = 1*PAYLOADBYTE
 vcdiff-payload = 1*PAYLOADBYTE
 partial-url = HTTP_url | abs_path ["?" query]

 The attribute names (attr) are case-insensitive. White space is
 permitted between tokens.

https://datatracker.ietf.org/doc/html/rfc3284
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230

Butler, et al. Expires May 1, 2017 [Page 3]

Internet-Draft sdch-spec October 2016

4. Dictionary Description

4.1. General

 In the proposed protocol, a dictionary can only be used with a
 limited set of URLs and for a limited duration of time, referred to
 as its scope and lifetime, respectively. A dictionary is composed of
 the data used by the compression algorithm, known as the payload, as
 well as metadata describing its scope and lifetime. The scope is
 specified by a domain attribute and path attribute that are patterned
 after the same named attributes from the HTTP State Management
 Specification [RFC2965].

4.2. Syntax of Dictionary Metadata

 The syntax of dictionary metadata is as follows:

 dictionary-metadata = 1*dictionary-header "\n"
 dictionary-header = "domain" ":" value "\n"
 | "path" ":" value "\n"
 | "path-equals" ":" value "\n"
 | "format-version" ":" value "\n"
 | "max-age" ":" value "\n"
 | "port" ":" <"> portlist <"> "\n"
 portlist = 1#portnum
 portnum = 1*DIGIT

 A complete dictionary definition then has this format: n dictionary-
 definition = dictionary-metadata payload

 Informally, the metadata for a dictionary is a series of headers,
 similar in form to HTTP headers, terminated by an empty line. The
 dictionary payload begins immediately after this blank line.

 The valid dictionary header identifiers are described below:

 o Domain: domain.

 Required. Indicates the domain to which the dictionary applies. The
 domain specification must explicitly start with a dot. For example,
 a dictionary with the domain specification ".google.com" may be used
 to compress a response served from the host name www.google.com, but
 not used to compress a response served from the host name
 www.gmail.com. Only printable ASCII characters are permitted in the
 domain value. International Domain Names must be specified using
 IDNA.

 o Path: path.

https://datatracker.ietf.org/doc/html/rfc2965

Butler, et al. Expires May 1, 2017 [Page 4]

Internet-Draft sdch-spec October 2016

 Optional. Indicates the set of URL paths for which this dictionary
 is valid. If unspecified, the dictionary applies to all paths within
 the given domain.

 o Path-equals: path.

 Optional. Indicates the exact URL path for which this dictionary is
 valid. If both "path" and "path-equals" are specified, the
 dictionary applies only to those URLs which satisfy both criteria.

 o Format-version: version.

 Optional. Indicates the version of the dictionary payload. If
 unspecified, the format version defaults to "1.0". Currently, the
 only acceptable value is "1.0".

 o Max-age: delta-seconds.

 Optional. Indicates the amount of time that a dictionary can be
 advertised to the server by the user agent, relative to the time it
 was downloaded. If unspecified, the default is 30 days from the time
 the dictionary was downloaded by the user agent. * Port: port list.
 Optional. Indicates the comma-separated list of ports to which this
 dictionary applies. If unspecified, the dictionary applies to all
 ports.

 Like HTTP headers, dictionary header identifiers are case-
 insensitive. Unknown headers will be ignored by the user agent,
 allowing other headers to be added in the future.

4.3. Dictionary Scope

 The specific rules of when a dictionary can be applied to a URL, i.e.
 that define its scope, are modeled after the rules for cookie
 scoping. The term "domain-match" is defined in RFC 2965. We define
 path-matching as follows For two strings that represent paths, P1 and
 P2, P1 path-matches P2 if either:

 1. P2 is equal to P1

 2. P2 is a prefix of P1 and either the final character in P2 is "/"
 or the character following P2 in P1 is "/".

 For example, "/tec/waldo" path-matches "/tec", "/tec/", and "/tec/
 waldo", but does not path-match "/tec/wal".

https://datatracker.ietf.org/doc/html/rfc2965

Butler, et al. Expires May 1, 2017 [Page 5]

Internet-Draft sdch-spec October 2016

 Given these definitions of domain-match and path-match, a request URL
 falls within a dictionary's scope exactly when all of the following
 are true:

 1. The request URL's host name domain-matches the Domain attribute
 of the dictionary.

 2. If the dictionary has a Port attribute, the request port is one
 of the ports listed in the Port attribute.

 3. The request URL path-matches the path attribute of the
 dictionary.

 4. The request URL's scheme matches the scheme of the dictionary.

 If a URL falls within a dictionary's scope, the dictionary is said to
 "apply" to the URL.

4.4. Dictionary Identifier

 In communications between user agent and server, a dictionary is
 identified by the first 96 bits of the SHA-256 digest [RFC6234] of a
 dictionary's metadata and payload (see dictionary-definition above)
 exactly as it is received by the user agent from the server. Both
 user agent and server compute this identifier independently, based on
 the metadata and the payload of the dictionary. This digest should
 be unique within a dictionary's scope (domain and path) in order to
 prevent dictionary identifier collisions.

 The digest serves not only as an identifier but also as a safeguard
 against attempts to maliciously intercept or otherwise modify
 dictionary contents, since a compromised dictionary will hash to a
 different identifier and the server will not recognize it. The user
 agent identifier for a dictionary is defined as the URL-safe base64
 encoding (as described in RFC 3548, section 4 [RFC3548] of the first
 48 bits (bits 0..47) of the dictionary's SHA-256 digest. The server
 identifier for a dictionary is the URL-safe base64 encoding of the
 second 48 bits (bits 48..95). When identifying a dictionary to the
 server, the user agent uses the user agent identifier, and similarly,
 when identifying a dictionary to the user agent, the server uses the
 server identifier. Note that both user agent and server have the
 entire dictionary and can thus compute both identifiers for the
 dictionary.

 As a consequence of this scheme, dictionaries do not need to be
 explicitly named by site maintainers, as the protocol avoids
 identifying them in any way other than the above digest-generated
 identifiers.

https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc3548#section-4
https://datatracker.ietf.org/doc/html/rfc3548

Butler, et al. Expires May 1, 2017 [Page 6]

Internet-Draft sdch-spec October 2016

4.5. Differences between Dictionaries and Cookies

 Dictionaries are similar to cookies in that they allow sharing of
 state over HTTP. Thus, we have modeled dictionaries after cookies,
 as described in RFC 2965. However, because dictionaries are
 typically larger than cookies, embedding a dictionary in the response
 would increase latency of the response. Thus a dictionary is always
 sent as a separate HTTP response (unlike a cookie which is included
 in a Set-Cookie header of any HTTP response). The Get-Dictionary
 HTTP response header is used to tell the user agent that it should
 fetch a dictionary separately for use in future requests.

 Likewise, rather than including the dictionary contents in the HTTP
 request headers (like a cookie in the Cookie header), dictionary
 identifiers (described above) are used to advertise available
 dictionaries in HTTP requests from the user agent to the server.

5. User Agent / Server Interaction Description

5.1. User Agent Role in HTTP Request Generation

 The user agent:

 1. Advertises support for the proposed protocol by adding the "sdch"
 token to the Accept-Encoding header of HTTP requests.

 2. Advertises any dictionaries it possesses that apply to the URL
 being requested (per the scoping rules above) in the Avail-
 Dictionary request header.

 The Avail-Dictionary header syntax is as follows: avail-dictionary-
 header = "Avail-Dictionary" ":" 1#dictionary-client where dictionary-
 client-id is the user agent identifier part for the dictionary based
 on the SHA-256 digest as described above. The value of this header
 is informally a comma separated list of user agent dictionary
 identifiers.

 The user agent must advertise every dictionary it has cached that
 applies to the requested URL. It is only the presence of the
 dictionary identifier in this header that indicates to the server
 that the user agent possesses and therefore does not need to download
 the dictionary. Since the user agent must advertise every dictionary
 it has, it is the site maintainer's responsibility to avoid making
 too many dictionaries available at a given time. Advertising many
 dictionaries in this header can counteract the benefits of
 compression.

https://datatracker.ietf.org/doc/html/rfc2965

Butler, et al. Expires May 1, 2017 [Page 7]

Internet-Draft sdch-spec October 2016

 Note that for each individual request the user agent has discretion
 over whether or not to add "sdch" Accept-Encoding token and the
 Avail-Dictionary header. Since some responses, such as image data,
 are unlikely to benefit from dictionary compression, the user agent
 can reduce the size of its requests by not sending this token and
 header. The user agent may decide whether or not to add these
 headers based on file extensions in URLs or the context of the
 request. For instance, the user agent may choose to not advertise
 SDCH for URLs referenced in IMG elements.

5.2. Server Role in HTTP Response Generation

 When a server that supports the extension receives a request that
 indicates that the user agent supports the protocol (e.g. the "sdch"
 token is present in the Accept-Encoding request header), two
 independent decisions must be made. The server must decide: 1. if it
 wants to send an encoded response. 2. if it wants to inform the user
 agent about additional dictionaries it can download and use in the
 future.

 The server may return an encoded response only if all of the
 following are true: 1. The Accept-Encoding request header contains
 the "sdch" token. 2. The server can send a response compressed with
 a dictionary whose dictionary-client-id is in the Avail-Dictionary
 request header.

 A server may return a response that is not encoded even if it
 recognizes a dictionary advertised by the user agent. If the server
 decides to not use SDCH encoding when a Avail-Dictionary header is
 present, it must include a specific HTTP header X-SDCH-Encoding with
 value "0" in the response. The syntax of the X-SDCH-Encoding header
 is:

 sdch-not-used-header = "X-SDCH-Encoding" ":" "0"

 The server indicates that an HTTP response is encoded by inserting
 the token "sdch" into the Content-Encoding header of the HTTP
 response.

 A compatible server may instruct a compatible user agent to download
 one or more new dictionaries by including the Get-Dictionary header
 in the HTTP response. The server may advertise a Get-Dictionary
 header even if the response is not encoded. The syntax of the Get-
 Dictionary header is: get-dictionary-header = "Get-Dictionary" ":"
 1#partial-url where partial-url is either a complete URL, or just the
 absolute URL path (in which case the scheme, host, and port of the
 originating server would be used when requesting the dictionary). If
 a complete URL is provided, it must have the same scheme, host, and

Butler, et al. Expires May 1, 2017 [Page 8]

Internet-Draft sdch-spec October 2016

 port as the originating server. The Content-Type header of
 dictionary responses must be application/x-sdch-dictionary. The
 value in the get dictionary header is a comma-separated list of
 partial-url elements.

 The server must not advertise a dictionary with a dictionary-client-
 id that the user agent has listed in the Avail-Dictionary header.

 The server may use SDCH compression with a dictionary that the user
 agent has advertised and also include a Get-Dictionary header for a
 different dictionary that the user agent has not advertised.

 The server must prevent SDCH-encoded responses from being cached by
 intermediate proxies. See the section below on proxy caching for
 additional details.

 The server should limit the number of active dictionaries at any one
 time, by using well-scoped dictionaries. A server that has many
 active dictionaries with overlapping scope will cause user agents to
 generate a very long Avail-Dictionary header, the overhead of which
 can counteract the benefits of SDCH compression.

 The server may decide to precompute and cache SDCH-encoded responses
 if a given SDCH-encoded response will be served multiple times (e.g.
 for static content).

 The server may apply multiple Content-Encodings to the response,
 (e.g. sdch and gzip) in which case subsequent encoding tokens are
 appended to the Content-Encoding header, per the HTTP/1.1 RFC section

14.11.

5.3. User Agent Role in HTTP Response Handling

 An SDCH-compatible user agent must inspect the Content-Encoding HTTP
 response header to determine if the response is SDCH-encoded. If the
 Content-Encoding includes the "sdch" token, the user agent must
 perform SDCH decompression on the response.

 If the HTTP response includes a Get-Dictionary header, the user agent
 must verify that the partial-url specified refers to the same server
 that generated the response. If so, the user agent may download the
 dictionary at the given URL.

 There are two different URLs to consider when downloading and storing
 a dictionary. The referer URL is the URL of the request that
 resulted in the server responding with a Get-Dictionary header.

 The dictionary URL is defined as follows:

Butler, et al. Expires May 1, 2017 [Page 9]

Internet-Draft sdch-spec October 2016

 1. If the partial-url is a complete URL, the dictionary URL is the
 partial-url.

 2. If the partial-url is just a path URL, the dictionary URL is
 generated from the scheme and host name of the referrer URL and
 the path in the partial-url.

 The user agent may retrieve a dictionary if the origin of the
 dictionary matches the origin of the referrer. HTTP redirects may
 only be followed if the origin matches as well.

 Upon retrieving the dictionary, the user agent must validate the
 dictionary. Here again, the validation rules are modeled after the
 rules for when a user agent can accept an HTTP cookie. A dictionary
 is invalid and must not be stored if any of the following are true:

 1. The dictionary has no Domain attribute.

 2. The effective host name that derives from the referrer URL host
 name does not domain-match the Domain attribute.

 3. The Domain attribute is a top level domain.

 4. The referrer URL host is a host domain name (not IP address) and
 has the form HD, where D is the value of the Domain attribute,
 and H is a string that contains one or more dots.

 5. If the dictionary has a Port attribute and the referrer URL's
 port was not in the list.

 If the dictionary is valid and user agent decides to store the
 dictionary, the scheme of the dictionary URL should also be stored
 along with dictionary.

5.4. SDCH-Encoded Response Body

 An SDCH-encoded response starts with the dictionary-server-id used to
 compress the response. The syntax of the SDCH-encoded response is:
 dictionary-compression-response = dictionary-server-id "\0" vcdiff-
 payload

6. Examples

 For the purpose of these examples, assume the following dictionaries
 exist on the server and can be downloaded from the following URLs:

 "Search results" dictionary

Butler, et al. Expires May 1, 2017 [Page 10]

Internet-Draft sdch-spec October 2016

 o domain: .google.com

 o path: /search

 o user agent ID: TWFuIGlz

 o server ID: JOWk0d2N

 o download location: /dictionaries/search_dict

 "Help pages" dictionary

 o domain: .google.com

 o path: /

 o user agent ID: GVhc3V48

 o server ID: O9d2_m3-

 o download location: /dictionaries/help_dict

 Note that the dictionary identifier consists of two parts: user agent
 ID and the server ID. Most of the detail of the request and response
 headers has been omitted.

6.1. Example 1: Initial Interaction, User Agent has No Dictionaries

 1. user agent's request

 GET /search?q=sprouts HTTP/1.1
 Host: www.google.com
 Accept-Encoding: sdch, gzip

 1. server's response

 HTTP/1.1 200 OK
 Content-type: text/html
 Content-Encoding: gzip
 Get-Dictionary: /dictionaries/search_dict, /dictionaries/help_dict
 Cache-Control: private

 Note that the response returned by the server does NOT use SDCH
 encoding, since the user agent does not have a dictionary. The
 server simply provides the locations of the dictionaries for future
 use. The user agent may choose to retrieve one or both dictionaries
 separately.

Butler, et al. Expires May 1, 2017 [Page 11]

Internet-Draft sdch-spec October 2016

6.2. Example 2: User Agent Requests the Dictionary

 1. user agent's request

 GET /dictionaries/search_dict HTTP/1.1
 Host: www.google.com
 Accept-Encoding: sdch, gzip

 1. server's response

 HTTP/1.1 200 OK
 Content-type: application/x-sdch-dictionary
 Content-Encoding: gzip

 Domain: .google.com
 Path: /search
 Format-version: 1.0

 ...dictionary contents...

 Upon receiving this response, the user agent computes the digest of
 the dictionary and determines the user agent ID is TWFuIGlz and the
 server ID is JOWk0d2N.

6.3. Example 3: User Requests Page AND User Agent Has Already
 Downloaded

 the Dictionary

 1. user agent's request

 GET /search&q=brussel+sprouts HTTP/1.1
 Host: www.google.com
 Accept-Encoding: sdch, gzip
 Avail-Dictionary: TWFuIGlz

 1. server's response

 HTTP/1.1 200 OK
 Content-type: text/html
 Content-Encoding: sdch, gzip
 Get-Dictionary: /dictionaries/help_dict
 Cache-Control: private

 JOWk0d2N<NUL>...VCDIFFed response...
 (note that the response shown to the left the result of gzip
 decompression)

Butler, et al. Expires May 1, 2017 [Page 12]

Internet-Draft sdch-spec October 2016

 The server has properly identified the dictionary using its server ID
 and the user agent can confirm that the second 48 bits of the SHA-256
 digest of the dictionary match its computation. It can then
 decompress the VCDIFF response using this dictionary. Even though
 the "search results" dictionary was used to decompress the response,
 the server has chosen to indicate another dictionary could be
 requested by the user agent from http://www.google.com/dictionaries/

help_dict. This dictionary must be different than the "search
 results" dictionary as the server must never request the user agent
 download a dictionary it knows the user agent already has. Let's
 assume the user agent decides to download this dictionary.

6.4. Example 4: User Requests with Multiple Dictionaries

 1. user agent's request

 GET /search&q=brussels HTTP/1.1
 Host: www.google.com
 Accept-Encoding: sdch, gzip
 Avail-Dictionary: GVhc3V48,TWFuIGlz

 1. server's response

 HTTP/1.1 200 OK
 Content-type: text/html
 Content-Encoding: sdch, gzip
 Cache-Control: private

 JOWk0d2N<NUL>...VCDIFFed response... (note that the response shown
 to the left the result of gzip decompression)

 The user agent advertises that it has already downloaded two
 dictionaries that apply. The server may compress the response with
 either dictionary. As the server has no other dictionaries that
 apply to the request, it does not advertise any dictionaries in its
 response.

7. Implementation Considerations

7.1. Implementation Limits

 There are practical limitations to the number and size of the
 dictionaries a user agent can store. It is suggested that general
 use, non-mobile user agents should have the following minimum
 capabilities:

 o At least 300 dictionaries stored

http://www.google.com/dictionaries/help_dict
http://www.google.com/dictionaries/help_dict

Butler, et al. Expires May 1, 2017 [Page 13]

Internet-Draft sdch-spec October 2016

 o At least 100KB of payload per dictionary

 o At least 10MB of total dictionary contents

 o At least 20 dictionaries stored per domain

7.2. Dictionary Downloading

 The user agent always has the choice of whether or not to download a
 dictionary. It is recommended that the user agent be implemented
 with sufficient state to avoid downloading too many dictionaries from
 the same server. A malfunctioning server may also request the user
 agent continually download the same dictionary. One simple method to
 avoid both of these possibilities is for the user agent to rate-limit
 downloading dictionaries from the same domain.

 When the user agent receives a response with a Get-Dictionary header
 with dictionary download URLs that it may fetch, it should perform
 the dictionary downloads in the background. This is possible as the
 dictionary to be downloaded is guaranteed to not be needed to
 decompress the response with the Get-Dictionary header. The user
 agent should be careful to abort background dictionary downloads that
 do not complete in a reasonable amount of time.

7.3. Data Integrity

 If the dictionaries are tied to individual users or specific user
 actions, HTTP may leak this information to passive attacker by
 allowing the Get-Dictionary info to be seen. When using HTTPS, the
 same risk is prevented in the design document since Get-Dictionary
 URLs are required to be same-origin as the response.

 However, Downloading dictionaries over HTTPS or advertising
 dictionaries over HTTPS might introduce new security risks.

 TODO: add some examples. For example, SDCH-over-HTTPS subject to
 compression oracle attacks similar to CRIME/BREACH with the
 difference that the compression context is not supplied by the
 attacker. If an attacker had the contents of a dictionary, there is
 a theoretical possibility where a server sends a static response
 XOR'ed with user-provided data. The Attacker can provide data which
 reduced the size of the response when XOR'ed with the static
 response, the attacker may then be able to determine the contents of
 the static response.

 The protocol needs to ensure that the content as decompressed by the
 user agent with a given dictionary is identical to the server's

Butler, et al. Expires May 1, 2017 [Page 14]

Internet-Draft sdch-spec October 2016

 originally intended content. The three areas that can cause a data
 integrity problem are discussed below.

7.3.1. Data tampered by Proxy

 We have found incorrectly implemented proxies which tamper with an
 SDCH response and make the response unable to be decompressed to the
 server's originally intended content. The tampering may not be
 detected in the SDCH encoding itself if the proxy makes SDCH content
 look like non-SDCH content, for instance, by stripping the 'sdch'
 token from the content-encoding header of the response or by adding
 additional encodings (like gzip) on top of the SDCH and gzipped
 response without making the Content-Encoding header match. In order
 to detect when this occurs, the HTTP header X-SDCH-Encoding must be
 added to the response by the server to inform the client that the
 response was originally not SDCH encoded by the server. Should the
 user agent advertise SDCH capability in the request but receive a
 non-SDCH encoded response without the X-SDCH-Encoding header, it
 suggests that the response was tampered by a proxy. The user agent
 may then take action to avoid using SDCH in the future.

7.3.2. Dictionary mismatch

 When a dictionary information is exchanged between user agent and
 server, it is necessary to ensure that the dictionary identifiers are
 completely unambiguous, or the decompressed result may differ from
 the original content. To address this issue, SDCH uses the first 96
 bits of the SHA-256 digest of a dictionary's metadata and payload to
 create the dictionary identifiers used by the user agent and server
 to avoid ambiguity. (Please refer to the section "Dictionaries
 description" above for details.)

7.3.3. Data corruption / malicious attacks

 While this issue is not specific to SDCH, it can be exacerbated due
 to the nature of the stateful compression. For example, if the
 dictionary is corrupted or maliciously modified in a persistent on-
 disk cache, all subsequent responses decoded by using this dictionary
 will be corrupt. For this reason, the user agent and server should
 revalidate the dictionaries' integrity when they are loaded from non-
 volatile storage.

 Other issues like data corruption during transmission in the encoded
 payload could have much bigger adverse effect than that in the plain
 text. TCP provides a checksum, but it cannot detect some errors like
 swapped bytes. To address this issue, SDCH includes an Adler32
 checksum [RFC1950] in the encoded data shards. (Please refer to
 appendix "VCDIFF Encoding Format and SDCH" for details.)

https://datatracker.ietf.org/doc/html/rfc1950

Butler, et al. Expires May 1, 2017 [Page 15]

Internet-Draft sdch-spec October 2016

8. Response Caching

8.1. User Agent Cache

 The user agent should honor HTTP caching directives (Cache-Control,
 Expires,...) for caching responses, whether or not the responses are
 SDCH-encoded. When caching the SDCH-encoded responses, the SDCH-
 encoded responses should be decoded before being written to the
 cache. If this is not possible, the user agent may cache SDCH-
 encoded responses, unless the HTTP response headers indicate that the
 response is not cacheable. In this case, an SDCH-encoded cache entry
 should be invalidated when (1) the dictionary used to encode that
 response is deleted from the dictionary store, (2) the SDCH
 decompression user agent is uninstalled (if it is implemented as a
 browser add-on), or (3) the SDCH capable user agent is disabled.

 Intermediate Caches

 The server should use HTTP cache headers that prevent non-SDCH-aware
 intermediate cache servers from storing the encoded contents. The
 cache directive "Cache-Control: private" can be used for this
 purpose.

 If the compressed response can be cached by proxy caches, the server
 must include the HTTP header "Vary: Accept-Encoding, Avail-
 Dictionary" to alert proxies about sending the cached content only to
 the user agents who can decode it. Note that some proxies may not
 respect the Vary header, in which case non-SDCH-capable user agents
 would end up downloading SDCH-encoded responses. Thus, we recommend
 that SDCH-encoded responses not be cacheable by intermediate proxies
 unless there is a very compelling reason. Further, "Vary: Accept-
 Encoding, Avail-Dictionary" will not match requests unless these
 headers match exactly.

 A proxy cache may provide one of three levels of support for caching
 SDCH-encoded objects.

 1. No support - Never cache any response if the header Vary is
 present.

 2. Basic support - The proxy cache only serves cached SDCH-encoded
 content if all cache serving conditions are satisfied and the
 values of the HTTP headers specified in the Vary header of the
 cached content exactly match the corresponding headers in the
 HTTP request.

 3. Full support - The proxy should understand the SDCH protocol,
 should know what dictionary is used to encode/decode the

Butler, et al. Expires May 1, 2017 [Page 16]

Internet-Draft sdch-spec October 2016

 response, and should be able to download advertised dictionaries.
 The cache needs to have both SDCH user agent and server logic in
 it. The server should store the SDCH decoded responses in its
 cache.

 Dictionary Caching User Agent Cache

 As dictionary payloads may be large compared to the size of
 individual HTTP responses, in order to maximize latency improvements
 and minimize the bandwidth overhead of downloading dictionaries, it
 is recommended that the user agent persistently store dictionaries in
 a dictionary cache (e.g. on disk). It is suggested that the user
 agent implement a maximum limit on number of dictionaries stored per
 domain in order to avoid allowing one domain to force dictionaries
 for other domains out of the user agent's dictionary cache. To
 implement a fixed maximum size cache it is recommended that the cache
 manager first evict the dictionaries that were least recently used
 for decoding.

 Ideally dictionaries will be stored in the same cache as HTTP
 responses and may be inspected and cleared by the user using existing
 user interfaces. However, new support may be created to fulfill the
 need for the user agent to be able to quickly determine which
 dictionaries should be advertised for a given request.

 The user agent should be careful to validate that a dictionary
 matches its original identifier before being used for decompression
 to prevent malicious attacks on the dictionary cache. The user agent
 may implicitly handle this by always recomputing the hash before
 advertising the dictionary. However, to improve efficiency, the user
 agent may cache the original digest of the dictionary, advertise the
 dictionary with that digest, and then only for the dictionary
 selected by the server to encode the response, verify that the cached
 dictionary digest still matches the digest computed from the cached
 dictionary.

 The user agent must not evict dictionaries from its dictionary store
 that have been advertised in the Avail-Dictionary header of a HTTP
 request for which a response has not yet been returned.

 If a user agent downloads a dictionary which has the same identifier
 as another previously downloaded dictionary which are applicable to
 the same hosts, the user agent must be careful to either ignore the
 new dictionary or evict the old dictionary. If the two dictionaries
 with the same identifier have exactly the same contents the choice is
 not important, however this indicates a server error as a server must
 never instruct the user agent to download a dictionary that was
 advertised by the user agent. The user agent may want to avoid

Butler, et al. Expires May 1, 2017 [Page 17]

Internet-Draft sdch-spec October 2016

 downloading dictionaries from this server in the future as they may
 not be new and downloading unnecessary dictionaries can increase
 latency.

 Intermediate Caches

 The dictionary should be treated as a regular HTTP response by
 intermediate proxies. Thus, the normal HTTP caching consideration
 for intermediate proxies should apply to the dictionary as well.

9. Future Directions

 =====================

 As currently proposed, SDCH is not applicable to another case where
 differential compression would be beneficial: large files that change
 infrequently and in small ways, such as JavaScript and CSS files
 referenced by other HTML documents.

 TODO: Re-evaluate dictionary scoping rules, current approach that
 patterned after the same named attributes from the HTTP State
 Management Specification [RFC2965] may not be the best choice.

10. Current Status and Updates

 For current information about the status of this proposal:
https://groups.google.com/group/SDCH

11. IANA Considerations

 This document makes no requests of IANA.

12. Security Considerations

 Some security considerations are discussed in the data integrity
 section above, but the author anticipates further work to describe
 these.

13. Acknowledgements

 The authors would like to acknowledge the support of Google, Inc. for
 the development of this work. Technical editor: Harriett Hardman.
 Feedback and comments: Greg Badros, Chandra Chereddi, Darren Fisher,
 Ted Hardie, Ashu Jain, Ian Hickson, Othman Laraki, Jim Roskind, Ryan
 Sleevi, Lincoln Smith, Randy Smith, and Linus Upson.

https://datatracker.ietf.org/doc/html/rfc2965
https://groups.google.com/group/SDCH

Butler, et al. Expires May 1, 2017 [Page 18]

Internet-Draft sdch-spec October 2016

14. Appendix: VCDIFF Encoding Format and SDCH

 Although the SDCH protocol is proposed so that it could be adapted
 for use with any differential-encoding format, it currently uses the
 VCDIFF encoding format. This format was chosen because its
 definition is publicly available as the RFC 3284 draft standard. The
 VCDIFF format is independent of the method used for finding the
 longest possible matches between the dictionary (source) data and the
 payload (target) data.

 An encoder and decoder for the VCDIFF format, intended for use with
 SDCH, has been released as open-source under the Apache license.
 This package is called "open-vcdiff". It uses the Bentley/McIlroy
 technique for finding matches between the dictionary and target data.
 It conforms to the VCDIFF draft standard, with the following
 exceptions:

 Interleaved format

 The VCDIFF draft standard format divides each encoded delta window
 into three sections (data, instructions, and addresses), with the aim
 of improving compressibility of the encoded file using a secondary
 compressor such as gzip. The drawback to this approach is that none
 of the target data can be reconstructed unless the entire delta
 window is available. The delta window is received in packets over
 the network and it is desirable to be able to process its contents as
 they arrive. In order to facilitate decoding a stream of packets
 from the network, we have modified the VCDIFF format so that it
 interleaves the data, instructions, and addresses instead of placing
 them in three separate sections. Each instruction is followed by its
 size and then by an address or literal data.

 Adler32 checksum

 The format can be modified to include an Adler32 checksum [RFC1950]
 of the target window data. If the checksum format is used, then bit
 2 (0x04, defined as VCD_CHECKSUM) of the Win_Indicator byte will be
 set, and the checksum will appear just after the "Length of addresses
 for COPYs" field and before the "Data section for ADDs and RUNs"
 section in the encoding.

 Version header byte (Header4)

 If either of the two enhancements described above is used, then the
 resulting format will not conform to the VCDIFF draft standard as
 described in RFC 3284. In order to indicate this deviation from the
 standard, the fourth byte in the encoding (Header4, reserved for the
 VCDIFF version code) will be set to 0x53 (a capital "S" character in

https://datatracker.ietf.org/doc/html/rfc3284
https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc3284

Butler, et al. Expires May 1, 2017 [Page 19]

Internet-Draft sdch-spec October 2016

 ASCII.) If neither enhancement is used, the fourth byte may be 0x00
 (a null character), the default value described in the standard.

 VCD_TARGET flag and target COPY instructions not allowed for SDCH

 The SDCH protocol is intended to produce a delta between static
 dictionary data and target data. Secondary compression with gzip
 will be used to eliminate redundancy within the target data. For
 this reason, when using VCDIFF for SDCH, the Win_Indicator flag
 should always include the VCD_SOURCE flag, never the VCD_TARGET flag.
 COPY instructions should only reference addresses within the source
 data, never within the previously decoded target.

 The Xdelta package (http://xdelta.org) produces a format based on
 VCDIFF, though not 100% compatible with the RFC draft standard. That
 package has been released under the GNU General Public License.

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

15.2. Informative References

 [RFC3284] Korn, D., MacDonald, J., Mogul, J., and K. Vo, "The VCDIFF
 Generic Differencing and Compression Data Format",

RFC 3284, DOI 10.17487/RFC3284, June 2002,
 <http://www.rfc-editor.org/info/rfc3284>.

 [RFC3229] Mogul, J., Krishnamurthy, B., Douglis, F., Feldmann, A.,
 Goland, Y., van Hoff, A., and D. Hellerstein, "Delta
 encoding in HTTP", RFC 3229, DOI 10.17487/RFC3229, January
 2002, <http://www.rfc-editor.org/info/rfc3229>.

 [RFC3929] Hardie, T., "Alternative Decision Making Processes for
 Consensus-Blocked Decisions in the IETF", RFC 3929,
 DOI 10.17487/RFC3929, October 2004,
 <http://www.rfc-editor.org/info/rfc3929>.

http://xdelta.org
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc3284
http://www.rfc-editor.org/info/rfc3284
https://datatracker.ietf.org/doc/html/rfc3229
http://www.rfc-editor.org/info/rfc3229
https://datatracker.ietf.org/doc/html/rfc3929
http://www.rfc-editor.org/info/rfc3929

Butler, et al. Expires May 1, 2017 [Page 20]

Internet-Draft sdch-spec October 2016

 [RFC3548] Josefsson, S., Ed., "The Base16, Base32, and Base64 Data
 Encodings", RFC 3548, DOI 10.17487/RFC3548, July 2003,
 <http://www.rfc-editor.org/info/rfc3548>.

 [RFC2965] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2965, DOI 10.17487/RFC2965, October 2000,
 <http://www.rfc-editor.org/info/rfc2965>.

 [RFC1950] Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950,
 DOI 10.17487/RFC1950, May 1996,
 <http://www.rfc-editor.org/info/rfc1950>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <http://www.rfc-editor.org/info/rfc6234>.

Authors' Addresses

 Jon Butler

 Email: jkbutler@google.com

 Wei-Hsin Lee

 Email: weihsinl@google.com

 Bryan McQuade

 Email: mcquade@google.com

 Kenneth Mixter

 Email: kmixter@google.com

https://datatracker.ietf.org/doc/html/rfc3548
http://www.rfc-editor.org/info/rfc3548
https://datatracker.ietf.org/doc/html/rfc2965
http://www.rfc-editor.org/info/rfc2965
https://datatracker.ietf.org/doc/html/rfc1950
http://www.rfc-editor.org/info/rfc1950
https://datatracker.ietf.org/doc/html/rfc6234
http://www.rfc-editor.org/info/rfc6234

Butler, et al. Expires May 1, 2017 [Page 21]

