
Workgroup: Internet Engineering Task Force

Internet-Draft: draft-leggett-spkac-00

Published: 6 March 2020

Intended Status: Informational

Expires: 7 September 2020

Authors: G. Leggett, Ed.

Pepperpot Media

D.W. van Gulik

WebWeaving Internet Engineering

Signed Public Key and Challenge

Abstract

This memo describes the Signed Public Key and Challenge (SPKAC), a

syntax to provide Proof-of-Possession of a Public Key to support

federated (client) certificate enrolment.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 September 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Requirements Language

1.2. Historical

2. Signed Public Key and Challenge Profile

2.1. spki

2.2. challenge

2.3. publicKeyAndChallenge

2.4. signatureAlgorithm

2.5. signature

3. ASN.1 Module SPKAC

4. Example

5. IANA Considerations

6. Security Considerations

6.1. Use of the MD5 Message-Digest Algorithm

6.2. Clear Text Challenge and Public Key

6.3. UI/UX Denial of Service Design Issues

7. References

7.1. Normative References

7.2. Informative References

Authors' Addresses

1. Introduction

During a certificate enrollment process between a client (browser)

and a certificate authority, the certificate authority requires that

the client provide proof-of-possession of the public key of the

certificate that will be signed by the certificate authority.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The Signed Public Key and Challenge consists of a public key and an

optional challenge, collectively signed by the private key of the

end entity requesting certification.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Historical

The SPKAC protocol was originally used by the Netscape web browser

as part of their implementation of what eventually became the HTML5

[W3C.REC-html5-20141028] keygen tag. The keygen tag allowed a web

browser to request a (client) certificate from a certificate

authority over the world wide web, and the SPKAC protocol ensured

the web browser possessed the key being signed by the certificate

authority. Storage of the private key would typically be in a file

based keystore; or through a PKCS interface on a hardware token

(which may, or may not, have generated the private key and signed

the SPAC inside that hardware enclave).

For a long time the Signed Public Key and Challenge was a de facto

standard widely implemented but not standardised. The purpose of

this RFC is to document the existing use of the protocol, address

security implementation weaknesses in common implementations, and

formalise the protocol into a standard.

Note that, in 2015, Google unilaterally decided to retire keygen tag

support from the Chrome web browser. Prior to this; SPKAC was widely

used by both centralised certificate authorities (that would issue

personal digital x509 certificates) as well as in local enterprise

and federated settings. This removal has left the web community with

no standard way, de facto or otherwise, to distribute soft and hard

tokens to clients.

2. Signed Public Key and Challenge Profile

The parts that make up the Signed Public Key and Challenge are

encoded using the ASN.1 distinguished encoding rules (DER) [X.690],

and are defined below.

2.1. spki

The spki is a SubjectPublicKeyInfo as defined in RFC 5912 [RFC5912],

and consists of an ASN.1 sequence containing the algorithm used by

the public key, and the public key itself.

¶

¶

¶

¶

¶

¶

¶

2.2. challenge

The challenge is an ASN.1 IA5String, and MUST consist of a value

provided by the certificate authority that is difficult to predict.

This value will be encoded into the SPKAC by the end entity, signed

by the private key corresponding to the public key, and returned to

the certificate authority.

2.3. publicKeyAndChallenge

The publicKeyAndChallenge is an ASN.1 sequence of the spki and

challenge defined above. This value is signed using the

signatureAlgorithm and public key to produce the signature below.

2.4. signatureAlgorithm

The signatureAlgorithm is an AlgorithmIdentifier defined in RFC 5911

[RFC5911], and represents the algorithm used to sign the

publicKeyAndChallenge.

2.5. signature

The signature is an ASN.1 bit string containing the signature of the

ASN.1 DER encoded publicKeyAndChallenge, using the algorithm

specified by signatureAlgorithm.

3. ASN.1 Module SPKAC

This appendix includes all of the ASN.1 type and value definitions

contained in this document in the form of the ASN.1 module SPKAC.

¶

¶

¶

¶

¶

4. Example

The following example consists of a Base64 [RFC4648] encoded SPKAC

message signed with an RSA key [RFC8017] using the SHA256 message-

digest [RFC4634] algorithm.

SPKAC-Schema DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

 IMPORTS

 AlgorithmIdentifier{}, SIGNATURE-ALGORITHM

 FROM AlgorithmInformation-2009

 {iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-algorithmInformation-02(58)}

 SubjectPublicKeyInfo, SignatureAlgorithms

 FROM PKIX1Explicit-2009

 {iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-pkix1-explicit-02(51)};

 PublicKeyAndChallenge ::= SEQUENCE

 {

 spki SubjectPublicKeyInfo,

 challenge IA5String

 }

 SignedPublicKeyAndChallenge ::= SEQUENCE

 {

 publicKeyAndChallenge PublicKeyAndChallenge,

 signatureAlgorithm AlgorithmIdentifier{SIGNATURE-ALGORITHM,

 {SignatureAlgorithms}},

 signature BIT STRING

 }

END

¶

¶

The following section shows the decoded version of the above SKPAC

message.

MIIESTCCAjEwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQC9wmyQidBwnIN3

08UwRlTX2mB9g1a05IR6l9TOGmSz6BV5YYbavXdq38EA7dw/44U/P9edRNIwFTMPLWIb

hkDYMZkuziyovhBji8c5gUb09Flplc1aWO8V4u5kjEY6clusYVSxL+j0GU3NXW2k2AC4

+Ts8Y/sE9kfqWb5QzTI2Tz1UqRr6oE2G65LhFhgkg/yafnvOsh+B8nNwdcPwbqzPW8qN

FrDqppDg9sm5PbrfGY9xTeBYKq0AVv//qyG5YgqjNZPIPC4mRQfx/IPbcMJXNIf6iRQi

LniAxFuBmO3Ohog8rufUezWrA5d3f1sorTozkKxRECwnzgMcKmzcyZtENbkrNuL1BbDq

hwDs3xf9ilbwkiRx1BOWrPCEXZneS96iFRkEMkw2AcIQIqiDNSStpOt8jyKX4sRdUO3t

fagCZ1QcL2Dmyab5aypTr/eVx/xj3sZsrQCy89BlOsSN9GTBbIQeui97PiA6hmVFUWbG

La2TdZH+Bnjjc8OiZPF5YH9uQo1Z9xD+fxcL6xOQW35/JyJ7AtGa1SIut0q3WQ4S93wA

B/DOADc9GWl4mWB/2goLDsCUWXSHYs2czS/2a/Lh9MKQsDKLQbEMncxaq3TVBG7Urq9S

RnmemguaWjvoni0o725nWi/j5H6AtOZYoFGmccjxraSAVGWS4r+0X3qSZQIDAQABFglj

aGFsbGVuZ2UwDQYJKoZIhvcNAQELBQADggIBAJJgmBFMD+2AqkQpD/2AgCcoKNkRmcD8

EkHQY+5WN80+ogaWf5VcDU3ycP2554x95EPLhclqrX9xbzUemuUoNiR/sPyhxl0Pr7OP

tKqulW6QvT+YCcyrbILR1jE8lhVSENkT/fL6U9J4NPd7qGB0OFiTv9tAT1huzzuXgx67

6T8Y5mb9XVk0C6CCGEoDxSKI2n3/nbkdyyXlq1uFphwVCXEBUvrndD8y3vKd8rhtGyvz

8cTg2q/mHmSHldwwmfksaRNwh9mxOKerLUQ5pFM68HODOnJHFs/D26GQlwINfVqrVnI+

oCA/VFFz/QO4minT7zuDSGa/cFdiPWj3d//Gz02ppUIHk8RVKrdGgTf/efQmbP2zLEfa

AfTUlSjVliVDqw5SRG6QJYrvz80pfZcz13BY3pkN5lnAcuA8Ld5Gb/YVfiJkiefvMt9t

753pe9Yxv8iU6PKfQO8UbiGbPfEDP5bQ1EJPX0rdmvX7T85hwR7LXC5iUBs2xdahTfDg

oZTZ/12fSoNwkdgmYURmy/fAEOnVHIn5Gj/LKu8ii2UOzWktbAnz4f30MeuFeaBx5h9v

e/nELQnvsPiZgIDFdKYdXb8yJRTgg9ahYdPhEC/u1RIJFxs4sRmRfZwY7qATssLhnL9Z

DtDuuZxJft+sn5swpiepSiekGvw20fsP6tRD4nu0

¶

¶

Netscape SPKI:

 Public Key Algorithm: rsaEncryption

 RSA Public-Key: (4096 bit)

 Modulus:

 00:bd:c2:6c:90:89:d0:70:9c:83:77:d3:c5:30:46:

 54:d7:da:60:7d:83:56:b4:e4:84:7a:97:d4:ce:1a:

 64:b3:e8:15:79:61:86:da:bd:77:6a:df:c1:00:ed:

 dc:3f:e3:85:3f:3f:d7:9d:44:d2:30:15:33:0f:2d:

 62:1b:86:40:d8:31:99:2e:ce:2c:a8:be:10:63:8b:

 c7:39:81:46:f4:f4:59:69:95:cd:5a:58:ef:15:e2:

 ee:64:8c:46:3a:72:5b:ac:61:54:b1:2f:e8:f4:19:

 4d:cd:5d:6d:a4:d8:00:b8:f9:3b:3c:63:fb:04:f6:

 47:ea:59:be:50:cd:32:36:4f:3d:54:a9:1a:fa:a0:

 4d:86:eb:92:e1:16:18:24:83:fc:9a:7e:7b:ce:b2:

 1f:81:f2:73:70:75:c3:f0:6e:ac:cf:5b:ca:8d:16:

 b0:ea:a6:90:e0:f6:c9:b9:3d:ba:df:19:8f:71:4d:

 e0:58:2a:ad:00:56:ff:ff:ab:21:b9:62:0a:a3:35:

 93:c8:3c:2e:26:45:07:f1:fc:83:db:70:c2:57:34:

 87:fa:89:14:22:2e:78:80:c4:5b:81:98:ed:ce:86:

 88:3c:ae:e7:d4:7b:35:ab:03:97:77:7f:5b:28:ad:

 3a:33:90:ac:51:10:2c:27:ce:03:1c:2a:6c:dc:c9:

 9b:44:35:b9:2b:36:e2:f5:05:b0:ea:87:00:ec:df:

 17:fd:8a:56:f0:92:24:71:d4:13:96:ac:f0:84:5d:

 99:de:4b:de:a2:15:19:04:32:4c:36:01:c2:10:22:

 a8:83:35:24:ad:a4:eb:7c:8f:22:97:e2:c4:5d:50:

 ed:ed:7d:a8:02:67:54:1c:2f:60:e6:c9:a6:f9:6b:

 2a:53:af:f7:95:c7:fc:63:de:c6:6c:ad:00:b2:f3:

 d0:65:3a:c4:8d:f4:64:c1:6c:84:1e:ba:2f:7b:3e:

 20:3a:86:65:45:51:66:c6:2d:ad:93:75:91:fe:06:

 78:e3:73:c3:a2:64:f1:79:60:7f:6e:42:8d:59:f7:

 10:fe:7f:17:0b:eb:13:90:5b:7e:7f:27:22:7b:02:

 d1:9a:d5:22:2e:b7:4a:b7:59:0e:12:f7:7c:00:07:

 f0:ce:00:37:3d:19:69:78:99:60:7f:da:0a:0b:0e:

 c0:94:59:74:87:62:cd:9c:cd:2f:f6:6b:f2:e1:f4:

 c2:90:b0:32:8b:41:b1:0c:9d:cc:5a:ab:74:d5:04:

 6e:d4:ae:af:52:46:79:9e:9a:0b:9a:5a:3b:e8:9e:

 2d:28:ef:6e:67:5a:2f:e3:e4:7e:80:b4:e6:58:a0:

 51:a6:71:c8:f1:ad:a4:80:54:65:92:e2:bf:b4:5f:

 7a:92:65

 Exponent: 65537 (0x10001)

 Challenge String: challenge

 Signature Algorithm: sha256WithRSAEncryption

 92:60:98:11:4c:0f:ed:80:aa:44:29:0f:fd:80:80:27:28:28:

 d9:11:99:c0:fc:12:41:d0:63:ee:56:37:cd:3e:a2:06:96:7f:

 95:5c:0d:4d:f2:70:fd:b9:e7:8c:7d:e4:43:cb:85:c9:6a:ad:

 7f:71:6f:35:1e:9a:e5:28:36:24:7f:b0:fc:a1:c6:5d:0f:af:

 b3:8f:b4:aa:ae:95:6e:90:bd:3f:98:09:cc:ab:6c:82:d1:d6:

 31:3c:96:15:52:10:d9:13:fd:f2:fa:53:d2:78:34:f7:7b:a8:

 60:74:38:58:93:bf:db:40:4f:58:6e:cf:3b:97:83:1e:bb:e9:

 3f:18:e6:66:fd:5d:59:34:0b:a0:82:18:4a:03:c5:22:88:da:

 7d:ff:9d:b9:1d:cb:25:e5:ab:5b:85:a6:1c:15:09:71:01:52:

 fa:e7:74:3f:32:de:f2:9d:f2:b8:6d:1b:2b:f3:f1:c4:e0:da:

 af:e6:1e:64:87:95:dc:30:99:f9:2c:69:13:70:87:d9:b1:38:

 a7:ab:2d:44:39:a4:53:3a:f0:73:83:3a:72:47:16:cf:c3:db:

 a1:90:97:02:0d:7d:5a:ab:56:72:3e:a0:20:3f:54:51:73:fd:

 03:b8:9a:29:d3:ef:3b:83:48:66:bf:70:57:62:3d:68:f7:77:

 ff:c6:cf:4d:a9:a5:42:07:93:c4:55:2a:b7:46:81:37:ff:79:

 f4:26:6c:fd:b3:2c:47:da:01:f4:d4:95:28:d5:96:25:43:ab:

 0e:52:44:6e:90:25:8a:ef:cf:cd:29:7d:97:33:d7:70:58:de:

 99:0d:e6:59:c0:72:e0:3c:2d:de:46:6f:f6:15:7e:22:64:89:

 e7:ef:32:df:6d:ef:9d:e9:7b:d6:31:bf:c8:94:e8:f2:9f:40:

 ef:14:6e:21:9b:3d:f1:03:3f:96:d0:d4:42:4f:5f:4a:dd:9a:

 f5:fb:4f:ce:61:c1:1e:cb:5c:2e:62:50:1b:36:c5:d6:a1:4d:

 f0:e0:a1:94:d9:ff:5d:9f:4a:83:70:91:d8:26:61:44:66:cb:

 f7:c0:10:e9:d5:1c:89:f9:1a:3f:cb:2a:ef:22:8b:65:0e:cd:

 69:2d:6c:09:f3:e1:fd:f4:31:eb:85:79:a0:71:e6:1f:6f:7b:

 f9:c4:2d:09:ef:b0:f8:99:80:80:c5:74:a6:1d:5d:bf:32:25:

 14:e0:83:d6:a1:61:d3:e1:10:2f:ee:d5:12:09:17:1b:38:b1:

 19:91:7d:9c:18:ee:a0:13:b2:c2:e1:9c:bf:59:0e:d0:ee:b9:

 9c:49:7e:df:ac:9f:9b:30:a6:27:a9:4a:27:a4:1a:fc:36:d1:

 fb:0f:ea:d4:43:e2:7b:b4

¶

5. IANA Considerations

IANA is asked to assign the value "spkac" below { iso(1) identified-

organization(3) dod(6) internet(1) security(5) mechanisms(5) } as

per https://www.iana.org/assignments/smi-numbers/smi-

numbers.xhtml#smi-numbers-26 for the identifier of the ASN.1 SPKAC

schema, and to add this to the ASN.1 definition in this

specification.

All drafts are required to have an IANA considerations section (see

Guidelines for Writing an IANA Considerations Section in RFCs [RFC52

26] for a guide). If the draft does not require IANA to do anything,

the section contains an explicit statement that this is the case (as

above). If there are no requirements for IANA, the section will be

removed during conversion into an RFC by the RFC Editor.

6. Security Considerations

The aim of SPKAC is that no adversary can convince a certificate

authority to sign a certificate using the public key other than that

intended. An adversary is any entity other than the end entity and

the certificate authority attempting to establish proof-of-

possession.

6.1. Use of the MD5 Message-Digest Algorithm

Historically the formal definition of the HTML keygen tag specified

that the MD5 message-digest algorithm be used within SPKAC requests.

As defined in Updated Security Considerations for the MD5 Message-

Digest and the HMAC-MD5 Algorithms [RFC6151] MD5 must not be used

for digital signatures.

New protocols using the SPKAC protocol MUST NOT mandate the use of a

fixed message-digest algorithm, and existing protocols using the

SPKAC protocol SHOULD be updated to ensure the message-digest used

is not fixed to a given digest.

6.2. Clear Text Challenge and Public Key

Given that both the Challenge and the Public Key are encoded within

the SPKAC message in clear text, to ensure privacy of the data in

transit additional steps SHOULD be taken to ensure that SPKAC

message is delivered over a secure transport, such as TLS [RFC8446].

6.3. UI/UX Denial of Service Design Issues

When the generation of an SPKAC message is triggered by a remote

entity, such as a certificate authority triggering the generation of

an SPKAC message in a browser as part of a certificate request, the

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC4634]

[RFC4648]

[RFC5911]

[RFC5912]

user interfaces in the client (browser) should take care to not

allow (rogue) webpages or javascript to generate a very large number

of keygen requests; as this is not only somewhat resource intensive;

but may also deplete cryptographic quality random generator pools

(historically a concern). This is especially important as most

implementations will generally keep the cryptographic code and

(private) key storage outside the sandbox in which the DOM and

Javascript is handled.

Likewise - clients (browsers) should be particularly careful when

handling solicited (and unsolicited and maliciously repeated/high-

volume) responses to a SPKAC submission when storing certificates

and recombining certificates with keys in the key store. Especially

as (historically) it was common for such request to be handled

asynchronously; with the user receiving an email after, for example

human approval, to pick up the signed certificate at a certain URL.

Clients SHOULD make a request to the user for consent for the client

to generate the SPKAC message in a clear and easy to understand

manner, with cancel being the default choice should the user not

understand the request.

7. References

7.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Eastlake 3rd, D. and T. Hansen, "US Secure Hash

Algorithms (SHA and HMAC-SHA)", RFC 4634, DOI 10.17487/

RFC4634, July 2006, <https://www.rfc-editor.org/info/

rfc4634>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Hoffman, P. and J. Schaad, "New ASN.1 Modules for

Cryptographic Message Syntax (CMS) and S/MIME", RFC 5911,

DOI 10.17487/RFC5911, June 2010, <https://www.rfc-

editor.org/info/rfc5911>.

Hoffman, P. and J. Schaad, "New ASN.1 Modules for the

Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,

DOI 10.17487/RFC5912, June 2010, <https://www.rfc-

editor.org/info/rfc5912>.

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4634
https://www.rfc-editor.org/info/rfc4634
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5911
https://www.rfc-editor.org/info/rfc5911
https://www.rfc-editor.org/info/rfc5912
https://www.rfc-editor.org/info/rfc5912

[RFC6151]

[RFC8017]

[RFC8446]

[W3C.REC-html5-20141028]

[X.690]

[RFC5226]

Turner, S., "Updated Security Considerations for the MD5

Message-Digest and the HMAC-MD5 Algorithms", RFC 6151,

March 2011, <https://www.rfc-editor.org/info/rfc6151>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.

Rusch, "PKCS #1: RSA Cryptography Specifications Version

2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,

<https://www.rfc-editor.org/info/rfc8017>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Hickson, I., Berjon, R., Faulkner, S.,

Leithead, T., Navara, E., O'Connor, T., and S. Pfeiffer,

"HTML5", World Wide Web Consortium Recommendation REC-

html5-20141028, 28 October 2014, <http://www.w3.org/TR/

2014/REC-html5-20141028>.

authSurName, authInitials., "Information technology -

ASN.1 encoding rules: Specification of Basic Encoding

Rules (BER), Canonical Encoding Rules (CER) and

Distinguished Encoding Rules (DER).", ITU-T

Recommendation X.690 (2002) ISO/IEC 8825-1:2002, 2002.

7.2. Informative References

Narten, T. and H. Alvestrand, "Guidelines for Writing an

IANA Considerations Section in RFCs", RFC 5226, DOI

10.17487/RFC5226, May 2008, <https://www.rfc-editor.org/

info/rfc5226>.

Authors' Addresses

Graham Leggett (editor)

Pepperpot Media

London

United Kingdom

Email: minfrin@sharp.fm

Dirk-Willem van Gulik

WebWeaving Internet Engineering

Leiden

Netherlands

Email: dirkx@webweaving.org

https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8446
http://www.w3.org/TR/2014/REC-html5-20141028
http://www.w3.org/TR/2014/REC-html5-20141028
https://www.rfc-editor.org/info/rfc5226
https://www.rfc-editor.org/info/rfc5226
mailto:minfrin@sharp.fm
mailto:dirkx@webweaving.org

	Signed Public Key and Challenge
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Historical

	2. Signed Public Key and Challenge Profile
	2.1. spki
	2.2. challenge
	2.3. publicKeyAndChallenge
	2.4. signatureAlgorithm
	2.5. signature

	3. ASN.1 Module SPKAC
	4. Example
	5. IANA Considerations
	6. Security Considerations
	6.1. Use of the MD5 Message-Digest Algorithm
	6.2. Clear Text Challenge and Public Key
	6.3. UI/UX Denial of Service Design Issues

	7. References
	7.1. Normative References
	7.2. Informative References

	Authors' Addresses

