
OAuth working group B. Leiba

Internet-Draft Huawei Technologies

Intended status: Informational March 28, 2011

Expires: September 29, 2011

OAuth Additional Security Considerations

draft-leiba-oauth-additionalsecurityconsiderations-00

Abstract

The Open Authentication Protocol (OAuth) specifies a security protocol

that involves significant end-user interaction -- the model is based on

having the end-user approve the authorization that is being requested.

That aspect makes the user interaction a part of the security model,

and raises additional security considerations beyond those that are

typical for client/server protocols. This document describes those

considerations.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on September 29, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction*

2. Laying Out the Issues

2.1. On Granting Access

2.2. On Discovering and Revoking Access

3. Recommendations

4. Security Considerations

5. IANA Considerations

6. Acknowledgements

7. References

Author's Address

1. Introduction

The Open Authentication Protocol [I-D.ietf-oauth-v2] specifies a

security protocol used to authorize one service to act on behalf of a

user to a second service (to give a somewhat oversimplified

description). For example:

A photo-printing service needs authorization to retrieve photos

from a user's private photo albums, stored with a photo-sharing

service.

A social-network service needs authorization to read a user's

personal address book, stored in the email service she uses.

In most use cases, part of the protocol involves prompting the user to

log in to the second service and accept the authorization request. That

aspect makes the user interaction a part of the security model, and

raises additional security considerations beyond those that are typical

for client/server protocols.

2. Laying Out the Issues

The OAuth version 2 spec [I-D.ietf-oauth-v2] describes, in its

introduction, a typical example of the use of OAuth:

For example, a web user (resource owner) can grant a printing

service (client) access to her protected photos stored at a photo

sharing service (resource server), without sharing her username

and password with the printing service. Instead, she

authenticates directly with a server trusted by the photo sharing

service (authorization server) which issues the printing service

delegation-specific credentials (access token).

*

*

*

*

*

*

*

*

*

*

*

*

In such a typical case:

The user (resource owner) visits the client's web site (the

printing service) and makes a web request ("Print a photo from

my photo-sharing site.")

The client, behind the scenes and not apparent to the user,

requests authorization from the resource server, and is given a

request token.

The client sends a response to the user's web request. The

response redirects the user's web browser to the authorization

server (of the photo-sharing service) and passes the server the

request token.

The authorization server prompts the user to accept the

requested authorization. The user sees this authorization

prompt in the browser, and it appears to be the first response

to the original request.

The user accepts the authorization request. She might have to

log in first, or an existing login might be used. Typically,

she will click a visual "button" that says "Accept",

"Authorize", "OK", or the like.

The authorization server sends a response to that action. The

response redirects the user's web browser to the client web

server (the printing service) and passes the server an access

token.

The client (the printing service) uses the access token behind

the scenes to contact the resource server (the photo-sharing

service) and to perform the service for the user. The user is

given a response that indicates that the request is in the

works.

From the user's point of view, the interaction has seemed simple; this

is a great benefit of OAuth. But there was actually a reasonable amount

of complexity "behind the scenes" that the user did not understand, and

that leaves us with a conflicted situation:

the user shouldn't have to understand all of the behind-the-

scenes detail, but

the user needs to understand what she's being asked to

authorize, in order that she might make the right security

decision about the request.

1.

2.

3.

4.

5.

6.

7.

1.

2.

2.1. On Granting Access

Some of the things a user might need to understand to make the decision

include

Who is requesting the access. This can be a tricky point. The

authorization server might likely know only the domain name, or

even just the IP address of the client that's making the request.

The user *might* be able to make some sense of the domain name,

but really would do better with a real, human-readable name that

matches what she calls the service. And the authorization server

has no cause to trust any human-readable string the requestor

gives.

A DKIM-like digital signature [I-D.crocker-dkim-doseta] along

with a mapping of known signing identities to readable names can

be a great help here. But be aware that any name provided by the

client is open to abuse by a bad actor, and should not be

trusted.

Who will be granting the access. It's easy to leave this out,

with the idea that it should be self-evident. The problem is that

if a client is requesting access beyond what it should be asking

for, it might be asking the wrong entity as well. If a user asks

for a photo to be printed, the requested authorization should not

be to the user's email account.

The specific access that is being requested. This might not

always be obvious, depending upon the request, and depending upon

how the prompt is worded. "Print a photo for me," will likely

translate into read access to the photo. For "Auto-adjust the

contrast before printing, and save the adjusted version," the

service will need access to update the photo or to save a new

copy.

"Send e-cards to my family on their birthdays," might translate

into authority to send email on her behalf, plus read access to

her address book. The address book access is somewhat less

evident, and leaves a different avenue for abuse.

The scope of the access. If she wants to print a single photo,

then read access to just that photo will do. If she wants to

print all photos in an album, she'll need to grant read access to

the whole album.

The duration of the access. If she just wants to print a photo,

then a single read access to the photo should be enough. If she

wants the service to automatically print all her new photos every

week, persistent, long-term read access to her "new uploads"

photo album might work.

*

*

*

*

*

Because end-users are accepting or rejecting the authorization that the

client service is requesting, their understanding of what they're being

asked is important to the overall security of the system. And because

end-users often know nothing about computer security, the way these

various points are presented to them is a critical piece of the

security design. That is, the prompts and the user's understanding of

them and response to them have to be considered part of the security

model.

This is especially important because the user is thinking in terms of a

task, while the authorization system is working in terms of what

accesses are needed for the task. The mapping between the two is often

not clear to the user, and the user's trust of the service requesting

the access might be tenuous.

We need to avoid asking users questions they're not prepared or

qualified to answer. Unfortunately, most security-related questions

fall into that category. The more we can put the request into plain

language, and the better we can explain, in clear, simple terms what's

being asked and what the ramifications of it are, the more likely it is

that we'll be working with informed consent and will have a chance at

fending off attacks on the system.

Consider the difference, for example, between the following two

prompts.

 Give printpix.example r/o access to

 http://photoshare.example/usr213554/fnxgrptl/250/43/342500134.jpg

 (OK) (Cancel)

 Example 1a

 The Print My Pix service (printpix.example) is asking PhotoShare

 for access to your photo titled "Ralph in the park" in album

 "New York". Granting access will allow Print My Pix to read, but

 not alter nor delete, your photo. Access will be allowed one

 time only.

 For a more detailed explanation of what this means, [click here].

 Do you want to allow access?

 (Yes) (No)

 Example 1b

The second prompt is wordier, but might be easier for most people to

understand. Some of the technical details (such as the URL to the photo

in question) are available at a click, for users who want more details.

Note how that difference appears to a user when the Print My Pix

service is actually abusive, and tries to get broader access than it

needs.

 Give printpix.example r/w access to

 http://photoshare.example/usr213554/

 (OK) (Cancel)

 Example 2a

 The Print My Pix service (printpix.example) is asking PhotoShare

 for access to all your photo albums. Granting access will allow

 Print My Pix to read, alter and delete, your photos. Access will

 be allowed permanently.

 For a more detailed explanation of what this means, [click here].

 Do you want to allow access?

 (Yes) (No)

 Example 2b

The second prompt makes it clearer that Print My Pix is asking for a

lot. Specific warnings might also be added for atypical access

requests, or ones that seem to be overstepping.

It is not the intent, here, to give specific user-interface design

advice, and the design and wording of these prompts and other user-

interface elements will not necessarily come out well if given to some

protocol designers. The point, rather, is to highlight the issues and

raise awareness of the security implications of how OAuth requests are

communicated, so interface designers can take that into account.

2.2. On Discovering and Revoking Access

As we use a great many services that each act as clients to other

services we use, we soon get into a very complex and hard-to-manage

situation. Suppose our hypothetical user allows Facebook to access

Flickr and to import contacts from Gmail; she allows her Blogger

account to post photos to Flickr and to read the photos there; she

allows Twitter to post her tweets to Facebook....

By the nature of these arrangements, and by the design of OAuth,

there's no central place that keeps track of all the authorizations.

Each service knows what accesses she has authorized to it, but she has

to check each service individually. It's critical that she have an easy

way to do that, that she can easily find the way to do that, and that

she can understand the results that her queries return -- it won't do

to have them in computer-geek gibberish.

Further, it has to be easy for her to suspend or revoke the

authorizations she's made -- stale authorizations are entry points for

security vulnerabilities. She needs to be able to correct errors she

has made in authorizing things, as well as to rescind the

authorizations that are no longer appropriate.

3. Recommendations

Implementations should consider clarity to end users as a

critical part of the security model. Because users who are not

experts in security are being asked to make security decisions,

it is very important that the questions be clear, and that it

be easy to find more information.

Implementations should explain exactly what is being requested

by whom, and should provide one-click access to a more detailed

explanation.

Implementations should explain the ramifications of accepting

the request. Because the user is thinking of a specific task,

other aspects of what the requested access permits are not in

the user's mind. Put them there. Explain that this means that

they will be able to put all your photos into their photo pool,

send email on your behalf forever, and put everyone you know

into their marketing database.

Implementations should be attuned to the more usual requests,

and should highlight unusual requests when they arrive. If most

reasonable requests need read access and one asks for read/

write, tell the user it's unusual. Similarly, if most requests

need one-time access, or access to a single resource, let the

user know that a request for permanent access to multiple

resources is cause for concern. This particular task might need

it, but make sure the user is aware that this isn't what you

usually see.

This should be a tractable problem, because most authorization

servers will be dealing with a limited set of resources, and,

hence, a limited set of typical authorization requests. The set

of typical requests will often be readily enumerable, and out-

of-the-ordinary ones will usually stand out.

1.

2.

3.

4.

5.

Implementations should provide an easy way, obvious to the

user, to inquire about active authorizations. This should not

be hidden behind a sort of "advanced" page, but should be

within easy reach of every user, along with a clear explanation

of what it means.

Implementations should provide an easy way, once the active

authorizations are shown, to get a detailed explanation of the

authorization -- what it means, what it allows access to, what

the ramifications are. Anything that should have been part of

the original access prompt should be available here.

Implementations should provide an easy way, once the active

authorizations are shown, to suspend or revoke each

authorization immediately.

Client implementations should gracefully re-authorize in the

event of a revoked authorization. Failure because an expected

authorization has been revoked is considered poor quality of

implementation. It is only appropriate to fail after an attempt

to re-authorize is denied.

4. Security Considerations

This entire document is about security considerations. Can we have the

RFC Editor remove this section prior to publication?

5. IANA Considerations

There are no IANA actions needed for this document, and the RFC Editor

may remove this section prior to publication.

6. Acknowledgements

[Thanks will go here.]

7. References

[I-D.ietf-

oauth-v2]

Hammer-Lahav, E, Recordon, D and D Hardt, "The

OAuth 2.0 Authorization Protocol", Internet-Draft

draft-ietf-oauth-v2-13, February 2011.

[I-D.crocker-

dkim-doseta]

Crocker, D and M Kucherawy, "DomainKeys Security

Tagging (DOSETA)", Internet-Draft draft-crocker-

dkim-doseta-00, January 2011.

Author's Address

Barry Leiba Leiba Huawei Technologies Phone: +1 646 827 0648 EMail:

barryleiba@computer.org URI: http://internetmessagingtechnology.org/

6.

7.

8.

9.

http://tools.ietf.org/html/draft-ietf-oauth-v2-13
http://tools.ietf.org/html/draft-ietf-oauth-v2-13
http://tools.ietf.org/html/draft-crocker-dkim-doseta-00
http://tools.ietf.org/html/draft-crocker-dkim-doseta-00
mailto:barryleiba@computer.org
http://internetmessagingtechnology.org/

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Laying Out the Issues
	2.1. On Granting Access
	2.2. On Discovering and Revoking Access
	3. Recommendations
	4. Security Considerations
	5. IANA Considerations
	6. Acknowledgements
	7. References
	Author's Address

