
Workgroup: Internet Engineering Task Force

Published: 26 July 2021

Intended Status: Standards Track

Expires: 27 January 2022

Authors: T. Lemon

Apple Inc.

Automatic Replication of DNS-SD Service Registration Protocol Zones

Abstract

This document describes a protocol that can be used for ad-hoc

replication of a DNS zone by multiple servers where a single primary

DNS authoritative server is not available and the use of stable

storage is not desirable.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 January 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Alternatives for maintaining SRP state

1.1.1. Primary authoritative DNS service

1.1.2. Multicast DNS Advertising Proxy

1.1.3. SRP Replication

1.2. Implementation

1.2.1. Naming of a common service zone

1.2.2. Advertising one's own replication service

1.2.3. Discovering other replication services

1.2.4. Discovering the addresses of peers

1.2.5. Establishing Communication with a replication peer

1.2.6. Incoming connections

1.2.7. Eliminating extra connections

1.2.8. Initial synchronization

1.2.9. Routine Operation

2. Protocol Details

2.1. DNS Stateful Operations considerations

2.1.1. DSO Session Establishment

2.1.2. DSO Session maintenance

2.2. DSO Primary TLVs

2.2.1. SRPL Session

2.2.2. SRPL Send Candidates

2.2.3. SRPL Candidate

2.2.4. SRPL Host

2.3. DSO Secondary TLVs

2.3.1. SRPL Candidate Yes

2.3.2. SRPL Candidate No

2.3.3. SRPL Conflict

2.3.4. SRPL Hostname

2.3.5. SRPL Host Message

2.3.6. SRPL Time Offset

2.3.7. SRPL Key ID

3. Security Considerations

4. Delegation of 'local.arpa.'

5. IANA Considerations

5.1. 'srpl-tls' Service Name

5.2. DSO TLV type code

5.3. Registration and Delegation of 'local.arpa' as a Special-Use

Domain Name

6. Informative References

7. Normative References

Author's Address

1. Introduction

The DNS-SD Service Registration Protocol provides a way for network

services to update a DNS zone with DNS-SD information. SRP uses

unicast DNS Updates, rather than multicast DNS, to advertise

services. This has several advantages over multicast DNS:

Reduces reliance on multicast

Reduces traffic to devices providing services, which may be

constrained devices operating on battery power

Allows the advertisement of services on one network link to

consumers of such services on a different network link

1.1. Alternatives for maintaining SRP state

1.1.1. Primary authoritative DNS service

Ideally, SRP updates a primary authoritative DNS server for a

particular zone. This DNS server acts as the sole source of truth

for names within the DNS zone in which SRP services are published.

Redundancy is provided by secondary DNS servers, if needed. However,

this approach has some drawbacks.

First, it requires 100% availability on the part of a DNS primary

authoritative server for the zone. If the primary server is not

available for some period of time, new services appearing on the

network cannot be registered until primary authoritative service is

restored.

The second drawback is that there is no automatic method for

managing DNS authoritative service. This means that such a service

requires an operator to set it up. What it means to set up such a

service is that the following capabilities are provided:

An host must be available to act as a primary authoritative DNS

server

The zone advertised by that server must be delegated, so that the

local resolver can successfully answer queries in that zone

The local resolver must be able to provide local browsing domain

advertisements [RFC6763 section 11].

1.1.2. Multicast DNS Advertising Proxy

An existing alternative to the use of DNS authoritative services for

advertising SRP registrations the advertising proxy [draft-tlsc-

advertising-proxy]. An advertising proxy advertises the contents of

the SRP update zone using multicast DNS on links on which the need

for such advertisements is anticipated. This works well for stub

networks [draft-lemon-stub-networks], where services advertised on

the stub network must be visible both on the stub network and on the

¶

* ¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

adjacent infrastructure network, but do not generally need to be

discoverable on other networks.

One drawback of the advertising proxy model, however, is that there

is no shared database from which to advertise services registered by

SRP. As a consequence, some of the guarantees provided by SRP,

particularly first come, first served naming [draft-ietf-dnssd-srp].

Because advertising proxies are set up automatically on an ad-hoc

basis, coordination between advertising proxies is not present,

which means that if two devices claim the same name, but register

with different SRP servers, the conflict is not detected until the

service is advertised using mDNS. In practice, this results in

frequent renaming of services, which means that consumers of

services need to carefully follow each service that they use as the

name changes over time.

An additional drawback is that, from the perspective of the SRP

client, SRP service is not unified: SRP servers tend to come and go,

and whenever the SRP service with which a particular client has

registered goes offline, the client has to notice that this has

happened, discover a new SRP server, and re-register, or else it

becomes unreachable.

1.1.3. SRP Replication

This document describes a replication mechanism which eliminates the

need for a single authoritative source of truth, as in the Primary

Authoritative DNS model, while eliminating the drawbacks of the

Advertising Proxy model. SRP Replication servers discover each other

automatically. Each replication server maintains a copy of the SRP

zone which is kept up to date on a best-effort basis.

SRP Replication has several benefits:

As long as one SRP replication peer remains online at all times,

SRP state is maintained when individual SRP replication peers go

offline

Name collisions when SRP clients change servers are avoided

SRP service on a stub network can appear as an anycast service,

so that SRP clients do not see an apparent change in servers and

re-register when the server with which they most recently

registered goes offline

1.2. Implementation

SRP Replication relies on the fact that any given client is always

registering with exactly one SRP server at any given time. This

means that when an SRP server receives an SRP update from a client,

¶

¶

¶

¶

¶

*

¶

* ¶

*

¶

it can be sure that no other SRP server has a more recent version of

that SRP client's registration. Consequently, that SRP server can

behave as if it is the source of truth for that client's

registration, and other SRP servers can safely assume that any data

they have about the client that is less recent can be replaced with

the new registration data.

1.2.1. Naming of a common service zone

In order for SRP replication peers to replicate a zone, they must

agree upon a common name for the zone. We will describe two

mechanisms for agreeing on a common zone here.

1.2.1.1. Zone name based on network name

Network names aren't guaranteed to be unique, but tend to be unique

for any given site. In the case of ad-hoc (permissionless) SRP-based

service, such as an advertising proxy or an authoritative service

using a locally-served zone [https://www.iana.org/assignments/

locally-served-dns-zones/locally-served-dns-zones.xhtml], because

the DNS zone name isn't required to be globally unique, a zone name

based on the network name is an easy solution to generating a unique

zone name.

When generating a zone name based on a network name, the zone name

could be based on a locally configured global zone name, e.g.

'example.com'. It could be based on a locally-managed locally-served

name, e.g. 'home.arpa'. Or it could be based on an unmanaged

locally-served name, for which we propose to use the root name

'local.arpa.' For the rest of this section we will assume that the

specific setting determines which of these domains will be used, and

refer to whichever domain that is as DOMAIN.

For zone names based on the network name, the network type should be

used as a differentiator, in case there are two different local

network types with the same name. So, for example, 'WiFi.DOMAIN.'

1.2.1.1.1. Zone name based on WiFi SSID

If the zone being represented is a WiFi network, then the zone name

for the network should be constructed using the WiFi SSID followed

by 'WiFi.DOMAIN'. For example, if the SSID is "Example Home" then

the zone name would be 'Example Home.WiFi.DOMAIN.' Note that spaces

and special characters are allowed in domain names.

1.2.1.1.2. Zone name based on Thread network name

If the zone being represented is a Thread [Thread] network, then the

zone name for the network should be constructed using the Thread

¶

¶

¶

¶

¶

¶

network name. For example, if the Thread network name is

"openthread" then the zone name would be 'openthread.thread.DOMAIN.'

1.2.1.2. Zone name based on local configuration

The above examples assume that it makes sense for each separate

subnet to be its own separate zone. However, since SRP guarantees

name uniqueness using the first-come, first-served mechanism, it

doesn't rely on mDNS's guarantee of per-link uniqueness.

Consequently, it is not required that an SRP zone be constrained to

the set of services advertised on a single link. For this reason,

when it is possible to know that some set of links are all managed

by the same set of SRP replication peers, and a name is known for

that set of links, that name can be used. To avoid possible

collisions, the subdomain 'srp' is used to indicate that this zone

is an SRP zone. So in this case the link name would be the locally-

known shared name, followed by 'srp.DOMAIN.'

An example of such a scenario would be Apple's HomeKit, in which all

HomeKit accessories, regardless of which home network link they are

attached to, all are shared in the same namespace. Suppose the

HomeKit home's name is "Example Home". In such a situation, the

domain name 'Example Home.srp.DOMAIN' could be used.

1.2.1.3. Zone name based on DNS-SD discovery

Another option for naming the local SRP Replication zone would be to

use DNS-SD advertisements. This is particularly useful since each

SRP replication peer advertises itself using DNS-SD, so there is a

convenient place to put this information. To advertise a zone name

based on DNS-SD discovery, the SRP Replication peer should add two

fields to the TXT record of the service instance. The first field is

the domain field: 'domain=name'. This indicates a proposed SRP

replication zone name. The second is the join field. If 'join=yes'

then other SRP replication servers are encouraged to use the domain

name that appears in the domain field rather than creating a new

domain.

1.2.2. Advertising one's own replication service

SRP replication service is advertised using DNS-SD [RFC6763]. The

service name is '_srpl-tls._tcp'. Each SRP replication peer should

have its own hostname, which when combined with the service instance

name and the local DNS-SD domain name will produce a service

instance name, for example 'example-host._srpl-tls._tcp.local.' The

domain under which the service instance name appears will be 'local'

for mDNS, and will be whatever domain is used for service

registration in the case of a non-mDNS local DNS-SD service.

¶

¶

¶

¶

¶

SRP replication uses DNS port 853 [RFC7858] and is based on DNS

Stateful Operations [RFC8490]. Therefore, the SRV record for the

example we've given would be:

example-host._srpl-tls._tcp.local. IN SRV 0 0 853 example-

host.local.

The TXT record for SRP replication advertises the domain being

replicated, permission to join (if applicable), and the server

identifier of the SRP replication peer. The server identifier is a

64-bit number encoded as hexadecimal ASCII, produced with a high-

quality random number generator [RFC4086]. This identifier need not

be persistent across SRP replication peer restarts. So in our

example the TXT record might look like this:

#domain=openthread.thread.home.arpa.\032server-id=eb5bb51919a15cec

(Note that each name/value pair in the TXT record is length-encoded,

so the '#' and the '\032' are the lengths of the two name/value

pairs.)

1.2.3. Discovering other replication services

An SRP Replication Peer MUST maintain an ongoing DNS-SD browse on

the service name '_srpl-tls._tcp' within the local browsing domain.

The ongoing browse will produce two different types of events: "add"

events and "remove" events. When the browse is started, it should

produce an 'add' event for every SRP replication partner currently

present on the network, including the peer that is doing the

browsing. Whenever a partner goes offline, a 'remove' event should

be produced. 'remove' events are not guaranteed, however.

When a new service is added, the SRP peer checks to see if it is in

a compatible domain. If the SRP peer has a domain to advertise, it

compares that domain to the domain advertised in the added service

instance: if they are not the same, then this instance is not a

candidate for connection, and should be ignored.

If the SRP peer does not have a domain to advertise, then when it

begins to browse for partners, it sets a timer for

DOMAIN_DISCOVERY_TIMEOUT seconds.

If the SRP peer does not have a domain to advertise, and is

therefore willing to join an existing domain, it checks to see if

the TXT record for the service indicates that joining is permitted.

If so, the SRP peer adopts the provided domain name. Once it has

adopted such a domain name, it updates its own TXT record to

indicate that domain name, and sets the 'join=yes' key/value pair in

the TXT record. It also cancels the DOMAIN_DISCOVERY_TIMEOUT timer.

¶

¶

¶

¶

¶

¶

¶

¶

¶

If the DOMAIN_DISCOVERY_TIMEOUT timer goes off, then the SRP peer

MUST propose a zone name using one of the methods mentioned

previously. It advertises that zone name in its TXT record, with

'join=yes'. It then sets a new timer for DOMAIN_PROPOSE_TIMEOUT

seconds.

While waiting for the DOMAIN_PROPOSE_TIMEOUT timer to go off, any

new 'add' events that arrive are examined to see if they are

potential domains to join. If a potential domain to join is seen,

and it is the same as the proposed domain, then the peer adopts that

domain and treats it as its domain to advertise. It then cancels the

DOMAIN_DISCOVERY_TIMEOUT timer.

When the DOMAIN_DISCOVERY_TIMEOUT timer expires, the peer

initializes the domain to be advertised using the one that it chose,

and the chosen server-id to be its own. It then iterates across the

list of 'add' events that have been seen. Each advertisement is

examined, comparing its server-id to the chosen server-id. If the

chosen server-id is numerically greater than the server-id in the

advertisement, then the domain to be advertised and the chosen

server-id are updated from the advertisement. At the end of this

process, the peer adopts whatever domain is now set as the domain to

be advertised.

Once a domain has been chosen, a list of partners in that domain can

be generated from the list of add events previously seen. When a new

add event is seen that advertises the peer's domain to be

advertised, that partner is added to the list of partners, if not

already present. When a remove event is seen, if that partner is on

the list of partners, a timer is set for DOMAIN_INSTANCE_TIMEOUT

seconds.

When the timer for DOMAIN_INSTANCE_TIMEOUT timer expires, if the

partner that was removed has not been re-added, it is removed from

the list of partners and any connection to it is dropped.

1.2.4. Discovering the addresses of peers

When a partner is discovered, two new ongoing mDNS queries are

started on the hostname indicated in the SRV record of the partner:

one for A records, and one for AAAA records. Each time an address

'add' event is seen, either for an 'A' record or an 'AAAA' record,

the peer adds the address to the list of addresses belonging to that

partner.

1.2.5. Establishing Communication with a replication peer

When an address is added to a partner's address list, the peer first

checks to see if the address is one of its own addresses. If so,

then the partner is marked "me", and no connection is attempted to

¶

¶

¶

¶

¶

¶

it. This is somewhat safer than comparing hostnames, since a

hostname collision can result in renaming.

If the partner is not marked 'me', then the peer checks to see if it

has an existing outgoing connection to that partner. If it does not,

then it checks to see whether it has disabled outgoing connections

to that partner. If not, then it attempts to connect on the new

address.

When a connection fails, it advances to the next address in the

list, if there is one. If there are no remaining addresses, the peer

sets a timer for RECONNECT_INTERVAL seconds. When this timer

expires, it starts again at the beginning of the list and attempts

to connect to the first address, iterating again across the list

until a connection succeeds or it runs out of addresses.

Additionally, when an address is added, it is checked against the

list of unidentified incoming connections. If a match is found, and

the partner is marked "me," then the unidentified connection is

removed from the list and dropped. Otherwise, it is attributed to

the matching partner, and the protocol is started at the point of

receiving an incoming connection.

When an outgoing connection succeeds, the peer sends its server ID.

1.2.6. Incoming connections

When an incoming connection is received, it is checked against the

partner list based on the source address of the incoming connection.

If the address appears on the list of addresses for a partner, then

the connection is attributed to that partner. If no matching partner

is found, a timer of UNIDENTIFIED_PARTNER_TIMEOUT seconds is set,

and the incoming connection is added to the list of "unidentified"

connections.

If a matching partner is found, then the peer waits for an incoming

partner ID. When such an ID is received, it is compared to the

peer's server-id. If the incoming server ID is the same as or

greater than the peer's server ID, the connection is dropped.

Otherwise, the connection proceeds to the "initial synchronization"

state.

1.2.7. Eliminating extra connections

When an outgoing connection succeeds, the peer sends its server ID

to the partner. When an incoming connection succeeds, the peer waits

for a server ID. Because both connections are peer connections, and

we only need one connection, the peer with the higher server ID acts

as the client and the peer with the lower server ID acts as the

server. If the server IDs are equal, then the connecting server

¶

¶

¶

¶

¶

¶

¶

generates a new server ID, updates its TXT record, and re-does the

comparison.

1.2.8. Initial synchronization

The connecting peer begins the session by sending its server ID. The

receiving peer waits for a server ID, and when it receives one, does

the server ID comparison mentioned earlier. If the connection

survives the comparison, then the server sends a response to the

session message and waits for the client to request a list of update

candidates.

The connecting peer waits for a response to the initial session

message, and when it is received, requests that the server send

candidates.

1.2.8.1. Sending candidates

When a peer receives a "send candidates" message that it is

expecting to receive, it generates a candidate list from the list of

known SRP clients. This list includes SRP clients that have

registered directly with the peer, and SRP clients that have been

received through SRP replication updates. Each candidate contains a

hostname, a time offset, and a key identifier.

The key identifier is computed as follows:

uint32_t key_id(uint8_t *key_data, int key_len) {

 uint32_t key_id = 0;

 for (int i = 0; i < key_data_len; i += 4) {

 key_id += ((key_data[i] << 24) | (key_data[i + 1] << 16) |

 (key_data[i + 2] << 8) | (key_data[i + 3]));

 }

 return key_id;

}

When a peer receives a candidate message during the synchronization

process, it first searches for an SRP registration with a hostname

that matches the hostname in the candidate message. It then compares

the key ID to the key ID in the candidate message. If the key ID

doesn't match, it sends back a candidate response status of

"conflict". If the key ID does match, it compares the time provided

to the time the existing host entry was received. If the time of the

update is later, it sends a "send host" response. If it is earlier

or the same, it sends a "continue" response. If there is no matching

host entry for the candidate message, the peer sends a "send host"

response.

¶

¶

¶

¶

¶

¶

¶

When a peer receives a candidate response with a status of "send

host", it generates a host message, which contains the hostname, the

time offset, and the SRP message that was received from the host.

The peer then applies the SRP update message as if it had been

received directly from the SRP client. The host update time sent by

the partner is remembered as the time when the update was received

from the client, for the purposes of future synchronization.

When a peer is finished iterating across its list of candidates, it

sends a "send candidates" response.

When a peer receives a "send candidates" response, if it is the

server, it sends its own "send candidates" message, and processes

any proposed candidates.

When a peer that is a server receives a "send candidates" response,

it goes into the "routine operation" state. When a peer that is a

client sends its "send candidates" response, it goes into the

"routine operation" state.

1.2.9. Routine Operation

During routine operation, whenever an update is successfully

processed from an SRP client, the peer that received that update

queues that update to be sent to each partner to which it has a

connection, whether server or client. If there are no updates

pending to a particular client, the update is sent immediately.

Otherwise, it's send when the outstanding update is acknowledged.

When during routine operation a peer receives a host update from its

partner, it immediately applies that update to its local SRP zone.

This is based on the assumption that a new update is always more

current than a copy of the host information in its database.

2. Protocol Details

The DNS-SD SRP Replication Protocol (henceforth SRPL) is based on

DNS Stateful Operations [RFC8490]. Each SRP replication peer creates

a listener on port 853, the DNS-over-TLS [RFC7858] reserved port.

This listener can be used for other DNS requests as well.

Participants in the protocol are peers. To distinguish between

peers, the terms "peer" and "partner" are used. "Peer" refers to the

peer that is communicating or receiving communication. "Partner"

refers to the other peer. Peers can be clients or servers: a peer

that has established a connection to a partner is a client; a peer

that has received a connection from a partner is a server.

¶

¶

¶

¶

¶

¶

¶

¶

2.1. DNS Stateful Operations considerations

DNS Stateful Operations is a DNS per-connection session management

protocol. DNS Push session management includes session establishment

as well as session maintenance.

2.1.1. DSO Session Establishment

An DSO session for an SRPL connection can be established either by

simply sending the first SRPL message, or by sending a DSO Keepalive

message. Section 5.1 of [RFC8490].

2.1.2. DSO Session maintenance

DSO sessions can be active or idle. As long as the SRPL protocol is

active on a connection, the DSO state of the connection is active.

DSO sessions require occasional keepalive messages. The default of

fifteen seconds is adequate for SRPL.

An idle DSO session must persist for long enough that there is a

chance for the browse that identifies it to succeed. Therefore, the

minimum DSO session inactivity timeout is

2*UNIDENTIFIED_PARTNER_TIMEOUT seconds.

2.2. DSO Primary TLVs

Each DSO message begins with a primary TLV, and contains secondary

TLVs with additional information. The primary TLVs used in the SRPL

protocol are as follows:

2.2.1. SRPL Session

DSO-TYPE code: SRPLSession. Introduces the SRPL session. In addition

to the header and length, the SRPL Session message includes a server

ID, which is a 64-bit unsigned number in network byte order. The

SRPL Session primary TLV does not include any secondary TLVs. SRPL

Session requests are DSO requests: the recipient is expected to send

a response TLV. Both request and response TLVs have the same format.

2.2.1.1. SRPL client behavior

The SRPL Session request is sent by a peer acting as a client to its

partner once the TLS connection to the partner, acting as a server,

has succeeded. The SRPL session message establishes the DSO

connection as an SRP protocol connection. If it is the first DSO

message sent by the peer acting as a client, then it also

establishes the DSO session.

When the SRPL peer acting as a client receives a response to its

SRPL session message, it sends an SRPL Send Candidates message.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8490#section-5.1

2.2.1.2. SRPL server behavior

An SRPL peer acting as a server that receives an SRPL Session

request checks to see if the connection on which it was received is

already established. If so, this is a protocol error, and the SRPL

peer MUST drop the connection.

It then compares the server ID sent by the partner to its own server

ID. If the partner's server ID is numerically less than the server's

server ID, the server MUST drop the connection.

If the server ID of the peer is identical to the partner's server

ID, then the server generates a new server ID and updates its TXT

record with the new server ID.

If the peer acting as a server did not drop the incoming connection,

then it sends an SRPL Session response containing its current server

ID.

2.2.2. SRPL Send Candidates

DSO-TYPE code: SRPLSendCandidates. Requests the peer to send its

candidates list. The SRPL Send Candidates message contains no

additional data. The SRPL Send Candidates primary TLV does not

include any secondary TLVs. SRPL Send Candidates messages are DSO

requests: the recipient is expected to send a response TLV. Both

request and response TLVs have the same format.

2.2.2.1. SRPL client behavior

An SRPL peer acting as a client MUST send an SRPL Send Candidates

request after it has received an SRPL Session response. It MUST NOT

send this request at any other time.

An SRPL peer acting as a client expects to receive an SRPL Send

Candidates message after it has received an SRPL Send Candidates

response. If it receives an SRPL Send Candidates message at any

other time, this is a protocol error, and the SRPL peer should drop

its connection to the server.

2.2.2.2. SRPL server behavior

An SRPL peer acting as a server expects to receive an SRPL Send

Candidates request after it has sent an SRPL Session response. If it

receives an SRPL Candidates request at any other time, this is a

protocol error, and it MUST drop the connection.

An SRPL peer acting as a server MUST send an SRPL Send Candidates

request after it has sent an SRPL Send Candidates response.

¶

¶

¶

¶

¶

¶

¶

¶

¶

An SRPL peer acting as a server MUST enter the "normal operations"

state after receiving an SRPL Send Candidates response from its

partner.

2.2.3. SRPL Candidate

DSO-TYPE code: SRPLCandidate. Announces the availability of a

specific candidate SRP client registration. The SRPL Candidate

message contains no additional data. SRPL Candidate messages are DSO

requests: the recipient is expected to send a response TLV. Both

request and response TLVs have the same format.

2.2.3.1. Required secondary TLVs

The SRPL Candidate request MUST include the following secondary

TLVs: SRPL Hostname, SRPL Time Offset, and SRPL Key ID. If an SRPL

peer receives an SRPL Candidate request that doesn't contain all of

these secondary TLVs, this is a protocol error, and the peer MUST

drop the connection.

The SRPL Candidate response MUST include one of the following status

TLVs: SRPL Candidate Yes, SRPL Candidate No, or SRPL Conflict. If an

SRPL peer receives an SRPL Candidate response which does not contain

exactly one of these TLVS, this is a protocol error, and the peer

MUST drop the connection.

2.2.3.2. SRPL peer common behavior

SRPL peers expect to receive SRPL Candidate messages between the

time that they have sent an SRPL Send Candidates message and the

time that they have received an SRPL Send Candidates response. If an

SRPL Candidate message is received at any other time, this is a

protocol error, and the peer MUST drop the connection.

Peers MUST NOT send SRPL Candidate requests if they have sent any

SRPL Candidate or SRPL host requests that have not yet received

responses. Peers receiving SRPL Candidate requests when they have

not yet responded to an outstanding SRPL Candidate request or SRPL

Host request MUST treat this as a protocol failure and drop the

connection.

When a peer receives a valid SRPL Candidate message, it checks its

SRP registration database for a host that matches both the SRPL

Hostname and SRPL Key ID TLVs. If such a match is not found, the

peer sends an SRPL Candidate response that includes the SRPL

Candidate Yes secondary TLV.

If a match is found for the hostname, but the Key ID doesn't match,

this is a conflict, and the peer sends an SRPL Candidate response

with the SRPL Conflict secondary TLV.

¶

¶

¶

¶

¶

¶

¶

¶

If a match is found for the hostname, and the key ID matches, then

the peer computes the update time of the candidate by subtracting

the value of the SRPL Time Offset TLV from the current time in

seconds. This computation should be done when the SRPL Candidate

message is received to avoid clock skew. If 'candidate update time'

- 'local update time' is greater than SRPL_UPDATE_SKEW_WINDOW, then

the candidate update is more recent than the current SRP

registration. In this case, the peer sends an SRPL Candidate

response and includes the SRPL Candidate Yes secondary TLV. The

reason for adding in some skew is to account for network

transmission delays.

2.2.4. SRPL Host

DSO-TYPE code: SRPLHost. Provides the content of a particular SRP

client registration. The SRPL Host message contains no additional

data. SRPL Host messages are DSO requests: the recipient is expected

to send a response TLV. Both request and response TLVs have the same

format.

2.2.4.1. Required secondary TLVs

The SRPL Host request MUST include the following secondary TLVs:

SRPL Hostname, SRPL Time Offset, and SRPL Key ID. If an SRPL peer

receives an SRPL Candidate request that doesn't contain all of these

secondary TLVs, this is a protocol error, and the peer MUST drop the

connection.

2.2.4.2. SRPL peer common behavior during synchronization

SRPL peers expect to receive either zero or one SRPL Host requests

after sending an SRPL Candidate response with a SRPL Candidate Yes

secondary TLV. If an SRPL Host request is received at any other time

during synchronization, this is a protocol error, and the peer MUST

drop the connection. The only time that an SRPL Host request would

not follow a positive SRPL Candidate response would be when the

candidate host entry's lease expired after the SRPL Candidate

request was sent but before the SRPL Candidate response was

received.

SRPL peers send SRPL Host requests during synchronization when a

valid SRPL Candidate response has been received that includes an

SRPL Candidate Yes secondary TLV. The host request is generated

based on the current candidate (the one for which the SRPL Candidate

request being responded to was send).

2.2.4.3. SRPL peer common behavior during normal operations

When an SRPL peer during normal operations receives and has

successfully validated an SRP update from an SRP client, it MUST

¶

¶

¶

¶

¶

send that update to each of its connected partners as an SRPL Host

request. If the connection to a particular partner is not busy, and

there are no updates already queued to be sent, it MUST send the

SRPL Host message immediately. Otherwise, it MUST queue the update

to send when possible. The queue MUST be first-in, first-out.

After an SRPL peer has sent an SRPL Host request to a partner, and

before it receives a corresponding SRPL Host response, it MUST NOT

send any more SRPL Host messages to that partner.

When an SRPL peer receives an SRPL Host request during normal

operations, it MUST apply it immediately. While it is being applied,

it MUST NOT send any other SRPL Host requests to that peer.

When an SRPL Host request has been successfully applied by an SRPL

peer, the peer MUST send an SRPL Host response.

If an SRPL peer receives an SRPL Host request while another SRPL

Host request is being processed, this is a protocol error, and the

peer MUST drop the connection to its partner.

2.3. DSO Secondary TLVs

In addition to the Primary TLVs used to send requests between SRPL

peers, we define secondary TLVs to carry formatter information

needed for various SRPL requests.

2.3.1. SRPL Candidate Yes

DSO-TYPE code: SRPLCandidateYes. In an SRPL Candidate response,

indicates to the partner that an SRPL Host message for the candidate

is wanted and should be sent.

Appears as a secondary TLV in SRPL Candidate responses. MUST NOT

appear in any other SRPL request or response. MUST NOT appear in

addition to either SRPL Conflict or SRPL Candidate No secondary

TLVs.

2.3.2. SRPL Candidate No

DSO-TYPE code: SRPLCandidateNo. In an SRPL Candidate response,

indicates to the partner that an SRPL Host message for the candidate

is not wanted and should not be sent.

Appears as a secondary TLV in SRPL Candidate responses. MUST NOT

appear in any other SRPL request or response. MUST NOT appear in

addition to either SRPL Conflict or SRPL Candidate Yes secondary

TLVs.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

2.3.3. SRPL Conflict

DSO-TYPE code: SRPLConflict. In an SRPL Candidate response,

indicates to the partner that an SRPL Host message for the candidate

is not wanted and should not be sent. Additionally indicates that

the proposed host conflicts with local data. This indication is

informative and has no effect on processing.

Appears as a secondary TLV in SRPL Candidate responses. MUST NOT

appear in any other SRPL request or response. MUST NOT appear in

addition to either SRPL Candidate Yes or SRPL Candidate No secondary

TLVs.

2.3.4. SRPL Hostname

DSO-TYPE code: SRPLHostname. In an SRPL Candidate or SRPL Host

request, indicates to the partner the hostname of an SRP

registration.

Required as a secondary TLV in SRPL Candidate and SRPL Host

requests. MUST NOT appear in any other SRPL request or response.

2.3.5. SRPL Host Message

DSO-TYPE code: SRPLHostMessage. In an SRPL Host request, conveys the

literal contents of the SRP update that resulted in the SRP Host

registration being updated. The content of the SRPL Host Message is

used to update the host on the peer receiving the request. Note that

the SRP message being sent can't be modified by the SRPL peer

sending it, so in order to validate the message (assuming that the

signature includes a nonzero time), the validation process should

adjust the current time by the time offset included in the SRPL Time

Offset TLV when comparing against the signature time when checking

for replay attacks. The computation of the current time of signing

should be done when the message is received to avoid clock skew that

might result from processing delays.

Required as a secondary TLV in SRPL Host requests. MUST NOT appear

in any other SRPL request or response.

2.3.6. SRPL Time Offset

DSO-TYPE code: SRPLTimeOffset. In an SRPL Candidate or SRPL Host

request, conveys the difference between the time the SRP update was

received from the SRP client and the current time on the peer

generating the request, in seconds.

Required as a secondary TLV in SRPL Candidate and SRPL Host

requests. MUST NOT appear in any other SRPL request or response.

¶

¶

¶

¶

¶

¶

¶

¶

2.3.7. SRPL Key ID

DSO-TYPE code: SRPLKeyID. In an SRPL Candidate, conveys the key ID

of the SRP client.

Required as a secondary TLV in SRPL Candidate requests. MUST NOT

appear in any other SRPL request or response.

3. Security Considerations

SRP replication basically relies on the trustworthiness of hosts on

the local network. Since SRP itself relies on the same level of

trust, SRP replication doesn't make things worse. However, when the

option to have a central SRP server is available, that is likely to

be more trustworthy.

4. Delegation of 'local.arpa.'

In order to be fully functional, the owner of the 'arpa.' zone must

add a delegation of 'local.arpa.' in the '.arpa.' zone [RFC3172].

This delegation should be set up as was done for 'home.arpa', as a

result of the specification in Section 7 of [RFC8375].

5. IANA Considerations

5.1. 'srpl-tls' Service Name

IANA is requested to add a new entry to the Service Names and Port

Numbers registry for srpl-tls with a transport type of tcp. No port

number is to be assigned. The reference should be to this document,

and the Assignee and Contact information should reference the

authors of this document. The Description should be as follows:

Availability of DNS-SD SRP Replication Service for a given domain is

advertised using the "_srpl‑tls._tcp.<domain>." SRV record gives the

target host and port where DNS-SD SRP Replication Service is

provided for the named domain.

5.2. DSO TLV type code

The IANA is requested to add the following entries to the 16-bit DSO

Type Code Registry. Each type mnemonic should be replaced with an

allocated type code, both in this table and elsewhere in the

document. RFC-TBD should be replaced with the name of this document

once it becomes an RFC.

Type Name
Early

Data
Status Reference

SRPLSession SRPL Session No STD RFC-TBD

SRPLSendCandidates No STD RFC-TBD

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8375#section-7

[RFC3172]

[RFC7858]

Type Name
Early

Data
Status Reference

SRPL Send

Candidates

SRPLCandidate SRPL Candidate No STD RFC-TBD

SRPLHost SRPL Host No STD RFC-TBD

SRPLCandidateYes SRPL Candidate Yes No STD RFC-TBD

SRPLCandidateNo SRPL Candidate No No STD RFC-TBD

SRPLConflict SRPL Conflict No STD RFC-TBD

SRPLHostname SRPL Hostname No STD RFC-TBD

SRPLHostMessage SRPL Host Message No STD RFC-TBD

SRPLTimeOffset SRPL Time Offset No STD RFC-TBD

SRPLKeyID SRPL Key ID No STD RFC-TBD

Table 1

5.3. Registration and Delegation of 'local.arpa' as a Special-Use

Domain Name

IANA is requested to record the domain name local.arpa.' in the

Special-Use Domain Names registry [SUDN]. IANA is requested, with

the approval of IAB, to implement the delegation requested in

Section 4.

IANA is further requested to add a new entry to the "Transport-

Independent Locally-Served Zones" subregistry of the the "Locally-

Served DNS Zones" registry [LSDZ]. The entry will be for the domain

local.arpa.' with the description "Ad-hoc DNS-SD Special-Use

Domain", listing this document as the reference.

6. Informative References

7. Normative References

Huston, G., Ed., "Management Guidelines & Operational

Requirements for the Address and Routing Parameter Area

Domain ("arpa")", BCP 52, RFC 3172, DOI 10.17487/RFC3172,

September 2001, <https://www.rfc-editor.org/info/

rfc3172>.

Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,

and P. Hoffman, "Specification for DNS over Transport

¶

¶

https://www.rfc-editor.org/info/rfc3172
https://www.rfc-editor.org/info/rfc3172

[RFC8375]

[RFC8490]

[SUDN]

[LSDZ]

Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858,

May 2016, <https://www.rfc-editor.org/info/rfc7858>.

Pfister, P. and T. Lemon, "Special-Use Domain

'home.arpa.'", RFC 8375, DOI 10.17487/RFC8375, May 2018,

<https://www.rfc-editor.org/info/rfc8375>.

Bellis, R., Cheshire, S., Dickinson, J., Dickinson, S.,

Lemon, T., and T. Pusateri, "DNS Stateful Operations",

RFC 8490, DOI 10.17487/RFC8490, March 2019, <https://

www.rfc-editor.org/info/rfc8490>.

"Special-Use Domain Names Registry", July 2012, <https://

www.iana.org/assignments/special-use-domain-names/

special-use-domain-names.xhtml>.

"Locally-Served DNS Zones Registry", July 2011, <https://

www.iana.org/assignments/locally-served-dns-zones/

locally-served-dns-zones.xhtml>.

Author's Address

Ted Lemon

Apple Inc.

One Apple Park Way

Cupertino, California 95014

United States of America

Email: mellon@fugue.com

https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc8375
https://www.rfc-editor.org/info/rfc8490
https://www.rfc-editor.org/info/rfc8490
https://www.iana.org/assignments/special-use-domain-names/special-use-domain-names.xhtml
https://www.iana.org/assignments/special-use-domain-names/special-use-domain-names.xhtml
https://www.iana.org/assignments/special-use-domain-names/special-use-domain-names.xhtml
https://www.iana.org/assignments/locally-served-dns-zones/locally-served-dns-zones.xhtml
https://www.iana.org/assignments/locally-served-dns-zones/locally-served-dns-zones.xhtml
https://www.iana.org/assignments/locally-served-dns-zones/locally-served-dns-zones.xhtml
mailto:mellon@fugue.com

	Automatic Replication of DNS-SD Service Registration Protocol Zones
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Alternatives for maintaining SRP state
	1.1.1. Primary authoritative DNS service
	1.1.2. Multicast DNS Advertising Proxy
	1.1.3. SRP Replication

	1.2. Implementation
	1.2.1. Naming of a common service zone
	1.2.1.1. Zone name based on network name
	1.2.1.1.1. Zone name based on WiFi SSID
	1.2.1.1.2. Zone name based on Thread network name

	1.2.1.2. Zone name based on local configuration
	1.2.1.3. Zone name based on DNS-SD discovery

	1.2.2. Advertising one's own replication service
	1.2.3. Discovering other replication services
	1.2.4. Discovering the addresses of peers
	1.2.5. Establishing Communication with a replication peer
	1.2.6. Incoming connections
	1.2.7. Eliminating extra connections
	1.2.8. Initial synchronization
	1.2.8.1. Sending candidates

	1.2.9. Routine Operation

	2. Protocol Details
	2.1. DNS Stateful Operations considerations
	2.1.1. DSO Session Establishment
	2.1.2. DSO Session maintenance

	2.2. DSO Primary TLVs
	2.2.1. SRPL Session
	2.2.1.1. SRPL client behavior
	2.2.1.2. SRPL server behavior

	2.2.2. SRPL Send Candidates
	2.2.2.1. SRPL client behavior
	2.2.2.2. SRPL server behavior

	2.2.3. SRPL Candidate
	2.2.3.1. Required secondary TLVs
	2.2.3.2. SRPL peer common behavior

	2.2.4. SRPL Host
	2.2.4.1. Required secondary TLVs
	2.2.4.2. SRPL peer common behavior during synchronization
	2.2.4.3. SRPL peer common behavior during normal operations

	2.3. DSO Secondary TLVs
	2.3.1. SRPL Candidate Yes
	2.3.2. SRPL Candidate No
	2.3.3. SRPL Conflict
	2.3.4. SRPL Hostname
	2.3.5. SRPL Host Message
	2.3.6. SRPL Time Offset
	2.3.7. SRPL Key ID

	3. Security Considerations
	4. Delegation of 'local.arpa.'
	5. IANA Considerations
	5.1. 'srpl-tls' Service Name
	5.2. DSO TLV type code
	5.3. Registration and Delegation of 'local.arpa' as a Special-Use Domain Name

	6. Informative References
	7. Normative References
	Author's Address

