
Workgroup:

Benchmarking Methodology Working Group

Internet-Draft:

draft-lencse-bmwg-benchmarking-stateful-03

Published: 4 March 2022

Intended Status: Informational

Expires: 5 September 2022

Authors: G. Lencse

Szechenyi Istvan University

K. Shima

IIJ Innovation Institute

Benchmarking Methodology for Stateful NATxy Gateways using RFC 4814

Pseudorandom Port Numbers

Abstract

RFC 2544 has defined a benchmarking methodology for network

interconnect devices. RFC 5180 addressed IPv6 specificities and it

also provided a technology update, but excluded IPv6 transition

technologies. RFC 8219 addressed IPv6 transition technologies,

including stateful NAT64. However, none of them discussed how to

apply RFC 4814 pseudorandom port numbers to any stateful NAT (NAT44,

NAT64, NAT66) technologies. We discuss why using pseudorandom port

numbers with stateful NAT gateways is a hard problem and recommend a

solution.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

2. Pseudorandom Port Numbers and Stateful Translation

3. Test Setup and Terminology

4. Recommended Benchmarking Method

4.1. Restricted Port Number Ranges

4.2. Preliminary Test Phase

4.3. Consideration of the Cases of Stateful Operation

4.4. Control of the Connection Tracking Table Entries

4.5. Measurement of the Maximum Connection Establishment Rate

4.6. Real Test Phase

4.7. Measurement of the Connection Tear Down Rate

4.8. Writing and Reading Order of the State Table

5. Implementation and Experience

6. Limitations of using UDP as Transport Layer Protocol

7. Acknowledgements

8. IANA Considerations

9. Security Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Change Log

A.1. 00

A.2. 01

A.3. 02

A.4. 03

Authors' Addresses

1. Introduction

[RFC2544] has defined a comprehensive benchmarking methodology for

network interconnect devices, which is still in use. It was mainly

IP version independent, but it used IPv4 in its examples. [RFC5180]

addressed IPv6 specificities and also added technology updates, but

declared IPv6 transition technologies out of its scope. [RFC8219]

addressed the IPv6 transition technologies, including stateful

NAT64. It has reused several benchmarking procedures from [RFC2544]

(e.g. throughput, frame loss rate), it has redefined the latency

measurement, and added further ones, e.g. the PDV (packet delay

variation) measurement.

¶

¶

However, none of them discussed, how to apply [RFC4814] pseudorandom

port numbers, when benchmarking stateful NATxy (NAT44, NAT64, NAT66)

gateways. We are not aware of any other RFCs that address this

question.

First, we discuss why using pseudorandom port numbers with stateful

NATxy gateways is a hard problem.

Then we recommend a solution.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Pseudorandom Port Numbers and Stateful Translation

In its appendix, [RFC2544] has defined a frame format for test

frames including specific source and destination port numbers.

[RFC4814] recommends to use pseudorandom and uniformly distributed

values for both source and destination port numbers. However,

stateful NATxy (NAT44, NAT64, NAT66) solutions use the port numbers

to identify connections. The usage of pseudorandom port numbers

causes different problems depending on the direction.

As for the private to public direction, pseudorandom source and

destination port numbers could be used, however, this approach

would be a denial of service attack against the stateful NATxy

gateway, because it would exhaust its connection tracking table.

To that end, let us see some calculations using the

recommendations of RFC 4814:

The recommended source port range is: 1024-65535, thus its

size is: 64512.

The recommended destination port range is: 1-49151, thus its

size is: 49151.

The number of source and destination port number combinations

is: 3,170,829,312.

We note that section 12 of [RFC2544] also requires testing with

256 destination networks, which further increases the number of

connection tracking table entries.

As for the public to private direction, the stateful DUT (Device

Under Test) would drop any packets that do not belong to an

¶

¶

¶

¶

¶

*

¶

-

¶

-

¶

-

¶

¶

*

existing connection, therefore, the direct usage of pseudorandom

port numbers from the above-mentioned ranges is not feasible.

3. Test Setup and Terminology

Our methodology works with any IP version. We use IPv4 in the Test

Setup shown in Figure 1 to facilitate its easy understanding based

on the well-known stateful NAT44 (also called NAPT: Network Address

and Port Translation) solution.

Figure 1: Test Setup for benchmarking stateful NATxy gateways

As for transport layer protocol, [RFC2544] recommended testing with

UDP, and it was kept also in [RFC8219]. For the general

recommendation, we also keep UDP, thus the port numbers in the

following text are to be understood as UDP port numbers. We discuss

the limitation of this approach in Section 6.

We define the most important elements of our proposed benchmarking

system as follows.

Connection tracking table: The stateful NATxy gateway uses a

connection tracking table to be able to perform the stateful

translation in the public to private direction. Its size, policy

and content are unknown for the Tester.

Four tuple: The four numbers that identify a connection are

source IP address, source port number, destination IP address,

destination port number.

State table: The Responder of the Tester extracts the four tuple

from each received test frame and stores it in its state table.

Recommendation is given for writing and reading order of the

state table in Section 4.8.

¶

¶

 +--------------------------------------+

 10.0.0.2 |Initiator Responder| 198.19.0.2

+-------------| Tester |<------------+

| private IPv4| [state table]| public IPv4 |

| +--------------------------------------+ |

| |

| +--------------------------------------+ |

| 10.0.0.1 | DUT: | 198.19.0.1 |

+------------>| Sateful NATxy gateway |-------------+

 private IPv4| [connection tracking table] | public IPv4

 +--------------------------------------+

¶

¶

*

¶

*

¶

*

¶

Initiator: The port of the Tester that may initiate a connection

through the stateful DUT in the private to public direction.

Theoretically, it can use any source and destination port numbers

from the ranges recommended by [RFC4814]: if the used four tuple

does not belong to an existing connection, the DUT will register

a new connection into its connection tracking table.

Responder: The port of the Tester that may not initiate a

connection through the stateful DUT in the public to private

direction. It may send only frames that belong to an existing

connection. To that end, it uses four tuples that have been

previously extracted from the received test frames and stored in

its state table.

Preliminary test phase: Test frames are sent only by the

Initiator to the Responder through the DUT to fill both the

connection tracking table of the DUT and the state table of the

Responder. This is a newly introduced operation phase for

stateful NATxy benchmarking. The necessity of this phase is

explained in Section 4.2.

Real test phase: The actual test (e.g. throughput, latency, etc.)

is performed in this phase after the completion of the

preliminary test phase. Test frames are sent as required (e.g.

bidirectional test or unidirectional test in any of the two

directions).

4. Recommended Benchmarking Method

4.1. Restricted Port Number Ranges

The Initiator SHOULD use restricted ranges for source and

destination port numbers to avoid the denial of service attack like

event against the connection tracking table of the DUT described in

Section 2. The size of the source port number range SHOULD be larger

(e.g. in the order of a few times ten thousand), whereas the size of

the destination port number range SHOULD be smaller (may vary from a

few to several hundreds or thousands as needed). The rationale is

that source and destination port numbers that can be observed in the

Internet traffic are not symmetrical. Whereas source port numbers

may be random, there are a few very popular destination port numbers

(e.g. 443, 80, etc., see [IIR2020]) and others hardly occur. And we

have found that their role is also asymmetric in the Linux kernel

routing hash function [LEN2020].

The product of the sizes of the two ranges can be used as a

parameter. The performance of the stateful NATxy gateway MAY be

examined as a function of this parameter.

*

¶

*

¶

*

¶

*

¶

¶

¶

4.2. Preliminary Test Phase

The preliminary phase serves two purposes:

The connection tracking table of the DUT is filled. It is

important, because its maximum connection establishment rate

may be lower than its maximum frame forwarding rate (that is

throughput).

The state table of the Responder is filled with valid four

tuples. It is a precondition for the Responder to be able to

transmit frames that belong to connections exist in the

connection tracking table of the DUT.

Whereas the above two things are always necessary before the real

test phase, the preliminary phase can be used without the real test

phase. It is done so, when the maximum connection establishment rate

is measured (as described in Section 4.5).

A preliminary test phase MUST be performed before all tests

performed in the real test phase. In this phase, the following

things happen:

The Initiator sends test frames to the Responder through the

DUT at a specific frame rate.

The DUT performs the stateful translation of the test frames

and it also stores the new combinations in its connection

tracking table.

The Responder receives the translated test frames and updates

its state table with the received four tuples. The responder

transmits no test frames during the preliminary phase.

When the preliminary test phase is performed in preparation to the

real test phase, the applied frame rate and the duration of the

preliminary phase SHOULD be carefully selected so that:

The applied frame rate be safely lower than the maximum

connection establishment rate.

Enough four tuples be stored in the state table of the Responder

so that it can generate frames with the proper distribution of

the four tuples.

Please refer to Section 4.4 for further conditions regarding timeout

and port number combinations.

¶

1.

¶

2.

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

*

¶

*

¶

¶

4.3. Consideration of the Cases of Stateful Operation

We consider the most important Events that may happen during the

operation of a stateful NATxy gateway, and the Actions of the

gateway as follows.

EVENT: A packet not belonging to an existing connection arrives

in the private to public direction. ACTION: A new connection is

registered into the connection tracking table and the packet is

translated and forwarded.

EVENT: A packet not belonging to an existing connection arrives

in the public to private direction. ACTION: The packet is

discarded.

EVENT: A packet belonging to an existing connection arrives (in

any dicection). ACTION: The packet is translated and forwarded

and the timeout counter of the corresponding connection

tracking table entry is reset.

EVENT: A connection tracking table entry times out. ACTION: The

entry is deleted from the connection tracking table.

Due to "black box" testing, the Tester is not able to directly

examine (or delete) the entries of the connection tracking table.

But the entires can be and MUST be controlled by setting an

appropriate timeout value and carefully selecting the port numbers

of the packets (as described in Section 4.4) to be able to produce

meaningful and repeatable measurement results.

We aim to support the measurement of the following performance

characteristics of a stateful NATxy gateway:

maximum connection establishment rate

all "classic" performance metrics like throughput, frame loss

rate, latency, etc.

connection tear down rate.

4.4. Control of the Connection Tracking Table Entries

It is necessary to control the connection tracking table entries of

the DUT in order to achieve clear conditions for the measurements.

We can simply achieve the following two extreme situations:

All frames create a new entry in the connection tracking table

of the DUT and no old entries are deleted during the test. This

is required for measuring the maximum connection establishment

rate.

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

¶

1. ¶

2.

¶

3. ¶

¶

1.

¶

No new entries are created in the connection tracking table of

the DUT and no old ones are deleted during the test. This is

ideal for the real test phase measurements, like throughput,

latency, etc.

From this point we use the following three assumptions:

A single source address destination address pair is used for

all tests. We make this assumption for simplicity. Of course,

we are aware that [RFC2544] requires testing also with 256

different destination networks.

The connection tracking table of the stateful NATxy is large

enough to store all connections defined by the different source

port number destination port number combinations.

Each experiment is started with an empty connection tracking

table. (It can be ensured by deleting its content before the

experiment.)

The first extreme situation can be achieved by

using all different source port number destination port number

combinations in the preliminary phase and

setting the UDP timeout of the NATxy gateway to a value higher

than the length of the preliminary phase.

The second extreme situation can be achieved by

using all different source port number destination port number

combinations in the preliminary phase and

enumerating all the possible source port number destination port

number combinations in the preliminary phase and

setting the UDP timeout of the NATxy gateway to a value higher

than the length of the preliminary phase plus the gap between the

two phases plus the length of the real test phase.

[RFC4814] REQUIRES pseudorandom port numbers, which we believe is a

good approximation of the distribution of the source port numbers a

NATxy gateway on the Internet may face with.

We note that pseudorandom all different source port number

destination port number combinations may be computing efficiently

generated by preparing a random permutation of the previously

enumerated all possible source port number destination port number

combinations using Dustenfeld's random shuffle algorithm [DUST1964].

This method also satisfies the criterion for the second case that

2.

¶

¶

1.

¶

2.

¶

3.

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

all possible source port number destination port number combinations

must be enumerated during the preliminary phase.

Important warning: in normal (non-NAT) router testing, the port

number selection algorithm, whether it is pseudo-random or

enumerated in increasing (or decreasing) order does not affect final

results. However, our experience with iptables shows that if the

connection tracking table is filled using port number enumeration in

increasing order, then the maximum connection establishment rate of

iptables degrades significantly compared to its performance using

pseudorandom port numbers [LEN2021].

The enumeration of the source port number destination port number

combinations in increasing or decreasing order (or in any other

specific order) MAY be used as an additional measurement.

4.5. Measurement of the Maximum Connection Establishment Rate

The maximum connection establishment rate is an important

characteristic of the stateful NATxy gateway and its determination

is necessary for the safe execution of the preliminary test phase

(without frame loss) before the real test phase.

The measurement procedure of the maximum connection establishment

rate is very similar to the throughput measurement procedure defined

in [RFC2544].

Procedure: The Initiator sends a specific number of test frames

using all different source port number destination port number

combinations at a specific rate through the DUT. The Responder

counts the frames that are successfully translated by the DUT. If

the count of offered frames is equal to the count of received

frames, the rate of the offered stream is raised and the test is

rerun. If fewer frames are received than were transmitted, the rate

of the offered stream is reduced and the test is rerun.

The maximum connection establishment rate is the fastest rate at

which the count of test frames successfully translated by the DUT is

equal to the number of test frames sent to it by the Initiator.

Notes:

In practice, we RECOMMEND the usage of binary search.

As for the successful translation, the Responder MAY (or

SHOULD?) check that the source IP address is different than the

original source IP address set by the Initiator.

¶

¶

¶

¶

¶

¶

¶

¶

1. ¶

2.

¶

4.6. Real Test Phase

As for the traffic direction, there are three possible cases during

the real test phase:

bidirectional traffic: The Initiator sends test frames to the

Responder and the Responder sends test frames to the Initiator.

unidirectional traffic from the Initiator to the Responder: The

Initiator sends test frames to the Responder but the Responder

does not send test frames to the Initiator.

unidirectional traffic from the Responder to the Initiator: The

Responder sends test frames to the Initiator but the Initiator

does not send test frames to the Responder.

If the Initiator sends test frames, then it uses pseudorandom source

port numbers and destination port numbers from the restricted port

number ranges. The responder receives the test frames, updates its

state table and processes the test frames as required by the given

measurement procedure (e.g. only counts them for throughput test,

handles timestamps for latency or PDV tests, etc.).

If the Responder sends test frames, then it uses the four tuples

from its state table. The reading order of the state table may

follow different policies (discussed in Section 4.8). The Initiator

receives the test frames, and processes them as required by the

given measurement procedure.

As for the actual measurement procedures, we RECOMMEND to use the

updated ones from Section 7 of [RFC8219].

4.7. Measurement of the Connection Tear Down Rate

Connection tear down can cause significant load for the NATxy

gateway. The connection tear down performance can be measured as

follows:

Load a certain number of connections (N) into the connection

tracking table of the DUT (in the same way as done to measure

the maximum connection establishment rate).

Record TimestampA.

Delete the content of the connection tracking table of the DUT.

Record TimestampB.

The connection tear down rate can be computed as:

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

1.

¶

2. ¶

3. ¶

4. ¶

¶

connection tear down rate = N / (TimestampB - TimestampA)

The connection tear down rate SHOULD be measured for various

(important) values of N.

We assume that the content of the connection tracking table may be

deleted by an out-of-band control mechanism specific to the given

NATxy gateway implementation. (E.g. by removing the appropriate

kernel module under Linux.)

We are aware that the performance of removing the entire content of

the connection tracking table at one time may be different from

removing all the entries one by one.

4.8. Writing and Reading Order of the State Table

As for writing policy of the state table of the Responder, we

RECOMMEND round robin, because it ensures that its entries are

automatically kept fresh and consistent with that of the connection

tracking table of the DUT.

The Responder can read its state table in various orders, for

example:

pseudorandom

round robin

We RECOMMEND pseudorandom to follow the spirit of [RFC4814]. Round

robin may be used as a computationally cheaper alternative.

5. Implementation and Experience

The "stateful" branch of siitperf [SIITPERF] is an implementation of

this concept. It is documented in a paper currently under second

review [LEN2022].

Our experience with this methodology using siitperf for measuring

the scalability of the iptables stateful NAT44 and Jool stateful

NAT64 implementations is described in [I-D.lencse-v6ops-transition-

scalability].

6. Limitations of using UDP as Transport Layer Protocol

Stateful NATxy solutions handle TCP and UDP differently, e.g.

iptables uses 30s timeout for UDP and 60s timeout for TCP. Thus

benchmarking results produced using UDP do not necessarily

characterize the performance of a NATxy gateway well enough, when

they are used for forwarding Internet traffic. As for the given

¶

¶

¶

¶

¶

¶

* ¶

* ¶

¶

¶

¶

[RFC2119]

[RFC2544]

[RFC4814]

[RFC5180]

example, timeout values of the DUT may be adjusted, but it requires

extra consideration.

Other differences in handling UDP or TCP are also possible. Thus we

recommend that further investigations are to be performed in this

field.

As a mitigation of this problem, we recommend that testing with

protocols usig TCP (like HTTP and HTTPS) can be performed as

described in [I-D.ietf-bmwg-ngfw-performance]. This approach also

solves the potential problem of protocol helpers may be present in

the stateful DUT.

7. Acknowledgements

The authors would like to thank Al Morton, Sarah Banks, Edwin

Cordeiro, Lukasz Bromirski and Sandor Repas for their comments.

8. IANA Considerations

This document does not make any request to IANA.

9. Security Considerations

We have no further security considerations beyond that of [RFC8219].

Perhaps they should be cited here so that they be applied not only

for the benchmarking of IPv6 transition technologies, but also for

the benchmarking of stateful NATxy gateways.

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Bradner, S. and J. McQuaid, "Benchmarking Methodology for

Network Interconnect Devices", RFC 2544, DOI 10.17487/

RFC2544, March 1999, <https://www.rfc-editor.org/info/

rfc2544>.

Newman, D. and T. Player, "Hash and Stuffing: Overlooked

Factors in Network Device Benchmarking", RFC 4814, DOI

10.17487/RFC4814, March 2007, <https://www.rfc-

editor.org/info/rfc4814>.

Popoviciu, C., Hamza, A., Van de Velde, G., and D.

Dugatkin, "IPv6 Benchmarking Methodology for Network

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2544
https://www.rfc-editor.org/info/rfc2544
https://www.rfc-editor.org/info/rfc4814
https://www.rfc-editor.org/info/rfc4814

[RFC8174]

[RFC8219]

[DUST1964]

[I-D.ietf-bmwg-ngfw-performance]

[I-D.lencse-v6ops-transition-scalability]

[IIR2020]

[LEN2020]

[LEN2021]

Interconnect Devices", RFC 5180, DOI 10.17487/RFC5180,

May 2008, <https://www.rfc-editor.org/info/rfc5180>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Georgescu, M., Pislaru, L., and G. Lencse, "Benchmarking

Methodology for IPv6 Transition Technologies", RFC 8219,

DOI 10.17487/RFC8219, August 2017, <https://www.rfc-

editor.org/info/rfc8219>.

10.2. Informative References

Durstenfeld, R., "Algorithm 235: Random permutation",

Communications of the ACM, vol. 7, no. 7, p.420., DOI

10.1145/364520.364540, July 1964, <https://dl.acm.org/

doi/10.1145/364520.364540>.

Balarajah, B., Rossenhoevel, C.,

and B. Monkman, "Benchmarking Methodology for Network

Security Device Performance", Work in Progress, Internet-

Draft, draft-ietf-bmwg-ngfw-performance-13, 12 January

2022, <https://www.ietf.org/archive/id/draft-ietf-bmwg-

ngfw-performance-13.txt>.

Lencse, G., "Scalability of IPv6 Transition Technologies

for IPv4aaS", Work in Progress, Internet-Draft, draft-

lencse-v6ops-transition-scalability-01, 21 February 2022,

<https://www.ietf.org/archive/id/draft-lencse-v6ops-

transition-scalability-01.txt>.

Kurahashi, T., Matsuzaki, Y., Sasaki, T., Saito, T., and

F. Tsutsuji, "Periodic observation report: Internet

trends as seen from IIJ infrastructure - 2020", Internet

Infrastructure Review, vol. 49, December 2020, <https://

www.iij.ad.jp/en/dev/iir/pdf/iir_vol49_report_EN.pdf>.

Lencse, G., "Adding RFC 4814 Random Port Feature to

Siitperf: Design, Implementation and Performance

Estimation", International Journal of Advances in

Telecommunications, Electrotechnics, Signals and Systems,

vol 9, no 3, pp. 18-26., DOI 10.11601/ijates.v9i3.291,

2020, <http://www.hit.bme.hu/~lencse/publications/

291-1113-1-PB.pdf>.

Lencse, G., "Design and Implementation of a Software

Tester for Benchmarking Stateful NAT64 Gateways: Theory

https://www.rfc-editor.org/info/rfc5180
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8219
https://www.rfc-editor.org/info/rfc8219
https://dl.acm.org/doi/10.1145/364520.364540
https://dl.acm.org/doi/10.1145/364520.364540
https://www.ietf.org/archive/id/draft-ietf-bmwg-ngfw-performance-13.txt
https://www.ietf.org/archive/id/draft-ietf-bmwg-ngfw-performance-13.txt
https://www.ietf.org/archive/id/draft-lencse-v6ops-transition-scalability-01.txt
https://www.ietf.org/archive/id/draft-lencse-v6ops-transition-scalability-01.txt
https://www.iij.ad.jp/en/dev/iir/pdf/iir_vol49_report_EN.pdf
https://www.iij.ad.jp/en/dev/iir/pdf/iir_vol49_report_EN.pdf
http://www.hit.bme.hu/~lencse/publications/291-1113-1-PB.pdf
http://www.hit.bme.hu/~lencse/publications/291-1113-1-PB.pdf

[LEN2022]

[SIITPERF]

and Practice of Extending Siitperf for Stateful Tests",

it was under review in Computer Communications, then it

was significantly rewritten, 2021, <http://

www.hit.bme.hu/~lencse/publications/SFNAT64-tester-for-

review.pdf>.

Lencse, G., "Design and Implementation of a Software

Tester for Benchmarking Stateful NAT64xy Gateways: Theory

and Practice of Extending Siitperf for Stateful Tests",

revised version, under second review in Computer

Communications, may be revised or removed without notice,

2022, <http://www.hit.bme.hu/~lencse/publications/

SFNATxy-tester-revised.pdf>.

Lencse, G., "Siitperf: An RFC 8219 compliant SIIT

(stateless NAT64) tester written in C++ using DPDK",

source code, available from GitHub, 2019-2022, <https://

github.com/lencsegabor/siitperf>.

Appendix A. Change Log

A.1. 00

Initial version.

A.2. 01

Updates based on the comments received on the BMWG mailing list and

minor corrections.

A.3. 02

Section 4.4 was completely re-written. As a consequence, the

occurrences of the now undefined "mostly different" source port

number destination port number combinations were deleted from

Section 4.5, too.

A.4. 03

Added Section 4.3 about the consideration of the cases of stateful

operation.

Consistency checking. Removal of some parts obsolated by the

previous re-writing of Section 4.4.

Added Section 4.7 about the method for measuring connection tear

down rate.

Updates for Section 5 about the implementation and experience.

¶

¶

¶

¶

¶

¶

¶

http://www.hit.bme.hu/~lencse/publications/SFNAT64-tester-for-review.pdf
http://www.hit.bme.hu/~lencse/publications/SFNAT64-tester-for-review.pdf
http://www.hit.bme.hu/~lencse/publications/SFNAT64-tester-for-review.pdf
http://www.hit.bme.hu/~lencse/publications/SFNATxy-tester-revised.pdf
http://www.hit.bme.hu/~lencse/publications/SFNATxy-tester-revised.pdf
https://github.com/lencsegabor/siitperf
https://github.com/lencsegabor/siitperf

Authors' Addresses

Gabor Lencse

Szechenyi Istvan University

Gyor

Egyetem ter 1.

H-9026

Hungary

Email: lencse@sze.hu

Keiichi Shima

IIJ Innovation Institute

Iidabashi Grand Bloom, 2-10-2 Fujimi, Tokyo

102-0071

Japan

Email: keiichi@iijlab.net

mailto:lencse@sze.hu
mailto:keiichi@iijlab.net

	Benchmarking Methodology for Stateful NATxy Gateways using RFC 4814 Pseudorandom Port Numbers
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Pseudorandom Port Numbers and Stateful Translation
	3. Test Setup and Terminology
	4. Recommended Benchmarking Method
	4.1. Restricted Port Number Ranges
	4.2. Preliminary Test Phase
	4.3. Consideration of the Cases of Stateful Operation
	4.4. Control of the Connection Tracking Table Entries
	4.5. Measurement of the Maximum Connection Establishment Rate
	4.6. Real Test Phase
	4.7. Measurement of the Connection Tear Down Rate
	4.8. Writing and Reading Order of the State Table

	5. Implementation and Experience
	6. Limitations of using UDP as Transport Layer Protocol
	7. Acknowledgements
	8. IANA Considerations
	9. Security Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Change Log
	A.1. 00
	A.2. 01
	A.3. 02
	A.4. 03

	Authors' Addresses

