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Abstract

Several IPv6 transition technologies have been developed to provide

customers with IPv4-as-a-Service (IPv4aaS) for ISPs with an IPv6-

only access and/or core network. All these technologies have their

advantages and disadvantages, and depending on existing topology,

skills, strategy and other preferences, one of these technologies

may be the most appropriate solution for a network operator.

This document examines the scalability of the five most prominent

IPv4aaS technologies (464XLAT, Dual Stack Lite, Lightweight 4over6,

MAP-E, MAP-T) considering two aspects: (1) how their performance

scales up with the number of CPU cores, (2) how their performance

degrades, when the number of concurrent sessions is increased until

hardware limit is reached.
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1. Introduction

IETF has standardized several IPv6 transition technologies [LEN2019]

and occupied a neutral position trusting the selection of the most

appropriate ones to the market. [I-D.ietf-v6ops-transition-

comparison] provides a comprehensive comparative analysis of the

five most prominent IPv4aaS technologies to assist operators with
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this problem. This document adds one more detail: measurement data

regarding the scalability of the examined IPv4aaS technologies.

Currently, this document contains only the scalability measurements

of the iptables stateful NAT44 implementation. It serves as a sample

to test if the disclosed results are (1) useful and (2) sufficient

for the network operators.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Scalability of iptables

2.1. Introduction to iptables

Netfilter [NETFLTR] is a widely used firewall, NAT and packet

mangling framework for Linux. It is often called as "iptables" after

the name of its user space command line tool. From our point of

view, iptables is used as a stateful NAT44 solution. (Also called as

NAPT: Network Address and Port Translation.) It is a free and open

source software under the GPLv2 license.

This document deals with iptables for multiple considerations:

To provide a reference for the scalability of various stateful

NAT64 implementations. (We use it to prove that a stateful NATxy

solution does not need to exhibit a poor scalability.)

To provide IPv6 operators with a basis for comparison if is it

worth using an IPv4aaS solution over Carrier-grade NAT.

To prove the scalability of iptables, when iptables is used as a

part of the CE of MAP-T (see later).

2.2. Measurement Method

[RFC8219] has defined a benchmarking methodology for IPv6 transition

technologies. [I-D.lencse-bmwg-benchmarking-stateful] has amended it

by addressing how to benchmark stateful NATxy gateways using

pseudorandom port numbers recommended by [RFC4814]. It has defined

measurement procedures for maximum connection establishment rate,

connection tear down rate and connection table capacity measurement,

plus it reused the classic measurement procedures like throughput,

latency, frame loss rate, etc. from [RFC8219]. Besides the new
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metrics, we used throughput to characterize the performance of the

examined system.

The scalability of iptables is examined in two aspects:

How its performance scales up with the number of CPU cores?

How its performance degrades, when the number of concurrent

sessions is increased?

Figure 1: Test setup for benchmarking stateful NAT44 gateways

The test setup in Figure 1 was followed. The two devices, the Tester

and the DUT (Device Under Test), were both Dell PowerEdge R430

servers having two 2.1GHz Intel Xeon E5-2683 v4 CPUs, 384GB 2400MHz

DDR4 RAM and Intel 10G dual port X540 network adapters. The NICs of

the servers were interconnected by direct cables, and the CPU clock

frequecy was set to fixed 2.1 GHz on both servers. They had Debian

9.13 Linux operating system with 4.9.0-16-amd64 kernel. The

measurements were performed by siitperf [LEN2021] using the

"stateful" branch (latest commit Aug. 16, 2021). The DPDK version

was 16.11.11-1+deb9u2. The version of iptables was 1.6.0.

The ratio of number of connections in the connection tracking table

and the value of the hashsize parameter of iptables significantly

influences its performance. Although the default setting is

hashsize=nf_conntrack_max/8, we have usually set

hashsize=nf_conntrack_max to increase the performance of iptables,

which was crucial, when high number of connections were used,

because then the execution time of the tests was dominated by the

preliminary phase, when several hundereds of millions connections

had to be established. (In some cases, we had to use different

settings due to memory limitations. The tables presenting the

results always contain these parameters.)

¶

¶

* ¶

*

¶

              +--------------------------------------+

     10.0.0.2 |Initiator                    Responder| 198.19.0.2

+-------------|                Tester                |<------------+

| private IPv4|                         [state table]| public IPv4 |

|             +--------------------------------------+             |

|                                                                  |

|             +--------------------------------------+             |

|    10.0.0.1 |                 DUT:                 | 198.19.0.1  |

+------------>|        Sateful NAT44 gateway         |-------------+

  private IPv4|     [connection tracking table]      | public IPv4

              +--------------------------------------+

¶

¶



The size of the port number pool is an important parameter of the

bechmarking method for stateful NATxy gateways, thus it is also

given for all tests.

2.3. Performance scale up against the number of CPU cores

To examine how the performance of iptables scales up with the number

of CPU cores, the number of active CPU cores was set to 1, 2, 4, 8,

16 using the "maxcpus=" kernel parameter.

The number of connections was always 4,000,000 using 4,000 different

source port numbers and 1,000 different destination port numbers.

Both the connection tracking table size and the hash table size was

set to 2^23.

The error of the binary search was chosen to be lower than 0.1% of

the expected results. The experiments were executed 10 times.

Besides the connection establishment rate and the throughput of

iptables, also the throughput of the IPv4 packet forwarding of the

Linux kernel was measured to provide a basis for comparison.

The results are presented in Figure 2. The unit for the maximum

connection establishment rate is 1,000 connections per second. The

unit for throughput is 1,000 packets per second (measured with

bidirectional traffic, and the number of all packets per second is

displayed).
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Figure 2: Scale up of iptables against the number of CPU cores (Please

refer to the next figure for the explanation of the abbreviations.)

num. CPU cores          1          2          4          8         16

src ports           4,000      4,000      4,000      4,000      4,000

dst ports           1,000      1,000      1,000      1,000      1,000

num. conn.      4,000,000  4,000,000  4,000,000  4,000,000  4,000,000

conntrack t. s.      2^23       2^23       2^23       2^23       2^23

hash table size      2^23       2^23       2^23       2^23       2^23

c.t.s/num.conn.     2.097      2.097      2.097      2.097      2.097

num. experiments       10         10         10         10         10

error                 100        100        100      1,000      1,000

cps median          223.5      371.1      708.7      1,341      2,383

cps min             221.6      367.7      701.7      1,325      2,304

cps max             226.7      375.9      723.6      1,376      2,417

cps rel. scale up       1      0.830      0.793      0.750      0.666

throughput median   414.9      742.3      1,379      2,336      4,557

throughput min      413.9      740.6      1,373      2,311      4,436

throughput max      416.1      746.9      1,395      2,361      4,627

tp. rel. scale up       1      0.895      0.831      0.704      0.686

IPv4 packet forwarding (using the same port number ranges)

error                 200        500      1,000      1,000      1,000

throughput median   910.9      1,523      3,016      5,920     11,561

throughput min      874.8      1,485      2,951      5,811     10,998

throughput max      914.3      1,534      3,037      5,940     11,627

tp. rel. scale up       1      0.836      0.828      0.812      0.793

throughput ratio (%) 45.5       48.8       45.7       39.5       39.4



Figure 3: Explanation of the abbreviations for the scale up of iptables

against the number of CPU cores

Whereas the throughput of IPv4 packet forwarding scaled up from

0.91Mpps to 11.56Mpps showing a relative scale up of 0.793, the

throughput of iptables scaled up from 414.9kpps to 4,557kpps showing

a relative scale up of 0.686 (and the relative scale up of the

maximum connection establishment rate is only 0.666). On the one

hand, this is the price of the stateful operation. On the other

hand, this result is quite good compared to the scale-up results of

NSD (a high performance authoritative DNS server) presented in Table

9 of [LEN2020], which is only 0.52. (1,454,661/177,432=8.2-fold

performance using 16 cores.) And DNS is not a stateful technology.

2.4. Performance degradation caused by the number of sessions

To examine how the performance of iptables degrades with the number

connections in the connection tracking table, the number of

connections was increased fourfold by doubling the size of both the

source port number range and the destination port number range. Both

the connection tracking table size and the hash table size was also

increased four fold. However, we reached the limits of the hardware

at 400,000,000 connections: we could not set the size of the hash

table to 2^29 but only to 2^28. The same value was used at

800,000,000 connections too, when the number of connections was only

doubled, because 1.6 billion connections would not fit into the

memory.

abbreviation          explanation

------------          -----------

num. CPU cores        number of CPU cores

src ports             size of the source port number range

dst ports             size of the destination port number range

num. conn.            number of connections = src ports * dst ports

conntrack t. s.       size of the connection tracking table of the

                      DUT

hash table size       size of the hash table of the DUT

c.t.s/num.conn.       conntrack table size / number of connections

num. experiments      number of experiments

error                 the difference between the upper and the lower

                      bound of the binary search when it stops

cps (median/min/max)  maximum connection establishment rate

                      (median, minimum, maximum)

cps rel. scale up     the relative scale up of the maximum connection

                      establishment rate against the number of CPU

                      cores

tp. rel. scale up     the relative scale up of the throughput

throughput ratio (%)  the ratio of the throughput of iptables and the

                      throughput of IPv4 packet forwarding

¶
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The error of the binary search was chosen to be lower than 0.1% of

the expected results. The experiments were executed 10 times (except

for the very long lasting measurements with 800,000,000

connections).

The results are presented in Figure 4. The unit for the maximum

connection establishment rate is 1,000,000 connections per second.

The unit for throughput is 1,000,000 packets per second (measured

with bidirectional traffic, and the number of all packets per second

is displayed).

Figure 4: Performance of iptables against the number of sessions

The performance of iptables shows degradation at 6.25M connections

compared to 1.56M connections very likely due to the exhaustion of

the L3 cache of the CPU of the DUT. Then the performance of iptables

is fearly constant up to 100M connections. A small performance

decrease can be observed at 400M connections due to the lower hash

table size. A more significant performance decrease can be observed

at 800M connections. It is caused by two factors:

on average, about 3 connections were hashed to the same place

non NUMA local memory was also used.

We note that the CPU has 2 NUMA nodes, cores 0, 2, ... 14 belong to

NUMA node 0, and cores 1, 3, ... 15 belong to NUMA node 1. The

maximum memory consumption with 400,000,000 connections was below

150GB, thus it could be stored in NUMA local memory.

Therefore, we have pointed out important limitations of the stateful

NAT44 technology:

there is a performance decrease, when approaching hardware limits

¶

¶

num. conn.       1.56M   6.25M     25M     100M     400M     800M

src ports        2,500   5,000  10,000   20,000   40,000   40,000

dst ports          625   1,250   2,500    5,000   10,000   20,000

conntrack t. s.   2^21    2^23    2^25     2^27     2^29     2^30

hash table size   2^21    2^23    2^25     2^27     2^28     2^28

num. exp.           10      10      10       10       10        5

error            1,000   1,000   1,000    1,000    1,000    1,000

n.c./h.t.s.      0.745   0.745   0.745    0.745    1.490    2.980

cps median       2.406   2.279   2.278    2.237    2.013    1.405

cps min          2.358   2.226   2.226    2.124    1.983    1.390

cps max          2.505   2.315   2.317    2.290    2.050    1.440

throughput med.  5.326   4.369   4.510    4.516    4.244    3.689

throughput min   5.217   4.240   3.994    4.373    4.217    3.670

throughput max   5.533   4.408   4.572    4.537    4.342    3.709
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there is a hardware limit, beyond which the system cannot handle

the connections at all (e.g. 1600M connections would not fit into

the memory).

Therefore, we can conclude that, on the one hand, a well tailored

hashing may guarantee an excellent scale-up of stateful NAT44

regarding the number of connections in a wide range, however, on the

other hand, stateful operation has its limits resulting both in

performance decrease, when approaching hardware limits and also in

inability to handle more sessions, when reaching the memory limits.

2.5. Connection tear down rate

[I-D.lencse-bmwg-benchmarking-stateful] has defined connection tear

down rate measurement as an aggregate measurement, that is, N number

of connections are loaded into the connection tracking table of the

DUT and then the entire content of the connection tracking table is

deleted, and its deletion time is measured (T). Finally, the

connection tear down rate is computed as: N/T.)

We have observed that the deletion of an empty connection tracking

table of iptables my take a significant amount of time depending on

its size. Therefore, we made our measurements more accurate by

subtracting the deletion time of the empty connection tracking table

from that of the filled one, thus we got the time spent with the

deleting of the connections.

The same setup and parameters were used as in Section 2.4 and the

experiments were executed 10 times (except for the long lasting

measurements with 800,000,000 connections).

The results are presented in Figure 5.

*

¶

¶

¶

¶

¶

¶

num. conn.            1.56M   6.35M     25M    100M    400M    800M

src ports             2,500   5,000  10,000  20,000  40,000  40,000

dst ports               625   1,250   2,500   5,000  10,000  20,000

conntrack t. s.        2^21    2^23    2^25    2^27    2^29    2^30

hash table size        2^21    2^23    2^25    2^27    2^28    2^28

num. exp.                10      10      10      10      10       5

n.c./h.t.s.           0.745   0.745   0.745   0.745   1.490   2.980

full contr. del med    4.33   18.05   74.47  305.33 1,178.3 2,263.1

full contr. del min    4.25   17.93   72.04  299.06 1,164.0 2,259.6

full contr. del max    4.38   18.20   75.13  310.05 1,188.3 2,275.2

empty contr. del med   0.55    1.28    4.17   15.74    31.2    31.2

empty contr. del min   0.55    1.26    4.16   15.73    31.1    31.1

empty contr. del max   0.57    1.29    4.22   15.79    31.2    31.2

conn. deletion time    3.78   16.77   70.30  289.59 1,147.2 2,232.0

conn. tear d. rate  413,360 372,689 355,619 345,316 348,690 358,429



Figure 5: Connection tear down rate of iptables against the number of

connections

The connection tear down performance of iptables shows significant

degradation at 6.25M connections compared to 1.56M connections very

likely due to the exhaustion of the L3 cache of the CPU of the DUT.

Then it shows only a minor degradation up to 100M connections. A

small performance increase can be observed at 400M connections due

to the relatively lower hash table size. A more visible performance

decrease can be observed at 800M connections. It is likely caused by

keeping the hash table size constant and doubling the number of

connections. The same thing that caused performance degradation of

the maximum connection establishment rate and throughput, made now

the deletion of the connections faster and thus caused an increase

of the connection tear down rate.

We note that according to the recommended settings of iptables, 8

connections are hashed to each place of the hash table on average,

but we wilfully used much smaller number (0.745 whenever it was

possible) to increase the maximum connection estabilishment rate and

thus to speed up experimenting. However, finally this choice

significantly slowed down our experiments due to the very low

connection tear down rate.

2.6. Connection tracking table capacity

[I-D.lencse-bmwg-benchmarking-stateful] has defined connection

tracking table capacity measurement using the following quantities:

C0: initial safe value for the size of the connection tracking

table (the connection tracking table can surely store C0 entries)

R0: safe connection establisment rate for C0 connections

(measured initially)

CS: safe value for the size of the connection tracking table

during the current measurement (taken from the previous iteration

step)

RS: safe connection establisment rate for CS connections during

the current measurement (measured during the previous iteration)

CT: the currently tested size of the connection tracking table

during the exponential search; also used in the final binary

search.

RT: the currently used connection establisment rate for testing

with CT number of connections during the exponential search
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alpha: safety factor to prevent that connection validation fails

due to sending the validation frames at a too high rate

beta: factor to express a too high drop of the connection

establishment rate during the exponential search

gamma: factor to express a too high drop of the connection

establishment rate during the final binary search

First, the order of magnitude of the size of the connection tracking

table is determined by an exponential search. When it stops, then

the C capacity of the connection tracking table is between CS and

CT=2*CS.

Then the C size of the connection tracking table is determined by a

binary search within E error.

Measurements were performed with the following parameters:

hashsize=nf_conntrack_max=2**22=4,194,304; R0=1,000,000; E=1,

alpha=1.0; beta=0.2; gamma=0.4. The measurements were performed 10

times to see the stability of the results.

The results are presented in Figure 6. The exponential search

finished at its third step (CS=4,000,000 and CT=8,000,000). And the

result of the final binary search was always very close to

4,194,304.

Figure 6: Connection tracking table capacity measurement resultss for

iptables (actual size: 4,194,304)

3. Scalability of Jool

3.1. Introduction to Jool

Jool [JOOLMX] is an open source SIIT and stateful NAT64

implementation for Linux. Since its version 4.2 it also supports

MAP-T. It has been developed by NIC Mexico in cooperation with ITESM

(Monterrey Institute of Technology and Higher Education). Its source

code is released under GPLv2 license.

3.2. Measurement Method

The same methodology was used as in Section 2, but now the test

setup in Figure 7 was followed. The same Tester and DUT devices were

*
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              C0        R0        CS        RS        CT         C

median 1,000,000  2,562,500  4,000,000  2,250,945  8,000,000  4,194,301

min    1,000,000  2,437,500  4,000,000  2,139,953  8,000,000  4,194,300

max    1,000,000  2,687,500  4,000,000  2,327,269  8,000,000  4,194,302

¶



used as before, but the operating system of the DUT was updated to

Debian 10.11 with 4.19.0-18-amd64 kernel to meet the requirement of

the jool-tools package. The version of Jool was 4.1.6. (The most

mature version of Jool at the date of starting the measurements,

Relase Date: 2021-12-10.)

Figure 7: Test setup for benchmarking stateful NAT64 gateways

Unlike with iptables, we did not find any way to tune the hashsize

or any other parameters of Jool.

3.3. Performance scale up against the number of CPU cores

The number of connections was always 1,000,000 using 2,000 different

source port numbers and 500 different destination port numbers.

The error of the binary search was chosen to be lower than 0.1% of

the expected results. The experiments were executed 10 times.

The results are presented in Figure 8. The unit for the maximum

connection establishment rate is 1,000 connections per second. The

unit for throughput is 1,000 packets per second (measured with

bidirectional traffic, and the number of all packets per second is

displayed).

¶

              +--------------------------------------+

    2001:2::2 |Initiator                    Responder| 198.19.0.2

+-------------|                Tester                |<------------+

| IPv6 address|                         [state table]| IPv4 address|

|             +--------------------------------------+             |

|                                                                  |

|             +--------------------------------------+             |

|   2001:2::1 |                 DUT:                 | 198.19.0.1  |

+------------>|        Sateful NAT64 gateway         |-------------+

  IPv6 address|     [connection tracking table]      | IPv4 address

              +--------------------------------------+

¶

¶

¶

¶



Figure 8: Scale up of Jool against the number of CPU cores

Both the maximum connection establishment rate and the throughput

scaled up poorly with the number of active CPU cores. The increase

of the performance was very low above 4 CPU cores.

3.4. Performance degradation caused by the number of sessions

To examine how the performance of Jool degrades with the number

connections, the number of connections was increased fourfold by

doubling the size of both the source port number range and the

destination port number range. We did not reach the limits of the

hardware regarding the number of connections, because unlike

iptables, Jool worked also with 1.6 billion connections.

The error of the binary search was chosen to be lower than 0.1% of

the expected results and the experiments were executed 10 times

(except for the very long lasting measurements with 800 million and

1.6 billion connections to save execution time).

The results are presented in Figure 9. The unit for the maximum

connection establishment rate is 1,000 connections per second. The

unit for throughput is 1,000 packets per second (measured with

bidirectional traffic, and the number of all packets per second is

displayed).

num. CPU cores          1          2          4          8         16

src ports           2,000      2,000      2,000      2,000      2,000

dst ports             500        500        500        500        500

num. conn.      1,000,000  1,000,000  1,000,000  1,000,000  1,000,000

num. experiments       10         10         10         10         10

error                 100        100        100        100        100

cps median          228.6      358.5      537.4      569.9      602.6

cps min             226.5      352.5      530.7      562.0      593.7

cps max             230.5      362.4        543      578.3      609.7

cps rel. scale up       1      0.784      0.588      0.312      0.165

throughput median   251.8      405.7      582.4      604.1      612.3

throughput min      249.8      402.9      573.2      587.3      599.8

throughput max      253.3      409.6      585.7      607.2      616.6

tp. rel. scale up       1      0.806      0.578      0.300      0.152

¶

¶

¶

¶



Figure 9: Performance of Jool against the number of sessions

The performance of Jool shows degradation at the entire range of the

number of connections. We did not analyze the root cause of the

degradation yet. And we are not aware of the implementation of its

connection tracking table. We also plan to check the memory

consumption of Jool, what is definitely lower that that of iptables.

3.5. Connection tear down rate

Basically, the same measurement method was used as in Section 2.5,

however having no parameter of Jool to tune, only a single

measurement series was performed to determine the deletion time of

the empty connection tracking table. The median, minimum and maximum

values of the 10 measurements were 0.46s, 0.42s and 0.50s

respectively.

The same setup and parameters were used as in Section 2.4 and the

experiments were executed 10 times (except for the long lasting

measurements with 800,000,000 connections).

The results are presented in Figure 10. The unit for the connection

tear down rate is 1,000,000 connections per second.

Figure 10: Connection tear down rate of Jool against the number of

connections

num. conn.       1.56M   6.35M     25M    100M    400M   1600M

src ports        2,500   5,000  10,000  20,000  40,000  40,000

dst ports          625   1,250   2,500   5,000  10,000  40,000

num. exp.           10      10      10      10       5       5

error              100     100     100     100   1,000   1,000

cps median       480.2   394.8   328.6   273.0   243.0   232.0

cps min          468.6   392.7   324.9   269.4   243.0   230.5

cps max          484.9   397.4   331.3   280.6   244.5   233.6

throughput med.  511.5   423.9   350.0   286.5   257.8   198.4

throughput min   509.2   420.3   348.2   284.2   257.8   195.3

throughput max   513.1   428.3   352.5   290.8   260.9   201.6

¶

¶

¶

¶

num. conn.            1.56M   6.35M     25M    100M    400M   1600M

src ports             2,500   5,000  10,000  20,000  40,000  40,000

dst ports               625   1,250   2,500   5,000  10,000  40,000

num. exp.                10      10      10      10      10       5

full contr. del med    0.87    2.05    7.84   36.38  126.09  474.68

full contr. del min    0.80    2.02    7.80   36.27  125.84  473.20

full contr. del max    0.91    2.09    7.94   36.80  127.54  481.38

empty contr. del med   0.46    0.46    0.46    0.46    0.46    0.46

conn. deletion time    0.41    1.59    7.38   35.92  125.63  474.22

conn. t. d. r. (M)    3.811   3.931   3.388   2.784   3.184   3.374



The connection tear down performance of Jool is excellent at any

number of connections. It is about and order of magnitude higher

that its connection establishment rate and than the connection tear

down rate of iptables. (A slight degradation can be observed at 100M

connections.)

3.6. Validation of connection establishment

The measurement of connection establishment rate with validation was

performed using different values for the "alpha" parameter.

The results are presented in Figure 11. It is well visible that

alpha values 0.8 and 0.6 cause significant decrease of the validated

rate, therefore, they are unsuitable. Values 0.5 and 0.25 make no

difference compared to the unvalidated connection establishment

rate. (The less than 1,000 cps increase of the median is

deliberately a measurement error.)

Figure 11: Connection establishment rate rate of Jool against the alpha

parameter
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5. IANA Considerations

This document does not make any request to IANA.

¶

¶

¶

alpha            0.8       0.6       0.5      0.25  no validation

num. conn. 4,000,000 4,000,000 4,000,000 4,000,000      4,000,000

src ports      4,000     4,000     4,000     4,000          4,000

dst ports      1,000     1,000     1,000     1,000          1,000

num. exp.         10        10        10        10             10

error            100       100       100       100            100

cps median   323,534   429,491   479,296   479,199        478,417

cps min      322,948   426,464   473,339   474,120        474,902

cps max      325,097   431,542   483,690   483,299        484,667

¶

¶

¶
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