
NFSv4 J. Lentini
Internet-Draft M. Eisler
Intended status: Standards Track D. Kenchammana
Expires: April 24, 2011 NetApp
 A. Madan
 Carnegie Mellon University
 R. Iyer
 October 21, 2010

NFS Server-side Copy
draft-lentini-nfsv4-server-side-copy-06.txt

Abstract

 This document describes a set of NFS operations for offloading a file
 copy to a file server or between two file servers.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 24, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as

Lentini, et al. Expires April 24, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft NFS Server-side Copy October 2010

 described in the Simplified BSD License.

Table of Contents

1. Requirements notation . 3
2. Introduction . 3
3. Protocol Overview . 3
3.1. Intra-Server Copy . 5
3.2. Inter-Server Copy . 6
3.3. Server-to-Server Copy Protocol 9
3.3.1. Using NFSv4.x as a Server-to-Server Copy Protocol . . 9

 3.3.2. Using an alternative Server-to-Server Copy Protocol . 10
4. Operations . 11
4.1. netloc4 - Network Locations 11

 4.2. Operation U: COPY_NOTIFY - Notify a source server of a
 future copy . 12
 4.3. Operation V: COPY_REVOKE - Revoke a destination
 server's copy privileges 14

4.4. Operation W: COPY - Initiate a server-side copy 15
4.5. Operation X: COPY_ABORT - Cancel a server-side copy . . . 23

 4.6. Operation Y: COPY_STATUS - Poll for status of a
 server-side copy . 24
 4.7. Operation Z: CB_COPY - Report results of a server-side
 copy . 25

4.8. Copy Offload Stateids 26
5. Security Considerations 27
5.1. Inter-Server Copy Security 27
5.1.1. Requirements for Secure Inter-Server Copy 27
5.1.2. Inter-Server Copy with RPCSEC_GSSv3 28

 5.1.3. Inter-Server Copy via ONC RPC but without
 RPCSEC_GSSv3 . 34

5.1.4. Inter-Server Copy without ONC RPC and RPCSEC_GSSv3 . . 35
6. IANA Considerations . 35
7. References . 35
7.1. Normative References 35
7.2. Informational References 35

Appendix A. Acknowledgments 36
 Authors' Addresses . 36

Lentini, et al. Expires April 24, 2011 [Page 2]

Internet-Draft NFS Server-side Copy October 2010

1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Introduction

 This document describes a server-side copy feature for the NFS
 protocol.

 The server-side copy feature provides a mechanism for the NFS client
 to perform a file copy on the server without the data being
 transmitted back and forth over the network.

 Without this feature, an NFS client copies data from one location to
 another by reading the data from the server over the network, and
 then writing the data back over the network to the server. Using
 this server-side copy operation, the client is able to instruct the
 server to copy the data locally without the data being sent back and
 forth over the network unnecessarily.

 In general, this feature is useful whenever data is copied from one
 location to another on the server. It is particularly useful when
 copying the contents of a file from a backup. Backup-versions of a
 file are copied for a number of reasons, including restoring and
 cloning data.

 If the source object and destination object are on different file
 servers, the file servers will communicate with one another to
 perform the copy operation. The server-to-server protocol by which
 this is accomplished is not defined in this document.

3. Protocol Overview

 The server-side copy offload operations support both intra-server and
 inter-server file copies. An intra-server copy is a copy in which
 the source file and destination file reside on the same server. In
 an inter-server copy, the source file and destination file are on
 different servers. In both cases, the copy may be performed
 synchronously or asynchronously.

 Throughout the rest of this document, we refer to the NFS server
 containing the source file as the "source server" and the NFS server
 to which the file is transferred as the "destination server". In the
 case of an intra-server copy, the source server and destination

https://datatracker.ietf.org/doc/html/rfc2119

Lentini, et al. Expires April 24, 2011 [Page 3]

Internet-Draft NFS Server-side Copy October 2010

 server are the same server. Therefore in the context of an intra-
 server copy, the terms source server and destination server refer to
 the single server performing the copy.

 The operations described below are designed to copy files. Other
 file system objects can be copied by building on these operations or
 using other techniques. For example if the user wishes to copy a
 directory, the client can synthesize a directory copy by first
 creating the destination directory and then copying the source
 directory's files to the new destination directory. If the user
 wishes to copy a namespace junction [FEDFS-NSDB] [FEDFS-ADMIN], the
 client can use the ONC RPC Federated Filesystem protocol
 [FEDFS-ADMIN] to perform the copy. Specifically the client can
 determine the source junction's attributes using the FEDFS_LOOKUP_FSN
 procedure and create a duplicate junction using the
 FEDFS_CREATE_JUNCTION procedure.

 For the inter-server copy protocol, the operations are defined to be
 compatible with a server-to-server copy protocol in which the
 destination server reads the file data from the source server. This
 model in which the file data is pulled from the source by the
 destination has a number of advantages over a model in which the
 source pushes the file data to the destination. The advantages of
 the pull model include:

 o The pull model only requires a remote server (i.e. the destination
 server) to be granted read access. A push model requires a remote
 server (i.e. the source server) to be granted write access, which
 is more privileged.

 o The pull model allows the destination server to stop reading if it
 has run out of space. In a push model, the destination server
 must flow control the source server in this situation.

 o The pull model allows the destination server to easily flow
 control the data stream by adjusting the size of its read
 operations. In a push model, the destination server does not have
 this ability. The source server in a push model is capable of
 writing chunks larger than the destination server has requested in
 attributes and session parameters. In theory, the destination
 server could perform a "short" write in this situation, but this
 approach is known to behave poorly in practice.

 The following operations are provided to support server-side copy:

Lentini, et al. Expires April 24, 2011 [Page 4]

Internet-Draft NFS Server-side Copy October 2010

 COPY_NOTIFY: For inter-server copies, the client sends this
 operation to the source server to notify it of a future file copy
 from a given destination server for the given user.

 COPY_REVOKE: Also for inter-server copies, the client sends this
 operation to the source server to revoke permission to copy a file
 for the given user.

 COPY: Used by the client to request a file copy.

 COPY_ABORT: Used by the client to abort an asynchronous file copy.

 COPY_STATUS: Used by the client to poll the status of an
 asynchronous file copy.

 CB_COPY: Used by the destination server to report the results of an
 asynchronous file copy to the client.

 These operations are described in detail in Section 4. This section
 provides an overview of how these operations are used to perform
 server-side copies.

3.1. Intra-Server Copy

 To copy a file on a single server, the client uses a COPY operation.
 The server may respond to the copy operation with the final results
 of the copy or it may perform the copy asynchronously and deliver the
 results using a CB_COPY operation callback. If the copy is performed
 asynchronously, the client may poll the status of the copy using
 COPY_STATUS or cancel the copy using COPY_ABORT.

 A synchronous intra-server copy is shown in Figure 1. In this
 example, the NFS server chooses to perform the copy synchronously.
 The copy operation is completed, either successfully or
 unsuccessfully, before the server replies to the client's request.
 The server's reply contains the final result of the operation.

 Client Server
 + +
 | |
 |--- COPY ---------------------------->| Client requests
 |<------------------------------------/| a file copy
 | |
 | |

 Figure 1: A synchronous intra-server copy.

 An asynchronous intra-server copy is shown in Figure 2. In this

Lentini, et al. Expires April 24, 2011 [Page 5]

Internet-Draft NFS Server-side Copy October 2010

 example, the NFS server performs the copy asynchronously. The
 server's reply to the copy request indicates that the copy operation
 was initiated and the final result will be delivered at a later time.
 The server's reply also contains a copy stateid. The client may use
 this copy stateid to poll for status information (as shown) or to
 cancel the copy using a COPY_ABORT. When the server completes the
 copy, the server performs a callback to the client and reports the
 results.

 Client Server
 + +
 | |
 |--- COPY ---------------------------->| Client requests
 |<------------------------------------/| a file copy
 | |
 | |
 |--- COPY_STATUS --------------------->| Client may poll
 |<------------------------------------/| for status
 | |
 | . | Multiple COPY_STATUS
 | . | operations may be sent.
 | . |
 | |
 |<-- CB_COPY --------------------------| Server reports results
 |\------------------------------------>|
 | |

 Figure 2: An asynchronous intra-server copy.

3.2. Inter-Server Copy

 A copy may also be performed between two servers. The copy protocol
 is designed to accommodate a variety of network topologies. As shown
 in Figure 3, the client and servers may be connected by multiple
 networks. In particular, the servers may be connected by a
 specialized, high speed network (network 192.168.33.0/24 in the
 diagram) that does not include the client. The protocol allows the
 client to setup the copy between the servers (over network
 10.11.78.0/24 in the diagram) and for the servers to communicate on
 the high speed network if they choose to do so.

Lentini, et al. Expires April 24, 2011 [Page 6]

Internet-Draft NFS Server-side Copy October 2010

 192.168.33.0/24
 +-------------------------------------+
 | |
 | |
 | 192.168.33.18 | 192.168.33.56
 +-------+------+ +------+------+
 | Source | | Destination |
 +-------+------+ +------+------+
 | 10.11.78.18 | 10.11.78.56
 | |
 | |
 | 10.11.78.0/24 |
 +------------------+------------------+
 |
 |
 | 10.11.78.243
 +-----+-----+
 | Client |
 +-----------+

 Figure 3: An example inter-server network topology.

 For an inter-server copy, the client notifies the source server that
 a file will be copied by the destination server using a COPY_NOTIFY
 operation. The client then initiates the copy by sending the COPY
 operation to the destination server. The destination server may
 perform the copy synchronously or asynchronously.

 A synchronous inter-server copy is shown in Figure 4. In this case,
 the destination server chooses to perform the copy before responding
 to the client's COPY request.

 An asynchronous copy is shown in Figure 5. In this case, the
 destination server chooses to respond to the client's COPY request
 immediately and then perform the copy asynchronously.

Lentini, et al. Expires April 24, 2011 [Page 7]

Internet-Draft NFS Server-side Copy October 2010

 Client Source Destination
 + + +
 | | |
 |--- COPY_NOTIFY --->| |
 |<------------------/| |
 | | |
 | | |
 |--- COPY ---------------------------->|
 | | |
 | | |
 | |<----- read -----|
 | |\--------------->|
 | | |
 | | . | Multiple reads may
 | | . | be necessary
 | | . |
 | | |
 | | |
 |<------------------------------------/| Destination replies
 | | | to COPY

 Figure 4: A synchronous inter-server copy.

Lentini, et al. Expires April 24, 2011 [Page 8]

Internet-Draft NFS Server-side Copy October 2010

 Client Source Destination
 + + +
 | | |
 |--- COPY_NOTIFY --->| |
 |<------------------/| |
 | | |
 | | |
 |--- COPY ---------------------------->|
 |<------------------------------------/|
 | | |
 | | |
 | |<----- read -----|
 | |\--------------->|
 | | |
 | | . | Multiple reads may
 | | . | be necessary
 | | . |
 | | |
 | | |
 |--- COPY_STATUS --------------------->| Client may poll
 |<------------------------------------/| for status
 | | |
 | | . | Multiple COPY_STATUS
 | | . | operations may be sent
 | | . |
 | | |
 | | |
 | | |
 |<-- CB_COPY --------------------------| Destination reports
 |\------------------------------------>| results
 | | |

 Figure 5: An asynchronous inter-server copy.

3.3. Server-to-Server Copy Protocol

 During an inter-server copy, the destination server reads the file
 data from the source server. The source server and destination
 server are not required to use a specific protocol to transfer the
 file data. The choice of what protocol to use is ultimately the
 destination server's decision.

3.3.1. Using NFSv4.x as a Server-to-Server Copy Protocol

 The destination server MAY use standard NFSv4.x (where x >= 1) to
 read the data from the source server. If NFSv4.x is used for the
 server-to-server copy protocol, the destination server can use the
 filehandle contained in the COPY request with standard NFSv4.x

Lentini, et al. Expires April 24, 2011 [Page 9]

Internet-Draft NFS Server-side Copy October 2010

 operations to read data from the source server. Specifically, the
 destination server may use the NFSv4.x OPEN operation's CLAIM_FH
 facility to open the file being copied and obtain an open stateid.
 Using the stateid, the destination server may then use NFSv4.x READ
 operations to read the file.

3.3.2. Using an alternative Server-to-Server Copy Protocol

 In a homogeneous environment, the source and destination servers
 might be able to perform the file copy extremely efficiently using
 specialized protocols. For example the source and destination
 servers might be two nodes sharing a common file system format for
 the source and destination file systems. Thus the source and
 destination are in an ideal position to efficiently render the image
 of the source file to the destination file by replicating the file
 system formats at the block level. Another possibility is that the
 source and destination might be two nodes sharing a common storage
 area network, and thus there is no need to copy any data at all, and
 instead ownership of the file and its contents might simply be re-
 assigned to the destination. To allow for these possibilities, the
 destination server is allowed to use a server-to-server copy protocol
 of its choice.

 In a heterogeneous environment, using a protocol other than NFSv4.x
 (e.g. HTTP [RFC2616] or FTP [RFC0959]) presents some challenges. In
 particular, the destination server is presented with the challenge of
 accessing the source file given only an NFSv4.x filehandle.

 One option for protocols that identify source files with path names
 is to use an ASCII hexadecimal representation of the source
 filehandle as the file name.

 Another option for the source server is to use URLs to direct the
 destination server to a specialized service. For example, the
 response to COPY_NOTIFY could include the URL

ftp://s1.example.com:9999/_FH/0x12345, where 0x12345 is the ASCII
 hexadecimal representation of the source filehandle. When the
 destination server receives the source server's URL, it would use
 "_FH/0x12345" as the file name to pass to the FTP server listening on
 port 9999 of s1.example.com. On port 9999 there would be a special
 instance of the FTP service that understands how to convert NFS
 filehandles to an open file descriptor (in many operating systems,
 this would require a new system call, one which is the inverse of the
 makefh() function that the pre-NFSv4 MOUNT service needs).

 Authenticating and identifying the destination server to the source
 server is also a challenge. Recommendations for how to accomplish
 this are given in Section 5.1.2.4 and Section 5.1.4.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc0959
ftp://s1.example.com:9999/_FH/0x12345

Lentini, et al. Expires April 24, 2011 [Page 10]

Internet-Draft NFS Server-side Copy October 2010

4. Operations

 In the sections that follow, several operations are defined that
 together provide the server-side copy feature. These operations are
 intended to be OPTIONAL operations as defined in section 17 of
 [RFC5661]. The COPY_NOTIFY, COPY_REVOKE, COPY, COPY_ABORT, and
 COPY_STATUS operations are designed to be sent within an NFSv4
 COMPOUND procedure. The CB_COPY operation is designed to be sent
 within an NFSv4 CB_COMPOUND procedure.

 Each operation is performed in the context of the user identified by
 the ONC RPC credential of its containing COMPOUND or CB_COMPOUND
 request. For example, a COPY_ABORT operation issued by a given user
 indicates that a specified COPY operation initiated by the same user
 be canceled. Therefore a COPY_ABORT MUST NOT interfere with a copy
 of the same file initiated by another user.

 An NFS server MAY allow an administrative user to monitor or cancel
 copy operations using an implementation specific interface.

4.1. netloc4 - Network Locations

 The server-side copy operations specify network locations using the
 netloc4 data type shown below:

 enum netloc_type4 {
 NL4_NAME = 0,
 NL4_URL = 1,
 NL4_NETADDR = 2
 };

 union netloc4 switch (netloc_type4 nl_type) {
 case NL4_NAME: utf8str_cis nl_name;
 case NL4_URL: utf8str_cis nl_url;
 case NL4_NETADDR: netaddr4 nl_addr;
 };

 If the netloc4 is of type NL4_NAME, the nl_name field MUST be
 specified as a UTF-8 string. The nl_name is expected to be resolved
 to a network address via DNS, LDAP, NIS, /etc/hosts, or some other
 means. If the netloc4 is of type NL4_URL, a server URL [RFC3986]
 appropriate for the server-to-server copy operation is specified as a
 UTF-8 string. If the netloc4 is of type NL4_NETADDR, the nl_addr
 field MUST contain a valid netaddr4 as defined in Section 3.3.9 of
 [RFC5661].

 When netloc4 values are used for an inter-server copy as shown in
 Figure 3, their values may be evaluated on the source server,

https://datatracker.ietf.org/doc/html/rfc5661#section-17
https://datatracker.ietf.org/doc/html/rfc5661#section-17
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5661#section-3.3.9
https://datatracker.ietf.org/doc/html/rfc5661#section-3.3.9

Lentini, et al. Expires April 24, 2011 [Page 11]

Internet-Draft NFS Server-side Copy October 2010

 destination server, and client. The network environment in which
 these systems operate should be configured so that the netloc4 values
 are interpreted as intended on each system.

4.2. Operation U: COPY_NOTIFY - Notify a source server of a future copy

 ARGUMENTS

 struct COPY_NOTIFY4args {
 /* CURRENT_FH: source file */
 netloc4 cna_destination_server;
 };

 RESULTS

 union COPY_NOTIFY4res switch (nfsstat4 cnr_status) {
 case NFS4_OK:
 nfstime4 cnr_lease_time;
 netloc4 cnr_source_server<>;
 default:
 void;
 };

 DESCRIPTION

 This operation is used for an inter-server copy. A client sends this
 operation in a COMPOUND request to the source server to authorize a
 destination server identified by cna_destination_server to read the
 file specified by CURRENT_FH on behalf of the given user.

 The cna_destination_server MUST be specified using the netloc4
 network location format. The server is not required to resolve the
 cna_destination_server address before completing this operation.

 If this operation succeeds, the source server will allow the
 cna_destination_server to copy the specified file on behalf of the
 given user. If COPY_NOTIFY succeeds, the destination server is
 granted permission to read the file as long as both of the following
 conditions are met:

 o The destination server begins reading the source file before the
 cnr_lease_time expires. If the cnr_lease_time expires while the
 destination server is still reading the source file, the
 destination server is allowed to finish reading the file.

 o The client has not issued a COPY_REVOKE for the same combination
 of user, filehandle, and destination server.

Lentini, et al. Expires April 24, 2011 [Page 12]

Internet-Draft NFS Server-side Copy October 2010

 The cnr_lease_time is chosen by the source server. A cnr_lease_time
 of 0 (zero) indicates an infinite lease. To renew the copy lease
 time the client should resend the same copy notification request to
 the source server.

 To avoid the need for synchronized clocks, copy lease times are
 granted by the server as a time delta. However, there is a
 requirement that the client and server clocks do not drift
 excessively over the duration of the lease. There is also the issue
 of propagation delay across the network which could easily be several
 hundred milliseconds as well as the possibility that requests will be
 lost and need to be retransmitted.

 To take propagation delay into account, the client should subtract it
 from copy lease times (e.g. if the client estimates the one-way
 propagation delay as 200 milliseconds, then it can assume that the
 lease is already 200 milliseconds old when it gets it). In addition,
 it will take another 200 milliseconds to get a response back to the
 server. So the client must send a lease renewal or send the copy
 offload request to the cna_destination_server at least 400
 milliseconds before the copy lease would expire. If the propagation
 delay varies over the life of the lease (e.g. the client is on a
 mobile host), the client will need to continuously subtract the
 increase in propagation delay from the copy lease times.

 The server's copy lease period configuration should take into account
 the network distance of the clients that will be accessing the
 server's resources. It is expected that the lease period will take
 into account the network propagation delays and other network delay
 factors for the client population. Since the protocol does not allow
 for an automatic method to determine an appropriate copy lease
 period, the server's administrator may have to tune the copy lease
 period.

 A successful response will also contain a list of names, addresses,
 and URLs called cnr_source_server, on which the source is willing to
 accept connections from the destination. These might not be
 reachable from the client and might be located on networks to which
 the client has no connection.

 If the client wishes to perform an inter-server copy, the client MUST
 send a COPY_NOTIFY to the source server. Therefore, the source
 server MUST support COPY_NOTIFY.

 For a copy only involving one server (the source and destination are
 on the same server), this operation is unnecessary.

 The COPY_NOTIFY operation may fail for the following reasons (this is

Lentini, et al. Expires April 24, 2011 [Page 13]

Internet-Draft NFS Server-side Copy October 2010

 a partial list):

 NFS4ERR_MOVED: The file system which contains the source file is not
 present on the source server. The client can determine the
 correct location and reissue the operation with the correct
 location.

 NFS4ERR_NOTSUPP: The copy offload operation is not supported by the
 NFS server receiving this request.

 NFS4ERR_WRONGSEC: The security mechanism being used by the client
 does not match the server's security policy.

4.3. Operation V: COPY_REVOKE - Revoke a destination server's copy
 privileges

 ARGUMENTS

 struct COPY_REVOKE4args {
 /* CURRENT_FH: source file */
 netloc4 cra_destination_server;
 };

 RESULTS

 struct COPY_REVOKE4res {
 nfsstat4 crr_status;
 };

 DESCRIPTION

 This operation is used for an inter-server copy. A client sends this
 operation in a COMPOUND request to the source server to revoke the
 authorization of a destination server identified by
 cra_destination_server from reading the file specified by CURRENT_FH
 on behalf of given user. If the cra_destination_server has already
 begun copying the file, a successful return from this operation
 indicates that further access will be prevented.

 The cra_destination_server MUST be specified using the netloc4
 network location format. The server is not required to resolve the
 cra_destination_server address before completing this operation.

 The COPY_REVOKE operation is useful in situations in which the source
 server granted a very long or infinite lease on the destination
 server's ability to read the source file and all copy operations on
 the source file have been completed.

Lentini, et al. Expires April 24, 2011 [Page 14]

Internet-Draft NFS Server-side Copy October 2010

 For a copy only involving one server (the source and destination are
 on the same server), this operation is unnecessary.

 If the server supports COPY_NOTIFY, the server is REQUIRED to support
 the COPY_REVOKE operation.

 The COPY_REVOKE operation may fail for the following reasons (this is
 a partial list):

 NFS4ERR_MOVED: The file system which contains the source file is not
 present on the source server. The client can determine the
 correct location and reissue the operation with the correct
 location.

 NFS4ERR_NOTSUPP: The copy offload operation is not supported by the
 NFS server receiving this request.

4.4. Operation W: COPY - Initiate a server-side copy

 ARGUMENTS

 #define COPY4_GUARDED = 0x00000001;
 #define COPY4_METADATA = 0x00000002;

 struct COPY4args {
 /* SAVED_FH: source file */
 /* CURRENT_FH: destination file or */
 /* directory */
 offset4 ca_src_offset;
 offset4 ca_dst_offset;
 length4 ca_count;
 uint32_t ca_flags;
 component4 ca_destination;
 netloc4 ca_source_server<>;
 };

 RESULTS

 union COPY4res switch (nfsstat4 cr_status) {
 /* CURRENT_FH: destination file */
 case NFS4_OK:
 stateid4 cr_callback_id<1>;
 default:
 length4 cr_bytes_copied;
 };

 DESCRIPTION

Lentini, et al. Expires April 24, 2011 [Page 15]

Internet-Draft NFS Server-side Copy October 2010

 The COPY operation is used for both intra- and inter-server copies.
 In both cases, the COPY is always sent from the client to the
 destination server of the file copy. The COPY operation requests
 that a file be copied from the location specified by the SAVED_FH
 value to the location specified by the combination of CURRENT_FH and
 ca_destination.

 The SAVED_FH must be a regular file. If SAVED_FH is not a regular
 file, the operation MUST fail and return NFS4ERR_WRONG_TYPE.

 In order to set SAVED_FH to the source file handle, the compound
 procedure requesting the COPY will include a sub-sequence of
 operations such as

 PUTFH source-fh
 SAVEFH

 If the request is for a server-to-server copy, the source-fh is a
 filehandle from the source server and the compound procedure is being
 executed on the destination server. In this case, the source-fh is a
 foreign filehandle on the server receiving the COPY request. If
 either PUTFH or SAVEFH checked the validity of the filehandle, the
 operation would likely fail and return NFS4ERR_STALE.

 In order to avoid this problem, the minor version incorporating the
 COPY operations will need to make a few small changes in the handling
 of existing operations. If a server supports the server-to-server
 COPY feature, a PUTFH followed by a SAVEFH MUST NOT return
 NFS4ERR_STALE for either operation. These restrictions do not pose
 substantial difficulties for servers. The CURRENT_FH and SAVED_FH
 may be validated in the context of the operation referencing them and
 an NFS4ERR_STALE error returned for an invalid file handle at that
 point.

 The CURRENT_FH and ca_destination together specify the destination of
 the copy operation. If ca_destination is of 0 (zero) length, then
 CURRENT_FH specifies the target file. In this case, CURRENT_FH MUST
 be a regular file and not a directory. If ca_destination is not of 0
 (zero) length, the ca_destination argument specifies the file name to
 which the data will be copied within the directory identified by
 CURRENT_FH. In this case, CURRENT_FH MUST be a directory and not a
 regular file.

 If the file named by ca_destination does not exist and the operation
 completes successfully, the file will be visible in the file system
 namespace. If the file does not exist and the operation fails, the
 file MAY be visible in the file system namespace depending on when
 the failure occurs and on the implementation of the NFS server

Lentini, et al. Expires April 24, 2011 [Page 16]

Internet-Draft NFS Server-side Copy October 2010

 receiving the COPY operation. If the ca_destination name cannot be
 created in the destination file system (due to file name
 restrictions, such as case or length), the operation MUST fail.

 The ca_src_offset is the offset within the source file from which the
 data will be read, the ca_dst_offset is the offset within the
 destination file to which the data will be written, and the ca_count
 is the number of bytes that will be copied. An offset of 0 (zero)
 specifies the start of the file. A count of 0 (zero) requests that
 all bytes from ca_src_offset through EOF be copied to the
 destination. If concurrent modifications to the source file overlap
 with the source file region being copied, the data copied may include
 all, some, or none of the modifications. The client can use standard
 NFS operations (e.g. OPEN with OPEN4_SHARE_DENY_WRITE or mandatory
 byte range locks) to protect against concurrent modifications if the
 client is concerned about this. If the source file's end of file is
 being modified in parallel with a copy that specifies a count of 0
 (zero) bytes, the amount of data copied is implementation dependent
 (clients may guard against this case by specifying a non-zero count
 value or preventing modification of the source file as mentioned
 above).

 If the source offset or the source offset plus count is greater than
 or equal to the size of the source file, the operation will fail with
 NFS4ERR_INVAL. The destination offset or destination offset plus
 count may be greater than the size of the destination file. This
 allows for the client to issue parallel copies to implement
 operations such as "cat file1 file2 file3 file4 > dest".

 If the destination file is created as a result of this command, the
 destination file's size will be equal to the number of bytes
 successfully copied. If the destination file already existed, the
 destination file's size may increase as a result of this operation
 (e.g. if ca_dst_offset plus ca_count is greater than the
 destination's initial size).

 If the ca_source_server list is specified, then this is an inter-
 server copy operation and the source file is on a remote server. The
 client is expected to have previously issued a successful COPY_NOTIFY
 request to the remote source server. The ca_source_server list
 SHOULD be the same as the COPY_NOTIFY response's cnr_source_server
 list. If the client includes the entries from the COPY_NOTIFY
 response's cnr_source_server list in the ca_source_server list, the
 source server can indicate a specific copy protocol for the
 destination server to use by returning a URL, which specifies both a
 protocol service and server name. Server-to-server copy protocol
 considerations are described in Section 3.3 and Section 5.1.

Lentini, et al. Expires April 24, 2011 [Page 17]

Internet-Draft NFS Server-side Copy October 2010

 The ca_flags argument allows the copy operation to be customized in
 the following ways using the guarded flag (COPY4_GUARDED) and the
 metadata flag (COPY4_METADATA).

 [NOTE: Earlier versions of this document defined a
 COPY4_SPACE_RESERVED flag for controlling space reservations on the
 destination file. This flag has been removed with the expectation
 that the space_reserve attribute defined in [SPACE-RESERVE] will be
 adopted.]

 If the guarded flag is set and the destination exists on the server,
 this operation will fail with NFS4ERR_EXIST.

 If the guarded flag is not set and the destination exists on the
 server, the behavior is implementation dependent.

 If the metadata flag is set and the client is requesting a whole file
 copy (i.e. ca_count is 0 (zero)), a subset of the destination file's
 attributes MUST be the same as the source file's corresponding
 attributes and a subset of the destination file's attributes SHOULD
 be the same as the source file's corresponding attributes. The
 attributes in the MUST and SHOULD copy subsets will be defined for
 each NFS version.

 For NFSv4.1, Table 1 and Table 2 list the REQUIRED and RECOMMENDED
 attributes respectively. A "MUST" in the "Copy to destination file?"
 column indicates that the attribute is part of the MUST copy set. A
 "SHOULD" in the "Copy to destination file?" column indicates that the
 attribute is part of the SHOULD copy set.

Lentini, et al. Expires April 24, 2011 [Page 18]

Internet-Draft NFS Server-side Copy October 2010

 +--------------------+----+---------------------------+
 | Name | Id | Copy to destination file? |
 +--------------------+----+---------------------------+
 | supported_attrs | 0 | no |
 | type | 1 | MUST |
 | fh_expire_type | 2 | no |
 | change | 3 | SHOULD |
 | size | 4 | MUST |
 | link_support | 5 | no |
 | symlink_support | 6 | no |
 | named_attr | 7 | no |
 | fsid | 8 | no |
 | unique_handles | 9 | no |
 | lease_time | 10 | no |
 | rdattr_error | 11 | no |
 | filehandle | 19 | no |
 | suppattr_exclcreat | 75 | no |
 +--------------------+----+---------------------------+

 Table 1

 +--------------------+----+---------------------------+
 | Name | Id | Copy to destination file? |
 +--------------------+----+---------------------------+
 | acl | 12 | MUST |
 | aclsupport | 13 | no |
 | archive | 14 | no |
 | cansettime | 15 | no |
 | case_insensitive | 16 | no |
 | case_preserving | 17 | no |
 | change_policy | 60 | no |
 | chown_restricted | 18 | MUST |
 | dacl | 58 | MUST |
 | dir_notif_delay | 56 | no |
 | dirent_notif_delay | 57 | no |
 | fileid | 20 | no |
 | files_avail | 21 | no |
 | files_free | 22 | no |
 | files_total | 23 | no |
 | fs_charset_cap | 76 | no |
 | fs_layout_type | 62 | no |
 | fs_locations | 24 | no |
 | fs_locations_info | 67 | no |
 | fs_status | 61 | no |
 | hidden | 25 | MUST |
 | homogeneous | 26 | no |
 | layout_alignment | 66 | no |
 | layout_blksize | 65 | no |

Lentini, et al. Expires April 24, 2011 [Page 19]

Internet-Draft NFS Server-side Copy October 2010

 | layout_hint | 63 | no |
 | layout_type | 64 | no |
 | maxfilesize | 27 | no |
 | maxlink | 28 | no |
 | maxname | 29 | no |
 | maxread | 30 | no |
 | maxwrite | 31 | no |
 | mdsthreshold | 68 | no |
 | mimetype | 32 | MUST |
 | mode | 33 | MUST |
 | mode_set_masked | 74 | no |
 | mounted_on_fileid | 55 | no |
 | no_trunc | 34 | no |
 | numlinks | 35 | no |
 | owner | 36 | MUST |
 | owner_group | 37 | MUST |
 | quota_avail_hard | 38 | no |
 | quota_avail_soft | 39 | no |
 | quota_used | 40 | no |
 | rawdev | 41 | no |
 | retentevt_get | 71 | MUST |
 | retentevt_set | 72 | no |
 | retention_get | 69 | MUST |
 | retention_hold | 73 | MUST |
 | retention_set | 70 | no |
 | sacl | 59 | MUST |
 | space_avail | 42 | no |
 | space_free | 43 | no |
 | space_total | 44 | no |
 | space_used | 45 | no |
 | system | 46 | MUST |
 | time_access | 47 | MUST |
 | time_access_set | 48 | no |
 | time_backup | 49 | no |
 | time_create | 50 | MUST |
 | time_delta | 51 | no |
 | time_metadata | 52 | SHOULD |
 | time_modify | 53 | MUST |
 | time_modify_set | 54 | no |
 +--------------------+----+---------------------------+

 Table 2

 [NOTE: The space_reserve attribute [SPACE-RESERVE] will be in the
 MUST set.]

 [NOTE: The source file's attribute values will take precedence over
 any attribute values inherited by the destination file.]

Lentini, et al. Expires April 24, 2011 [Page 20]

Internet-Draft NFS Server-side Copy October 2010

 In the case of an inter-server copy or an intra-server copy between
 file systems, the attributes supported for the source file and
 destination file could be different. By definition,the REQUIRED
 attributes will be supported in all cases. If the metadata flag is
 set and the source file has a RECOMMENDED attribute that is not
 supported for the destination file, the copy MUST fail with
 NFS4ERR_ATTRNOTSUPP.

 Any attribute supported by the destination server that is not set on
 the source file SHOULD be left unset.

 Metadata attributes not exposed via the NFS protocol SHOULD be copied
 to the destination file where appropriate.

 The destination file's named attributes are not duplicated from the
 source file. After the copy process completes, the client MAY
 attempt to duplicate named attributes using standard NFSv4
 operations. However, the destination file's named attribute
 capabilities MAY be different from the source file's named attribute
 capabilities.

 If the metadata flag is not set and the client is requesting a whole
 file copy (i.e. ca_count is 0 (zero)), the destination file's
 metadata is implementation dependent.

 If the client is requesting a partial file copy (i.e. ca_count is not
 0 (zero)), the client SHOULD NOT set the metadata flag and the server
 MUST ignore the metadata flag.

 If the operation does not result in an immediate failure, the server
 will return NFS4_OK, and the CURRENT_FH will remain the destination's
 filehandle.

 If an immediate failure does occur, cr_bytes_copied will be set to
 the number of bytes copied to the destination file before the error
 occurred. The cr_bytes_copied value indicates the number of bytes
 copied but not which specific bytes have been copied.

 A return of NFS4_OK indicates that either the operation is complete
 or the operation was initiated and a callback will be used to deliver
 the final status of the operation.

 If the cr_callback_id is returned, this indicates that the operation
 was initiated and a CB_COPY callback will deliver the final results
 of the operation. The cr_callback_id stateid is termed a copy
 stateid in this context. The server is given the option of returning
 the results in a callback because the data may require a relatively
 long period of time to copy.

Lentini, et al. Expires April 24, 2011 [Page 21]

Internet-Draft NFS Server-side Copy October 2010

 If no cr_callback_id is returned, the operation completed
 synchronously and no callback will be issued by the server. The
 completion status of the operation is indicated by cr_status.

 If the copy completes successfully, either synchronously or
 asynchronously, the data copied from the source file to the
 destination file MUST appear identical to the NFS client. However,
 the NFS server's on disk representation of the data in the source
 file and destination file MAY differ. For example, the NFS server
 might encrypt, compress, deduplicate, or otherwise represent the on
 disk data in the source and destination file differently.

 In the event of a failure the state of the destination file is
 implementation dependent. The COPY operation may fail for the
 following reasons (this is a partial list).

 NFS4ERR_MOVED: The file system which contains the source file, or
 the destination file or directory is not present. The client can
 determine the correct location and reissue the operation with the
 correct location.

 NFS4ERR_NOTSUPP: The copy offload operation is not supported by the
 NFS server receiving this request.

 NFS4ERR_PARTNER_NOTSUPP: The remote server does not support the
 server-to-server copy offload protocol.

 NFS4ERR_PARTNER_NO_AUTH: The remote server does not authorize a
 server-to-server copy offload operation. This may be due to the
 client's failure to send the COPY_NOTIFY operation to the remote
 server, the remote server receiving a server-to-server copy
 offload request after the copy lease time expired, or for some
 other permission problem.

 NFS4ERR_FBIG: The copy operation would have caused the file to grow
 beyond the server's limit.

 NFS4ERR_NOTDIR: The CURRENT_FH is a file and ca_destination has non-
 zero length.

 NFS4ERR_WRONG_TYPE: The SAVED_FH is not a regular file.

 NFS4ERR_ISDIR: The CURRENT_FH is a directory and ca_destination has
 zero length.

Lentini, et al. Expires April 24, 2011 [Page 22]

Internet-Draft NFS Server-side Copy October 2010

 NFS4ERR_INVAL: The source offset or offset plus count are greater
 than or equal to the size of the source file.

 NFS4ERR_DELAY: The server does not have the resources to perform the
 copy operation at the current time. The client should retry the
 operation sometime in the future.

 NFS4ERR_METADATA_NOTSUPP: The destination file cannot support the
 same metadata as the source file.

 NFS4ERR_WRONGSEC: The security mechanism being used by the client
 does not match the server's security policy.

4.5. Operation X: COPY_ABORT - Cancel a server-side copy

 ARGUMENTS

 struct COPY_ABORT4args {
 /* CURRENT_FH: destination file */
 stateid4 caa_stateid;
 };

 RESULTS

 struct COPY_ABORT4res {
 nfsstat4 car_status;
 };

 DESCRIPTION

 COPY_ABORT is used for both intra- and inter-server asynchronous
 copies. The COPY_ABORT operation allows the client to cancel a
 server-side copy operation that it initiated. This operation is sent
 in a COMPOUND request from the client to the destination server.
 This operation may be used to cancel a copy when the application that
 requested the copy exits before the operation is completed or for
 some other reason.

 The request contains the filehandle and copy stateid cookies that act
 as the context for the previously initiated copy operation.

 The result's car_status field indicates whether the cancel was
 successful or not. A value of NFS4_OK indicates that the copy
 operation was canceled and no callback will be issued by the server.
 A copy operation that is successfully canceled may result in none,
 some, or all of the data copied.

 If the server supports asynchronous copies, the server is REQUIRED to

Lentini, et al. Expires April 24, 2011 [Page 23]

Internet-Draft NFS Server-side Copy October 2010

 support the COPY_ABORT operation.

 The COPY_ABORT operation may fail for the following reasons (this is
 a partial list):

 NFS4ERR_NOTSUPP: The abort operation is not supported by the NFS
 server receiving this request.

 NFS4ERR_RETRY: The abort failed, but a retry at some time in the
 future MAY succeed.

 NFS4ERR_COMPLETE_ALREADY: The abort failed, and a callback will
 deliver the results of the copy operation.

 NFS4ERR_SERVERFAULT: An error occurred on the server that does not
 map to a specific error code.

4.6. Operation Y: COPY_STATUS - Poll for status of a server-side copy

 ARGUMENTS

 struct COPY_STATUS4args {
 /* CURRENT_FH: destination file */
 stateid4 csa_stateid;
 };

 RESULTS

 union COPY_STATUS4res switch (nfsstat4 csr_status) {
 case NFS4_OK:
 length4 csr_bytes_copied;
 nfsstat4 csr_complete<1>;
 default:
 void;
 };

 DESCRIPTION

 COPY_STATUS is used for both intra- and inter-server asynchronous
 copies. The COPY_STATUS operation allows the client to poll the
 server to determine the status of an asynchronous copy operation.
 This operation is sent by the client to the destination server.

 If this operation is successful, the number of bytes copied are
 returned to the client in the csr_bytes_copied field. The
 csr_bytes_copied value indicates the number of bytes copied but not
 which specific bytes have been copied.

Lentini, et al. Expires April 24, 2011 [Page 24]

Internet-Draft NFS Server-side Copy October 2010

 If the optional csr_complete field is present, the copy has
 completed. In this case the status value indicates the result of the
 asynchronous copy operation. In all cases, the server will also
 deliver the final results of the asynchronous copy in a CB_COPY
 operation.

 The failure of this operation does not indicate the result of the
 asynchronous copy in any way.

 If the server supports asynchronous copies, the server is REQUIRED to
 support the COPY_STATUS operation.

 The COPY_STATUS operation may fail for the following reasons (this is
 a partial list):

 NFS4ERR_NOTSUPP: The copy status operation is not supported by the
 NFS server receiving this request.

 NFS4ERR_BAD_STATEID: The stateid is not valid (see Section 4.8
 below).

 NFS4ERR_EXPIRED: The stateid has expired (see Copy Offload Stateid
 section below).

4.7. Operation Z: CB_COPY - Report results of a server-side copy

 ARGUMENTS

 union copy_info4 switch (nfsstat4 cca_status) {
 case NFS4_OK:
 void;
 default:
 length4 cca_bytes_copied;
 };

 struct CB_COPY4args {
 nfs_fh4 cca_fh;
 stateid4 cca_stateid;
 copy_info4 cca_copy_info;
 };

 RESULTS

 struct CB_COPY4res {
 nfsstat4 ccr_status;
 };

 DESCRIPTION

Lentini, et al. Expires April 24, 2011 [Page 25]

Internet-Draft NFS Server-side Copy October 2010

 CB_COPY is used for both intra- and inter-server asynchronous copies.
 The CB_COPY callback informs the client of the result of an
 asynchronous server-side copy. This operation is sent by the
 destination server to the client in a CB_COMPOUND request. The copy
 is identified by the filehandle and stateid arguments. The result is
 indicated by the status field. If the copy failed, cca_bytes_copied
 contains the number of bytes copied before the failure occurred. The
 cca_bytes_copied value indicates the number of bytes copied but not
 which specific bytes have been copied.

 In the absence of an established backchannel, the server cannot
 signal the completion of the COPY via a CB_COPY callback. The loss
 of a callback channel would be indicated by the server setting the
 SEQ4_STATUS_CB_PATH_DOWN flag in the sr_status_flags field of the
 SEQUENCE operation. The client must re-establish the callback
 channel to receive the status of the COPY operation. Prolonged loss
 of the callback channel could result in the server dropping the COPY
 operation state and invalidating the copy stateid.

 If the client supports the COPY operation, the client is REQUIRED to
 support the CB_COPY operation.

 The CB_COPY operation may fail for the following reasons (this is a
 partial list):

 NFS4ERR_NOTSUPP: The copy offload operation is not supported by the
 NFS client receiving this request.

4.8. Copy Offload Stateids

 A server may perform a copy offload operation asynchronously. An
 asynchronous copy is tracked using a copy offload stateid. Copy
 offload stateids are included in the COPY, COPY_ABORT, COPY_STATUS,
 and CB_COPY operations.

Section 8.2.4 of [RFC5661] specifies that stateids are valid until
 either (A) the client or server restart or (B) the client returns the
 resource.

 A copy offload stateid will be valid until either (A) the client or
 server restart or (B) the client returns the resource by issuing a
 COPY_ABORT operation or the client replies to a CB_COPY operation.

 A copy offload stateid's seqid MUST NOT be 0 (zero). In the context
 of a copy offload operation, it is ambiguous to indicate the most
 recent copy offload operation using a stateid with seqid of 0 (zero).
 Therefore a copy offload stateid with seqid of 0 (zero) MUST be
 considered invalid.

https://datatracker.ietf.org/doc/html/rfc5661#section-8.2.4

Lentini, et al. Expires April 24, 2011 [Page 26]

Internet-Draft NFS Server-side Copy October 2010

5. Security Considerations

 The security considerations pertaining to NFSv4 [RFC3530] apply to
 this document.

 The standard security mechanisms provide by NFSv4 [RFC3530] may be
 used to secure the protocol described in this document.

 NFSv4 clients and servers supporting the the inter-server copy
 operations described in this document are REQUIRED to implement
 [RPCSEC_GSSv3], including the RPCSEC_GSSv3 privileges copy_from_auth
 and copy_to_auth. If the server-to-server copy protocol is ONC RPC
 based, the servers are also REQUIRED to implement the RPCSEC_GSSv3
 privilege copy_confirm_auth. These requirements to implement are not
 requirements to use. NFSv4 clients and servers are RECOMMENDED to
 use [RPCSEC_GSSv3] to secure server-side copy operations.

5.1. Inter-Server Copy Security

5.1.1. Requirements for Secure Inter-Server Copy

 Inter-server copy is driven by several requirements:

 o The specification MUST NOT mandate an inter-server copy protocol.
 There are many ways to copy data. Some will be more optimal than
 others depending on the identities of the source server and
 destination server. For example the source and destination
 servers might be two nodes sharing a common file system format for
 the source and destination file systems. Thus the source and
 destination are in an ideal position to efficiently render the
 image of the source file to the destination file by replicating
 the file system formats at the block level. In other cases, the
 source and destination might be two nodes sharing a common storage
 area network, and thus there is no need to copy any data at all,
 and instead ownership of the file and its contents simply gets re-
 assigned to the destination.

 o The specification MUST provide guidance for using NFSv4.x as a
 copy protocol. For those source and destination servers willing
 to use NFSv4.x there are specific security considerations that
 this specification can and does address.

 o The specification MUST NOT mandate pre-configuration between the
 source and destination server. Requiring that the source and
 destination first have a "copying relationship" increases the
 administrative burden. However the specification MUST NOT
 preclude implementations that require pre-configuration.

https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530

Lentini, et al. Expires April 24, 2011 [Page 27]

Internet-Draft NFS Server-side Copy October 2010

 o The specification MUST NOT mandate a trust relationship between
 the source and destination server. The NFSv4 security model
 requires mutual authentication between a principal on an NFS
 client and a principal on an NFS server. This model MUST continue
 with the introduction of COPY.

5.1.2. Inter-Server Copy with RPCSEC_GSSv3

 When the client sends a COPY_NOTIFY to the source server to expect
 the destination to attempt to copy data from the source server, it is
 expected that this copy is being done on behalf of the principal
 (called the "user principal") that sent the RPC request that encloses
 the COMPOUND procedure that contains the COPY_NOTIFY operation. The
 user principal is identified by the RPC credentials. A mechanism
 that allows the user principal to authorize the destination server to
 perform the copy in a manner that lets the source server properly
 authenticate the destination's copy, and without allowing the
 destination to exceed its authorization is necessary.

 An approach that sends delegated credentials of the client's user
 principal to the destination server is not used for the following
 reasons. If the client's user delegated its credentials, the
 destination would authenticate as the user principal. If the
 destination were using the NFSv4 protocol to perform the copy, then
 the source server would authenticate the destination server as the
 user principal, and the file copy would securely proceed. However,
 this approach would allow the destination server to copy other files.
 The user principal would have to trust the destination server to not
 do so. This is counter to the requirements, and therefore is not
 considered. Instead an approach using RPCSEC_GSSv3 [RPCSEC_GSSv3]
 privileges is proposed.

 One of the stated applications of the proposed RPCSEC_GSSv3 protocol
 is compound client host and user authentication [+ privilege
 assertion]. For inter-server file copy, we require compound NFS
 server host and user authentication [+ privilege assertion]. The
 distinction between the two is one without meaning.

 RPCSEC_GSSv3 introduces the notion of privileges. We define three
 privileges:

 copy_from_auth: A user principal is authorizing a source principal
 ("nfs@<source>") to allow a destination principal ("nfs@
 <destination>") to copy a file from the source to the destination.
 This privilege is established on the source server before the user
 principal sends a COPY_NOTIFY operation to the source server.

Lentini, et al. Expires April 24, 2011 [Page 28]

Internet-Draft NFS Server-side Copy October 2010

 typedef string secret4<>;

 struct copy_from_auth_priv {
 secret4 cfap_shared_secret;
 netloc4 cfap_destination;
 /* the NFSv4 user name that the user principal maps to */
 utf8str_mixed cfap_username;
 /* equal to seq_num of rpc_gss_cred_vers_3_t */
 unsigned int cfap_seq_num;
 };

 cap_shared_secret is a secret value the user principal generates.

 copy_to_auth: A user principal is authorizing a destination
 principal ("nfs@<destination>") to allow it to copy a file from
 the source to the destination. This privilege is established on
 the destination server before the user principal sends a COPY
 operation to the destination server.

 struct copy_to_auth_priv {
 /* equal to cfap_shared_secret */
 secret4 ctap_shared_secret;
 netloc4 ctap_source;
 /* the NFSv4 user name that the user principal maps to */
 utf8str_mixed ctap_username;
 /* equal to seq_num of rpc_gss_cred_vers_3_t */
 unsigned int ctap_seq_num;
 };

 ctap_shared_secret is a secret value the user principal generated
 and was used to establish the copy_from_auth privilege with the
 source principal.

 copy_confirm_auth: A destination principal is confirming with the
 source principal that it is authorized to copy data from the
 source on behalf of the user principal. When the inter-server
 copy protocol is NFSv4, or for that matter, any protocol capable
 of being secured via RPCSEC_GSSv3 (i.e. any ONC RPC protocol),
 this privilege is established before the file is copied from the
 source to the destination.

Lentini, et al. Expires April 24, 2011 [Page 29]

Internet-Draft NFS Server-side Copy October 2010

 struct copy_confirm_auth_priv {
 /* equal to GSS_GetMIC() of cfap_shared_secret */
 opaque ccap_shared_secret_mic<>;
 /* the NFSv4 user name that the user principal maps to */
 utf8str_mixed ccap_username;
 /* equal to seq_num of rpc_gss_cred_vers_3_t */
 unsigned int ccap_seq_num;
 };

5.1.2.1. Establishing a Security Context

 When the user principal wants to COPY a file between two servers, if
 it has not established copy_from_auth and copy_to_auth privileges on
 the servers, it establishes them:

 o The user principal generates a secret it will share with the two
 servers. This shared secret will be placed in the
 cfap_shared_secret and ctap_shared_secret fields of the
 appropriate privilege data types, copy_from_auth_priv and
 copy_to_auth_priv.

 o An instance of copy_from_auth_priv is filled in with the shared
 secret, the destination server, and the NFSv4 user id of the user
 principal. It will be sent with an RPCSEC_GSS3_CREATE procedure,
 and so cfap_seq_num is set to the seq_num of the credential of the
 RPCSEC_GSS3_CREATE procedure. Because cfap_shared_secret is a
 secret, after XDR encoding copy_from_auth_priv, GSS_Wrap() (with
 privacy) is invoked on copy_from_auth_priv. The
 RPCSEC_GSS3_CREATE procedure's arguments are:

 struct {
 rpc_gss3_gss_binding *compound_binding;
 rpc_gss3_chan_binding *chan_binding_mic;
 rpc_gss3_assertion assertions<>;
 rpc_gss3_extension extensions<>;
 } rpc_gss3_create_args;

 The string "copy_from_auth" is placed in assertions[0].privs. The
 output of GSS_Wrap() is placed in extensions[0].data. The field
 extensions[0].critical is set to TRUE. The source server calls
 GSS_Unwrap() on the privilege, and verifies that the seq_num
 matches the credential. It then verifies that the NFSv4 user id
 being asserted matches the source server's mapping of the user
 principal. If it does, the privilege is established on the source
 server as: <"copy_from_auth", user id, destination>. The
 successful reply to RPCSEC_GSS3_CREATE has:

Lentini, et al. Expires April 24, 2011 [Page 30]

Internet-Draft NFS Server-side Copy October 2010

 struct {
 opaque handle<>;
 rpc_gss3_chan_binding *chan_binding_mic;
 rpc_gss3_assertion granted_assertions<>;
 rpc_gss3_assertion server_assertions<>;
 rpc_gss3_extension extensions<>;
 } rpc_gss3_create_res;

 The field "handle" is the RPCSEC_GSSv3 handle that the client will
 use on COPY_NOTIFY requests involving the source and destination
 server. granted_assertions[0].privs will be equal to
 "copy_from_auth". The server will return a GSS_Wrap() of
 copy_to_auth_priv.

 o An instance of copy_to_auth_priv is filled in with the shared
 secret, the source server, and the NFSv4 user id. It will be sent
 with an RPCSEC_GSS3_CREATE procedure, and so ctap_seq_num is set
 to the seq_num of the credential of the RPCSEC_GSS3_CREATE
 procedure. Because ctap_shared_secret is a secret, after XDR
 encoding copy_to_auth_priv, GSS_Wrap() is invoked on
 copy_to_auth_priv. The RPCSEC_GSS3_CREATE procedure's arguments
 are:

 struct {
 rpc_gss3_gss_binding *compound_binding;
 rpc_gss3_chan_binding *chan_binding_mic;
 rpc_gss3_assertion assertions<>;
 rpc_gss3_extension extensions<>;
 } rpc_gss3_create_args;

 The string "copy_to_auth" is placed in assertions[0].privs. The
 output of GSS_Wrap() is placed in extensions[0].data. The field
 extensions[0].critical is set to TRUE. After unwrapping,
 verifying the seq_num, and the user principal to NFSv4 user ID
 mapping, the destination establishes a privilege of
 <"copy_to_auth", user id, source>. The successful reply to
 RPCSEC_GSS3_CREATE has:

 struct {
 opaque handle<>;
 rpc_gss3_chan_binding *chan_binding_mic;
 rpc_gss3_assertion granted_assertions<>;
 rpc_gss3_assertion server_assertions<>;
 rpc_gss3_extension extensions<>;

Lentini, et al. Expires April 24, 2011 [Page 31]

Internet-Draft NFS Server-side Copy October 2010

 } rpc_gss3_create_res;

 The field "handle" is the RPCSEC_GSSv3 handle that the client will
 use on COPY requests involving the source and destination server.
 The field granted_assertions[0].privs will be equal to
 "copy_to_auth". The server will return a GSS_Wrap() of
 copy_to_auth_priv.

5.1.2.2. Starting a Secure Inter-Server Copy

 When the client sends a COPY_NOTIFY request to the source server, it
 uses the privileged "copy_from_auth" RPCSEC_GSSv3 handle.
 cna_destination_server in COPY_NOTIFY MUST be the same as the name of
 the destination server specified in copy_from_auth_priv. Otherwise,
 COPY_NOTIFY will fail with NFS4ERR_ACCESS. The source server
 verifies that the privilege <"copy_from_auth", user id, destination>
 exists, and annotates it with the source filehandle, if the user
 principal has read access to the source file, and if administrative
 policies give the user principal and the NFS client read access to
 the source file (i.e. if the ACCESS operation would grant read
 access). Otherwise, COPY_NOTIFY will fail with NFS4ERR_ACCESS.

 When the client sends a COPY request to the destination server, it
 uses the privileged "copy_to_auth" RPCSEC_GSSv3 handle.
 ca_source_server in COPY MUST be the same as the name of the source
 server specified in copy_to_auth_priv. Otherwise, COPY will fail
 with NFS4ERR_ACCESS. The destination server verifies that the
 privilege <"copy_to_auth", user id, source> exists, and annotates it
 with the source and destination filehandles. If the client has
 failed to establish the "copy_to_auth" policy it will reject the
 request with NFS4ERR_PARTNER_NO_AUTH.

 If the client sends a COPY_REVOKE to the source server to rescind the
 destination server's copy privilege, it uses the privileged
 "copy_from_auth" RPCSEC_GSSv3 handle and the cra_destination_server
 in COPY_REVOKE MUST be the same as the name of the destination server
 specified in copy_from_auth_priv. The source server will then delete
 the <"copy_from_auth", user id, destination> privilege and fail any
 subsequent copy requests sent under the auspices of this privilege
 from the destination server.

5.1.2.3. Securing ONC RPC Server-to-Server Copy Protocols

 After a destination server has a "copy_to_auth" privilege established
 on it, and it receives a COPY request, if it knows it will use an ONC
 RPC protocol to copy data, it will establish a "copy_confirm_auth"
 privilege on the source server, using nfs@<destination> as the

Lentini, et al. Expires April 24, 2011 [Page 32]

Internet-Draft NFS Server-side Copy October 2010

 initiator principal, and nfs@<source> as the target principal.

 The value of the field ccap_shared_secret_mic is a GSS_VerifyMIC() of
 the shared secret passed in the copy_to_auth privilege. The field
 ccap_username is the mapping of the user principal to an NFSv4 user
 name ("user"@"domain" form), and MUST be the same as ctap_username
 and cfap_username. The field ccap_seq_num is the seq_num of the
 RPCSEC_GSSv3 credential used for the RPCSEC_GSS3_CREATE procedure the
 destination will send to the source server to establish the
 privilege.

 The source server verifies the privilege, and establishes a
 <"copy_confirm_auth", user id, destination> privilege. If the source
 server fails to verify the privilege, the COPY operation will be
 rejected with NFS4ERR_PARTNER_NO_AUTH. All subsequent ONC RPC
 requests sent from the destination to copy data from the source to
 the destination will use the RPCSEC_GSSv3 handle returned by the
 source's RPCSEC_GSS3_CREATE response.

 Note that the use of the "copy_confirm_auth" privilege accomplishes
 the following:

 o if a protocol like NFS is being used, with export policies, export
 policies can be overridden in case the destination server as-an-
 NFS-client is not authorized

 o manual configuration to allow a copy relationship between the
 source and destination is not needed.

 If the attempt to establish a "copy_confirm_auth" privilege fails,
 then when the user principal sends a COPY request to destination, the
 destination server will reject it with NFS4ERR_PARTNER_NO_AUTH.

5.1.2.4. Securing Non ONC RPC Server-to-Server Copy Protocols

 If the destination won't be using ONC RPC to copy the data, then the
 source and destination are using an unspecified copy protocol. The
 destination could use the shared secret and the NFSv4 user id to
 prove to the source server that the user principal has authorized the
 copy.

 For protocols that authenticate user names with passwords (e.g. HTTP
 [RFC2616] and FTP [RFC0959]), the nfsv4 user id could be used as the
 user name, and an ASCII hexadecimal representation of the
 RPCSEC_GSSv3 shared secret could be used as the user password or as
 input into non-password authentication methods like CHAP [RFC1994].

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc0959
https://datatracker.ietf.org/doc/html/rfc1994

Lentini, et al. Expires April 24, 2011 [Page 33]

Internet-Draft NFS Server-side Copy October 2010

5.1.3. Inter-Server Copy via ONC RPC but without RPCSEC_GSSv3

 ONC RPC security flavors other than RPCSEC_GSSv3 MAY be used with the
 server-side copy offload operations described in this document. In
 particular, host-based ONC RPC security flavors such as AUTH_NONE and
 AUTH_SYS MAY be used. If a host-based security flavor is used, a
 minimal level of protection for the server-to-server copy protocol is
 possible.

 In the absence of strong security mechanisms such as RPCSEC_GSSv3,
 the challenge is how the source server and destination server
 identify themselves to each other, especially in the presence of
 multi-homed source and destination servers. In a multi-homed
 environment, the destination server might not contact the source
 server from the same network address specified by the client in the
 COPY_NOTIFY. This can be overcome using the procedure described
 below.

 When the client sends the source server the COPY_NOTIFY operation,
 the source server may reply to the client with a list of target
 addresses, names, and/or URLs and assign them to the unique triple:
 <source fh, user ID, destination address Y>. If the destination uses
 one of these target netlocs to contact the source server, the source
 server will be able to uniquely identify the destination server, even
 if the destination server does not connect from the address specified
 by the client in COPY_NOTIFY.

 For example, suppose the network topology is as shown in Figure 3.
 If the source filehandle is 0x12345, the source server may respond to
 a COPY_NOTIFY for destination 10.11.78.56 with the URLs:

 nfs://10.11.78.18//_COPY/10.11.78.56/_FH/0x12345

 nfs://192.168.33.18//_COPY/10.11.78.56/_FH/0x12345

 The client will then send these URLs to the destination server in the
 COPY operation. Suppose that the 192.168.33.0/24 network is a high
 speed network and the destination server decides to transfer the file
 over this network. If the destination contacts the source server
 from 192.168.33.56 over this network using NFSv4.1, it does the
 following:

 COMPOUND { PUTROOTFH, LOOKUP "_COPY" ; LOOKUP "10.11.78.56"; LOOKUP
 "_FH" ; OPEN "0x12345" ; GETFH }

 The source server will therefore know that these NFSv4.1 operations
 are being issued by the destination server identified in the
 COPY_NOTIFY.

Lentini, et al. Expires April 24, 2011 [Page 34]

Internet-Draft NFS Server-side Copy October 2010

5.1.4. Inter-Server Copy without ONC RPC and RPCSEC_GSSv3

 The same techniques as Section 5.1.3, using unique URLs for each
 destination server, can be used for other protocols (e.g. HTTP
 [RFC2616] and FTP [RFC0959]) as well.

6. IANA Considerations

 This document has no actions for IANA.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3530] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "Network File System
 (NFS) version 4 Protocol", RFC 3530, April 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File
 System (NFS) Version 4 Minor Version 1 Protocol",

RFC 5661, January 2010.

 [RPCSEC_GSSv3]
 Williams, N., "Remote Procedure Call (RPC) Security
 Version 3", draft-williams-rpcsecgssv3 (work in progress),
 2008.

7.2. Informational References

 [FEDFS-ADMIN]
 Lentini, J., Everhart, C., Ellard, D., Tewari, R., and M.
 Naik, "Administration Protocol for Federated Filesystems",

draft-ietf-nfsv4-federated-fs-admin (Work In Progress),
 2010.

 [FEDFS-NSDB]
 Lentini, J., Everhart, C., Ellard, D., Tewari, R., and M.
 Naik, "NSDB Protocol for Federated Filesystems",

draft-ietf-nfsv4-federated-fs-protocol (Work In Progress),

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc0959
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/draft-williams-rpcsecgssv3
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-federated-fs-admin
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-federated-fs-protocol

Lentini, et al. Expires April 24, 2011 [Page 35]

Internet-Draft NFS Server-side Copy October 2010

 2010.

 [RFC0959] Postel, J. and J. Reynolds, "File Transfer Protocol",
 STD 9, RFC 959, October 1985.

 [RFC1994] Simpson, W., "PPP Challenge Handshake Authentication
 Protocol (CHAP)", RFC 1994, August 1996.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [SPACE-RESERVE]
 Eisler, M., Kenchammana, D., Lentini, J., Shankararao, M.,
 and R. Iyer, "NFS space reservation operations",

draft-iyer-nfsv4-space-reservation-ops (work in progress),
 2010.

Appendix A. Acknowledgments

 Tom Talpey co-authored an unpublished version of this document. We
 thank Tom for his contributions, especially with regards to the
 asynchronous completion callback mechanism.

 This document was reviewed by a number of individuals. We would like
 to thank Pranoop Erasani, Tom Haynes, Arthur Lent, Trond Myklebust,
 Dave Noveck, Theresa Lingutla-Raj, Manjunath Shankararao, Satyam
 Vaghani, and Nico Williams for their input and advice.

Authors' Addresses

 James Lentini
 NetApp
 1601 Trapelo Rd, Suite 16
 Waltham, MA 02451
 USA

 Phone: +1 781-768-5359
 Email: jlentini@netapp.com

https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc1994
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/draft-iyer-nfsv4-space-reservation-ops

Lentini, et al. Expires April 24, 2011 [Page 36]

Internet-Draft NFS Server-side Copy October 2010

 Mike Eisler
 NetApp
 5765 Chase Point Circle
 Colorado Springs, CO 80919
 USA

 Phone: +1 719-599-9026
 Email: mike@eisler.com
 URI: http://www.eisler.com

 Deepak Kenchammana
 NetApp
 475 East Java Drive
 Sunnyvale, CA 94089
 USA

 Phone: +1 408-822-4765
 Email: kencham@netapp.com

 Anshul Madan
 Carnegie Mellon University
 School of Computer Science
 5000 Forbes Avenue
 Pittsburgh, PA 15213
 USA

 Email: anshulmadan@cmu.edu

 Rahul Iyer
 655 S Fair Oaks Ave
 Apt #I-314
 Sunnyvale, CA 94086
 USA

 Email: rahulair@yahoo.com

http://www.eisler.com

Lentini, et al. Expires April 24, 2011 [Page 37]

