
Workgroup: Network Working Group

Published: 8 September 2022

Intended Status: Informational

Expires: 12 March 2023

Authors: J. Levine

Taughannock Networks

Publishing Organization Boundaries in the DNS

Abstract

The organization that manages a subtree in the DNS is often

different from the one that manages the tree above it. We describe

an architecture to publish in the DNS the boundaries between

organizations that can be adapted to various policy models and can

be queried with a small number of DNS lookups.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 March 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Design Issues

2.1. Non-goals

3. TXT record format

4. Lookup Process

5. DNS Records

6. Application scenarios

6.1. DMARC

6.2. Cookies

6.3. SSL Certificates

7. Discussion

8. ABNF syntax of bound records

9. Security Considerations

10. Variations

11. IANA considerations

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Implementations

Appendix B. Change Log

Author's Address

1. Introduction

Often, the organization that manages a subtree in the DNS is

different from the one that manages the tree above it. Many

applications use information about such boundaries to implement

security policies. For example, web browsers use them to limit the

names where HTTP cookies can be set, and Secure Socket Layer (SSL)

certificate services use them to determine the party responsible for

the domain in a signing request. Mail security applications such as

Domain-based Messaging Authentication, Reporting and Conformance

(DMARC) use them to locate an organization's policy records in the

DNS. This specification is intended to provide boundaries usable for

DMARC, and possibly for other applications.

[[Please direct discussion of this draft to the dbound mailing list

at dbound@ietf.org.]]

2. Design Issues

Organization boundaries can be assigned on what one could call an

opt-in or opt-out basis. "Opt-in" means that two names are only

managed by the same organization if both actively assert that they

are related. "Opt-out" means that if there is any boundary

information at all for a DNS subtree, each name is assumed to be

¶

¶

under the same management as its parent unless there is a boundary

assertion to the contrary. This design describes an opt-out model.

Within the opt-out model, this design can adapt to a variety of

scenarios:

Policies can be published by the domains themselves, or by a

third party. In the former case, each domain might assert its own

boundary policies. In the latter case, the third party makes the

assertions, which may or may not agree with what the domains

themselves would want.

Multiple levels of delegation may be implemented, which is

different from irregular boundaries. For example, "us", "ny.us",

and "k12.ny.us" are irregular boundaries, because they're all

handled by the US top-level domain registry operator.

CentralNIC's "uk.com" would be a second level of delegation below

Verisign's com.

Different sets of boundary rules can be published for different

applications. For example, the boundaries for SSL certificates

might be different from the boundaries for e-mail policies, or

for HTTP cookie setting policies.

In the lookup process below, the boundary point data is stored in

the DNS tree in a TXT record. The boundary is considered to be

directly below the name that the process returns, similarly to the

names in the PSL [PSL]. If the process returned "abc.example", then

"foo.abc.example" and "bar.abc.example" are separated by the

boundary, but "foo.abc.example" and "bar.foo.abc.example" are not.

Each domain can publish its own policies within its own domain name

space, or a separate authority can publish a global set of policies

in a separate name space.

2.1. Non-goals

This specification is intended only to describe vertical

relationships between domain names and their ancestors or

descendants. For example, if there is a boundary between "com" and

"example.com", but no boundary between "example.com" and

"www.example.com", that indicates that "com" is one organization,

while "example.com" and "www.example.com" are a different

organization.

While it may well be useful to indicate that "example.com" and

"example.net" are the same organization, this specification provides

no way to describe horizontal or cross-tree relationships.

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

This specification deliberately says nothing about zone cuts or zone

boundaries. While some zone cuts may match organization boundaries,

they often do not. It is quite common to have multiple zones within

an organization for administrative convenience, or for a hosting

provider to put the names of many customers' hosts in a single zone.

3. TXT record format

The bound TXT record contains a text string with four fields

separated by a single space: a tag, two keyword fields and a domain

name.

The "bound=1" tag is to prevent confusion when a domain publishes a

wildcard such as *.example.com that could match a _bound name.

Records that do not start with the correct tag or that do not have

four space separated fields are ignored.

Each keyword field is a series of comma separated keywords. If the

field would otherwise be empty, it is a single dot. The keywords are

listed in IANA registries (Section 11).

The first keyword field expresses policy options. It can include

NOLOWER which means that no lower level boundaries can exist below

this one, and NOBOUND which means that this name is not a boundary

for this application.

The second keyword field identifies the application(s) to which this

boundary applies. The keywords DMARC, COOKIE, and CERT mean that the

applications are DMARC, HTTP cookies, and SSL certificate signing

respectively; a dot means it is a default for any applications not

otherwise specified.

The domain name is an absolute domain name, without the final dot.

4. Lookup Process

In general, the lookup process takes as input a domain name and

application. It returns the name of the boundary node in the DNS.

This may be the domain itself or a parent. If there is no policy for

the domain the lookup fails; there are no default boundaries.

(Applications may apply defaults of their own, but that is beyond

the scope of this specification.)

Names of boundary information records use the tag "_bound" which is

intended to be unique.

For the first lookup, the client extracts the top level component

(i.e., the rightmost label, as "label" is defined in Section 3 of

¶

 *._bound.k12.ny.us IN TXT "bound=1 . . k12.ny.us"¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC1034]) of the domain name from the subcomponents, if any, and

inserts the prefix in front of that component, after other

components if any. For example, if the domain to be checked is

"example.com" or "www.example.com", the client issues a DNS query

for "example._bound.com" or "www.example._bound.com". If the domain

is a dotless one such as "example", the client looks up

"_bound.example".

Then the client does a DNS lookup of TXT records at that name, which

will return zero or more TXT records. A failure such as NXDOMAIN is

considered to return zero records. A lookup can return multiple

records if different applications have different boundaries or

policy options. The lookup process discards any records that do not

start with "bound=1" or contain less than four strings.

If a relevant policy record is returned, and the record does not

contain the NOBOUND keyword, the domain name in the record is the

policy boundary. A policy record is relevant if it lists the desired

application, or it is a default policy and there is no record with

the application's keyword. For example, a check for a boundary above

"example.com" would be issued at "example._bound.com", and the

expected TXT record could be "bound=1 . . com".

If there are no boundaries at all in a TLD, the policy record

contains "bound=1 . . ." indicating the root. For example, if all

subdomains of the "example" top-level domain (TLD) are under the

same management as the TLD itself, checks for "_bound.example" or

"www._bound.example" would return "bound=1 . . .".

If the relevant record has the NOLOWER keyword set, the process

stops. Otherwise, the client inserts the prefix tag into the name

just below (i.e., to the left of) the name at the largest matching

boundary indicated in the lookup result, and repeats the lookup. For

example:

When evaluating www.foo.example.com, the first query would be to

www.foo.example._bound.com. If the reply to this is "bound=1 . .

com", then the second query would be to

www.foo._bound.example.com.

When evaluating www.example.ny.us, the first query would be to

www.example.ny._bound.us. If the reply to this is "bound=1" . .

us", the next lookup would be to www.example._bound.ny.us. If it

returned "bound=1 . . ny.us", the third lookup would be to

www._bound.example.ny.us.

This process repeats until a DNS lookup returns a relevant record

with the NOLOWER keyword, or a lookup returns no relevant records,

¶

¶

¶

¶

¶

*

¶

*

¶

at which point the boundary is the domain name in the last retrieved

relevant record.

If an otherwise relevant record has the NOBOUND keyword, the process

continues if the NOLOWER keyword is not present, but there is no

boundary at the name with the NOBOUND keyword. The NOBOUND keyword

enables a name in the hierarchy to be a boundary for some

applications but not for others. A record might have NOLOWER,NOBOUND

if it is at a name that is a boundary for some applications but not

others, and has no boundaries below it.

5. DNS Records

The publishing entity uses wildcards and prefixed names that

parallel the regular names under a TLD to cover the domain's name

space.

If there is a boundary at a given name, an entry in the TLD record

covers the names below it. For example, if there is a boundary at

".TEST", a suitable record would be:

If the boundary is above the TEST domain, i.e., TEST is under the

same management as FOO.TEST, the record would indicate no

boundaries, and an additional non-wildcard record is needed to cover

TEST itself:

In domains with irregular policy boundaries, multiple records in the

record describe the boundary points. For example, in the US (United

States) TLD, there are legacy domains under XX.US where XX is a two-

letter state abbreviation, and there are some further points such as

"k12" for schools within a state, with a boundary such as such as

"k12.ny.us". A suitable set of of records can cover this structure.

The closest encloser rule in RFC 4592 [RFC4592] makes the wildcards

match the appropriate names.

In the usual case that only the boundary closest to the looked up

domain name is of interest, the publishing entity can publish

"shadow" wildcard records for lower level boundaries that are used

rather than the higher level records for names below those

boundaries:

¶

¶

¶

¶

 *._bound.test IN TXT "bound=1 . . test"¶

¶

 *._bound.test IN TXT "bound=1 . . ."

 _bound.test IN TXT "bound=1 . . ."

¶

¶

*._bound.us IN TXT "bound=1 . . us"

*._bound.ny.us IN TXT "bound=1 . . ny.us"

*._bound.k12.ny.us IN TXT "bound=1 . . k12.ny.us"

¶

¶

Each shadow record also needs to be matched by a similar record

without the wildcard, since the non-wildcard name would otherwise be

an empty non-terminal which wildcard lookups don't match, so a

lookup for that name would return nothing at all.

For any set of policy boundaries in a tree of DNS names, a suitable

set of policy records can describe the boundaries, so a client can

find the boundary for any name in the tree with a single policy

lookup per level of delegation.

Since the delegation structure is unlikely to change frequently,

long time-to-live (TTL) values in the TXT records are appropriate.

If different applications have different boundaries or policy

options, the policy records for each application are put at the

appropriate names for the boundaries. Due to the way DNS wildcards

work, each name with any policy records MUST have records for all

policies, with the NOBOUND bit for policies for which the name is

not in fact a boundary. If this is the lowest boundary in the DNS

subtree, all of the records have NOLOWER. In the example below,

there is a boundary at abc.example.com for DMARC but not for any

other application.

6. Application scenarios

Here are some ways that DMARC and potentially other applications can

use BOUND data.

6.1. DMARC

If a DMARC lookup for the domain in a message's From: header fails,

the client would do a boundary check for the domain name using the

"DMARC" application. The organizational domain is the immediate

subdomain of the boundary domain. (Note that the boundary will

always be the one looked up or an ancestor.)

6.2. Cookies

If an http request attempts to set a cookie for a domain other than

the request's own domain, the client would do boundary check for a

"COOKIE" application for both the request's domain and the cookie

*.ny._bound.us IN TXT "bound=1 . . ny.us"

ny._bound.us IN TXT "bound=1 . . ny.us"

*.k12.ny._bound.us IN TXT "bound=1 . . k12.ny.us"

k12.ny._bound.us IN TXT "bound=1 . . k12.ny.us"

¶

¶

¶

¶

¶

*._bound.abc.example.com IN TXT "bound=1 . DMARC abc.example.com"

*._bound.abc.example.com IN TXT "bound=1 NOBOUND . abc.example.com"

¶

¶

¶

domain. If they are not separated by a boundary, the request is

allowed.

6.3. SSL Certificates

The client would do a boundary check for the domain name in a normal

certificate, or the name after the "*." in a wildcard certificate

for a "CERT" application. If the boundary is above the name, the

name is allowed.

7. Discussion

The total number of DNS lookups is no more than the number of levels

of boundary delegation, plus one if the last boundary doesn't have

the NOLOWER keyword. That is unlikely to be more than 2 or 3 in

realistic scenarios, and depends on the number of boundaries, not

the number of components in the names that are looked up. With

shadow records, it will typically be one lookup that matches a

shadow record and a second to check below it that gets NXDOMAIN if

the shadow record doesn't contain NOLOWER.

Some domains have very irregular boundaries. This may require a

relatively large number of records to describe all the boundaries,

but it doesn't seem like a number that would challenge modern DNS

servers, or need unduly complex scripts to create them. A mechanical

translation of the boundary information the Mozilla PSL as of August

2022 creates about 17,000 records.

The wildcard lookup means that each time an application looks up the

boundaries for a hostname, the lookup results create DNS cache

entries that will not be reused other than for subsequent lookups

for the identical hostname. This might cause cache churn, but it

seems at worst no more than we already tolerate from DNSBL lookups.

If the boundary zone is signed, DNS caches should be able to

syntheize some answers from cached wildcards.

8. ABNF syntax of bound records

The syntax of bound records is something like this:

¶

¶

¶

¶

¶

¶

9. Security Considerations

The purpose of publishing organization boundaries is to provide

advice to third parties that wish to know whether two names are

managed by the same organization, allowing those names to be treated

"as the same" in some sense. Clients that rely on published

boundaries are outsourcing some part of their own security policy to

the publisher, so their own security depends on the publisher's

boundaries being accurate.

Although in some sense domains are always in control of their

subdomains, there are many situations in which parent domains are

not expected to influence subdomains. For example, second level

domains in global TLDs (gTLDs) operated by registries with contracts

with the Internet Corporation for Assigned Names and Numers (ICANN)

Since there is no technical bar to a parent publishing records that

shadow part or all of the boundary record namespace for delegated

subdomains, correct operation depends on the parent and subdomains

agreeing about who publishes what.

The DNS is subject to a variety of attacks. DBOUND records are

subject to the same ones as any other bit of the DNS, and the same

countermeasures, such as using DNSSEC, apply.

10. Variations

Some boundary schemes distinguish between public and private

subtrees. If that were useful, a PUBLIC flag keyword could indicate

that the subtrees below a boundary were public rather than the

default of private.

; the DNS record contains one string with space separated fields

BOUND = BTAG " " BFLAGS " " BKWDS " " DOMAIN

BTAG = %s"bound=1"

BFLAGS = (BFLAG *("," BFLAG)) / "."

BFLAG = s%"NOLOWER" / s%"NOBOUND" / MISCTOK

BKWDS = (BKWD *("," BKWD)) / "."

BKWD = s%"DMARC" / s%"COOKIE" / s%"CERT" / MISCTOK

; miscellaneous tokens for future expansion

MISCTOK = `1*ALPHA

¶

¶

¶

¶

¶

Since nothing but the boundary records should be published at names

with _bound components, one could get the same effect with a new

DBOUND RRTYPE, which would avoid the problem of confusion with other

TXT wildcards. Its syntax would be similar to a TXT record, a text

string, but without the initial tag field. They would still need to

be in a separate subtree identified by _bound labels so that the

wildcard name coverage would work, so the usual benefits of a unique

RRTYPE would not apply.

If third parties want to publish boundary information, they can do

it in their own subtree of the DNS. If the boundary information is

published by a third party, the client appends the base name of the

third party's domain to the name to be looked up. For example, if

policy.example were publishing boundary information about

boundaries, the records for the test domain described above would

be:

The PSL has a little-used wildcard feature where the first label in

the name may be "*" to indicate that the boundary is at any name one

label deeper than the rest of the name. That is, the asterisk

matches a single label, not the usual DNS sense of matching any

string of labels.

This feature could be added by allowing a similar * in the domain

field of boundary records. For example, if the domain name in a

boundary record is "*.example", the client replaces the * with the

corresponding element of the domain being matched. If the domain

were "www.test.example", the boundary record domain would be treated

as though it were "test.example".

11. IANA considerations

IANA is requested to add this entry to the "Underscored and Globally

Scoped DNS Node Names" Registry.

RR Type _NODE NAME Reference

TXT _bound (this document)

Table 1

This document requests that IANA create a registry of dbound Flag

keywords. Its registration policy is IETF Review. Its initial

contents are as follows. [[NOTE: new flags are likely to change the

lookup algorithm]]

¶

¶

 *._bound.test.policy.exaple IN TXT "bound=1 . . ."

 _bound.test.policy.example IN TXT "bound=1 . . ."

¶

¶

¶

¶

¶

[RFC1034]

[RFC4592]

[PSL]

Keyword Reference Description

NOLOWER (this document) No lower level policies

NOBOUND (this document) No boundary at this name

Table 2: BOUND Flag Keywords Initial Values

This document requests that IANA create a registry of BOUND

Application keywords. Its registration policy is First Come First

Served. Its initial contents are as follows. [[Note: New

applications don't affect the lookup process, and shouldn't affect

existing applications.]]

Value Reference Description

.

(Any)

(this

document)

Any application without a specific boundary

record

DMARC
(this

document)
DMARC organizational domains

COOKIE
(this

document)
HTTP cookies

CERT
(this

document)
Owner of certificate requests

Table 3: BOUND Applications Initial Values

12. References

12.1. Normative References

Mockapetris, P.V., "Domain names - concepts and

facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034,

November 1987, <https://www.rfc-editor.org/info/rfc1034>.

Lewis, E., "The Role of Wildcards in the Domain Name

System", RFC 4592, DOI 10.17487/RFC4592, July 2006,

<https://www.rfc-editor.org/info/rfc4592>.

12.2. Informative References

Mozilla Foundation, "Public Suffix List", <https://

publicsuffix.org/>.

Appendix A. Implementations

A sample python implementation is available at https://github.com/

jrlevine/bound. It includes a library routine to find the boundaries

for a domain name, and a script to translate the Mozilla PSL [PSL]

into the DNS format. For testing, a copy of the translated PSL is

online at bound.services.net.

¶

¶

https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc4592
https://publicsuffix.org/
https://publicsuffix.org/

06 to -07

05 to -06

04 to -05

03 to -04

02 to -03

01 to -02

-00 to -01

non-WG to -00

Appendix B. Change Log

NOTE TO RFC EDITOR: This section may be removed upon publication of

this document as an RFC.

Put the four fields into one TXT string. Move third party

publishing and the PSL * stuff to a variation. Add few examples.

Editorial changes, add non-goals

Editorial changes, add implementation appendix

Make TXT fields separate strings, add shadow records,

update ABND

Add wildcard labels like in the PSL.

Make TXT record the proposal, new RR as alternative.

Editorial changes to limit standard use to DMARC.

Add NOBOUND record to make wildcard matches do the

right thing

Rename to match WG name

Author's Address

John Levine

Taughannock Networks

Email: standards@taugh.com

URI: https://jl.ly

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

mailto:standards@taugh.com
https://jl.ly

	Publishing Organization Boundaries in the DNS
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Design Issues
	2.1. Non-goals

	3. TXT record format
	4. Lookup Process
	5. DNS Records
	6. Application scenarios
	6.1. DMARC
	6.2. Cookies
	6.3. SSL Certificates

	7. Discussion
	8. ABNF syntax of bound records
	9. Security Considerations
	10. Variations
	11. IANA considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Implementations
	Appendix B. Change Log
	Author's Address

