
NETMOD L. Lhotka

Internet-Draft CESNET

Intended status: Standards Track March 03, 2011

Expires: September 04, 2011

A YANG Data Model for Routing Configuration

draft-lhotka-netmod-routing-cfg-00

Abstract

This document contains a specification of a core YANG data model for IP

routing configuration. It is expected that this module will serve as a

basis for further development of data models for individual routing

protocols and other related functions. The present data model defines

the building blocks for such configurations - routes and routing

tables, routing protocol instances, route filters and route pipes.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on September 04, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology and Notation

*

*

3. Objectives

4. Design of the Routing Data Model

4.1. Route

4.2. Routing Tables

4.3. Routing Protocol Instances

4.3.1. Defining New Routing Protocols

4.4. Route Pipes

4.5. Route Filters

5. Core Routing YANG Module

6. IANA Considerations

7. Security Considerations

8. Acknowledgments

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Example Module for Routing Information Protocol

Appendix A.1. Example YANG Module for Routing Information

Protocol

Appendix A.2. Sample Reply to the NETCONF <get> Message

Author's Address

1. Introduction

The NETCONF Data Modeling Language (NETMOD) Working Group has completed

the essential specifications for the YANG data modeling language

[RFC6020], common data types [RFC6021], and the corresponding data

modeling environment and tools [RFC6087], [RFC6110]. The new NETMOD WG

charter puts emphasis on the development of a set of core YANG data

models for the following subsystems: [it.ifmodel]) was already

published [YANG-IF].

core system data model,

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1.

core interface data model,

core routing data model.

The initial version of the core interface data model (item

This document contains an initial specification for item [it.rout],

namely the "ietf-routing" YANG module representing the core routing

data model. While the module can be directly used for simple devices

with static routing, its main purpose is to provide basic building

blocks for more complicated setups involving multiple routing protocols

and advanced functions, such as route filtering and policy routing. To

this end, it is expected that this module will be augmented by numerous

modules developed by other IETF working groups.

2. Terminology and Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

The following terms are defined in [RFC4741]:

client

datastore

message

operation

server

The following terms are defined in [RFC6020]:

augment

configuration data

container

data model

data node

data tree

data type

feature

grouping

2.

3.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

identity

instance identifier

leaf-list

list

mandatory node

module

operational state data

RPC operation

submodule

The following terms are defined in [XML-INFOSET]:

attribute

document

document element

element

information set

namespace

3. Objectives

The initial design of the core routing data model was driven by the

following main objectives:

The data model should be suitable for the common address

families, in particular IPv4 and IPv6.

Simple routing setups, such as static routing, should be

configurable in a simple way, ideally without any need to define

additional YANG modules.

On the other hand, the framework defined by the module must allow

for complicated setups involving multiple routing tables and

multiple routing protocols, as well as controlled redistributions

of routing information.

Device vendors will want to map the data models built on this

generic framework to their proprietary data models and

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

configuration interfaces. Therefore, the framework should be

flexible enough to facilitate such a mapping and accommodate data

models with different logic.

4. Design of the Routing Data Model

The "ietf-routing" YANG module presented in Section 5 defines a data

modeling framework with several essential components: routes, routing

tables, routing protocol instances, route filters and route pipes. By

combining these components in various ways, and filling them with

appropriate content models defined in other modules, a broad range of

routing setups can be covered.

 +------------+

 | kernel FIB |

 +------------+

 ^ |

 | v

 +---+ +---+

 | F | | F |

 +---+ +---+

 ^ |

 | v

 +--------------+ +---+ +--------------+

+--------+ | |<---| F |<---| |

| static | +---+ | main | +---+ | additional |

| routes |--->| F |--->| routing | | routing |

+--------+ +---+ | table | +---+ | table |

 | |--->| F |--->| |

 +--------------+ +---+ +--------------+

 ^ | ^ |

 | v | v

 +---+ +---+ +---+ +---+

 | F | | F | | F | | F |

 +---+ +---+ +---+ +---+

 ^ | ^ |

 | v | v

 +----------+ +----------+

 | routing | | routing |

 | protocol | | protocol |

 +----------+ +----------+

Figure 1 shows an example of a more complicated setup:

Along with the main routing table, which must always be present,

an additional routing table is defined.

Each routing protocol instance, including the static pseudo-

protocol instance, is connected to exactly one routing table with

*

*

which it can exchange routes (in both directions, except for the

static pseudo-protocol).

Routing tables may also be connected to each other through route

pipes and exchange routes in one or both directions.

The main routing table exchanges routes with the forwarding

information base (FIB) in the operating system kernel as follows:

active routes from the main routing table are installed in the

FIB and used for packet forwarding, and automatic routes set up

by the kernel (for example, direct routes to connected networks)

are passed to the main routing table.

Route exchanges along all connections may be controlled by means

of route filters denoted by "F" in the figure.

All configuration and operational state data defined by the "ietf-

routing" module apear inside the "routing" container. The following

subsections describe the individual components of the core routing

framework.

4.1. Route

Routes are basic units of information in a routing system. The "ietf-

routing" module defines only the following essential route parameters:

route-type - permitted values are "unicast" (default),

"multicast" and "anycast".

destination-prefix - IP prefix specifying the set of destination

addresses for which the route may be used. This parameter is

mandatory.

next-hop - IP address of the adjacent router or host to which

packets with destination addresses belonging to destination-

prefix should be sent.

outgoing-interface - network interface that should be used for

sending packets with destination addresses belonging to

destination-prefix.

The above list of route parameters is sufficient for a simple static

route configuration. It is expected that future modules defining

routing protocols will add other route attributes such as metrics or

preferences.

Routes are used in both configuration data, for example as manually

configured static routes, as well as in operational state data, for

example as entries in routing tables.

*

*

*

*

*

*

*

4.2. Routing Tables

Routing tables are lists of routes complemented with administrative

data, namely:

source-protocol - name of the routing protocol from which the

route arrived.

last-modified - date and time of last modification, or

installation, of the route.

In the core routing data model, routing tables are represented as

operational state data. Routing protocol operations result in route

additions, removals and modifications. This also includes manipulations

via the "static" pseudo-protocol.

The data model also defines an RPC operation, "delete-route" which

allows the client to immediately delete a specified route from a

routing table.

Every compliant implementation MUST automatically configure the main

routing table. Additional routing tables MAY be configured by adding

their unique names to the "configured-routing-tables" leaf-list.

4.3. Routing Protocol Instances

The "ietf-routing" module provides an open-ended framework for defining

multiple routing protocol instances. Each of them is identified by a

unique name and MUST be assigned a type from a selection which includes

all routing protocol types supported by the server, such as RIP, OSPF

or BGP.

Each routing protocol instance is connected to exactly one routing

table. By default, every routing protocol instance is connected to the

main routing table, but any routing protocol instance can be configured

to use a different routing table, provided such an extra table is

configured.

Routes learned from the network by a routing protocol instance are

passed to the connected routing table and vice versa - routes appearing

in a routing table may be passed to any routing protocol connected to

the table and advertised by that protocol to the network.

Two independent route filters (see Section 4.5) may be defined for a

routing protocol instance to control the exchange of routes in both

directions between the routing protocol instance and the connected

routing table:

import filter controls which routes are passed from a routing

protocol instance to the routing table,

export filter controls which routes the routing protocol instance

may receive from the connected routing table.

*

*

*

*

Note that, for historical reasons, the terms import and export are used

from the viewpoint of a routing table.

The "ietf-routing" module defines two special routing protocols -

"direct" and "static". Both are in fact pseudo-protocols, which means

that they are confined to the local server and do not exchange any

routing information with neighboring routers. Routes from both "direct"

and "static" protocol instances are passed to the connected routing

table (subject to route filters, if any), but an exchange in the

opposite direction is not allowed.

The "direct" pseudo-protocol MUST exist in exactly one instance in any

server implementation. It is the source for routes to directly

connected networks (so-called direct routes). Such routes are supplied

by the operating system kernel based on the detected and configured

network interfaces, and they usually appear in the main routing table.

However, using the framework defined in this document, the target

routing table for direct routes can be changed by connecting the

"direct" protocol instance to a non-default routing table, and the

direct routes can also be filtered before they appear in the routing

table.

The "static" routing pseudo-protocol allows for specifying routes

manually. It can be configured in zero or more instances, although

typically one instance suffices.

4.3.1. Defining New Routing Protocols

It is expected that other YANG modules will create data models for

additional routing protocol types. In order to do so, the new module

has to define the protocol-specific information and fit it to the core

routing framework in the following way:

A new identity MUST be defined for the routing protocol and its

base identity set to "routing-protocol", or to an identity

derived from "routing-protocol".

Additional route attributes MAY be defined. Their definitions

have to be inserted as operational state data by augmenting the

definition of "route" under "routing-table". Naturally, routes

(including the extra attributes) may be used in configuration

data, too, as demonstrated by the "static" pseudo-protocol.

The recommended way of defining configuration data specific to

the new protocol is to augment the "routing-protocol-instance"

list entry with a container that encapsulates the configuration

hierarchy of the new protocol. The 'augment' statement SHOULD be

made conditional by using a 'when' substatement requiring that

the new nodes be used only if the "type" leaf node is equal to

the new protocol's identity.

*

*

*

The above steps are implemented by the example YANG module for the RIP

routing protocol in Appendix Appendix A. In particular, the module

first defines a new identity for the RIP protocol:

identity rip {

 base rt:routing-protocol;

 description "Identity for the RIP routing protocol.";

}

RIP-specific configuration data are then integrated into the "routing-

protocol-instance" node by using the following 'augment' statement,

which applies only for routing protocol instances whose type is "rip":

augment "/rt:routing/rt:routing-protocol-instances/" +

 "rt:routing-protocol-instance" {

 container rip-configuration {

 when "../rt:type='rip'";

 ...

 }

}

4.4. Route Pipes

Route pipes are unidirectional links connecting pairs of routing tables

that allow for passing routes from one routing table to another. Each

route pipe is identified by a unique name and has two mandatory

parameters, "origin" and "recipient", that specify the two routing

tables that are being connected.

The transport of routes from the "origin" table to the "recipient"

table may be controlled by means of a route filter (see Section 4.5).

If no filter is defined, all routes present in the "origin" table MUST

also appear in the "recipient" table.

4.5. Route Filters

The "ietf-routing" module provides a skeleton for defining route

filters that can be used to restrict the set of routes being exchanged

between a routing protocol instance and a routing table, or between two

routing tables connected through a route pipe. Route filters may also

manipulate routes, i.e., add, delete, or modify their properties.

By itself, the route filtering framework defined in the "ietf-routing"

module allows to establish only the two extreme routing policies in

which either all routes are allowed or all routes are denied. It is

expected that a real route filtering framework (or several alternative

frameworks) will be developed separately.

Each route filter is identified by a unique name. Its type may be

specified by the "type" identity reference - this opens the space for

multiple route filtering framework implementations. The only route

filter type defined in the "ietf-routing" module carries the default

"route-filter" identity, and represents the "deny all" route filtering

policy.

5. Core Routing YANG Module

<CODE BEGINS> file "ietf-routing@2011-03-03.yang"

module ietf-routing {

 namespace "urn:ietf:params:xml:ns:yang:ietf-routing";

 prefix rt;

 import ietf-yang-types {

 prefix yang;

 }

 import ietf-inet-types {

 prefix inet;

 }

 import ietf-interfaces {

 prefix if;

 }

 organization

 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact

 "WG Web: <http://tools.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 WG Chair: David Kessens

 <mailto:david.kessens@nsn.com>

 WG Chair: Juergen Schoenwaelder

 <mailto:j.schoenwaelder@jacobs-university.de>

 Editor: Ladislav Lhotka

 <mailto:lhotka@cesnet.cz>";

 description

 "This module contains YANG definitions for basic

 configuration of IP routing.

 It is immediately usable for a device that needs just a single

 routing table populated with static routes.

 On the other hand, the framework is designed to handle arbitrarily

 complex configurations with any number of routing tables and

 various routing protocols (in multiple instances).

 Every compliant implementation MUST support IPv4 unicast routing

 and implement at least one (main) routing table, which is

 connected to the OS kernel forwarding information base.";

 revision 2011-03-03;

 /* Features */

 feature ipv6-routing {

 description

 "This feature MUST be advertised by devices supporting IPv6

 routing. Such a device MUST implement at least one extra routing

 table to which all IPv6 unicast routing protocols are connected

 by default.";

 }

 feature ipv4-multicast-routing {

 description

 "This feature MUST be set by devices supporting IPv4

 multicast routing. Such a device MUST implement at least one

 extra routing table to which all IPv6 multicast routing

 protocols are connected by default.";

 }

 feature ipv6-multicast-routing {

 description

 "This feature MUST be set by devices supporting IPv6

 multicast routing. Such a device MUST implement at least one

 extra routing table to which all IPv6 multicast routing

 protocols are connected by default.";

 }

 /* Identities */

 identity address-family {

 description

 "Base identity from which address family identities are

 derived.";

 }

 identity af-ipv4 {

 base address-family;

 description

 "IPv4 address family.";

 }

 identity af-ipv6 {

 base address-family;

 description

 "IPv6 address family.";

 }

 identity routing-protocol {

 description

 "Base identity from which routing protocol identities are

 derived.";

 }

 identity direct {

 base routing-protocol;

 description

 "Identity for the pseudo-protocol providing routes to

 directly connected networks. An implementation MUST preconfigure

 an instance of this pseudo-protocol.";

 }

 identity static {

 base routing-protocol;

 description

 "Identity for static routing pseudo-protocol.";

 }

 identity route-filter {

 description

 "Base identity for route filters. It also represents the

 empty route filter that blocks everything.";

 }

 identity route-type {

 description

 "Base identity for route types.";

 }

 identity unicast {

 base route-type;

 description

 "Unicast route type.";

 }

 identity multicast {

 base route-type;

 description

 "Multicast route type.";

 }

 identity anycast {

 base route-type;

 description

 "Anycast route type.";

 }

 /* Type definitions */

 typedef routing-table-ref {

 type leafref {

 path "/routing/configured-routing-tables/name";

 }

 description

 "This type represents a reference to a configured routing

 table.";

 }

 typedef routing-protocol-instance-ref {

 type leafref {

 path "/routing/routing-protocol-instances/" +

 "routing-protocol-instance/name";

 }

 description

 "This type represents a reference to a configured routing

 protocol instance.";

 }

 typedef route-filter-ref {

 type leafref {

 path "/routing/route-filters/route-filter/name";

 }

 description

 "This type represents a reference to a configured route

 filter.";

 }

 /* Groupings */

 grouping ip-route-content {

 description

 "Components of an IP route.";

 leaf type {

 type identityref {

 base route-type;

 }

 default "unicast";

 }

 leaf destination-prefix {

 type inet:ip-prefix;

 mandatory true;

 description

 "The set of destination addresses for which the route may

 be used.";

 }

 leaf next-hop {

 type inet:ip-address;

 description

 "IP address of the host or router to which packets whose

 address matches 'destination-prefix' are to be forwarded.";

 }

 leaf outgoing-interface {

 type if:interface-ref;

 description

 "Name of the outgoing interface. This parameter is mainly

 used in direct routes.";

 }

 }

 rpc delete-route {

 description

 "This operation deletes a route with given parameters from

 a specified routing table. <ok> is returned by the server

 upon successful completion.";

 input {

 container route {

 description

 "All routes that match this parameter MUST be deleted

 from the target routing table.";

 uses ip-route-content;

 }

 leaf routing-table {

 type routing-table-ref;

 description

 "This parameter specifies the target routing

 table.";

 }

 }

 }

 /* Data tree */

 container routing {

 description

 "IP routing parameters.";

 container configured-routing-tables {

 description

 "Names of configured routing tables. Their contents are

 available as operational state data under 'routing-tables'. At

 least one (main) table MUST be configured for every supported

 address family. This default routing table is usually

 connected to the main kernel forwarding table.";

 leaf-list name {

 type string;

 min-elements 1;

 }

 }

 container routing-protocol-instances {

 description

 "Container for configured routing protocol instances.

 Every implementation MUST preconfigure the 'direct'

 pseudo-protocol instance providing the routes to directly

 connected networks.";

 list routing-protocol-instance {

 key "name";

 container static-routes {

 when "../type='static'";

 description

 "Configuration of a 'static' pseudo-protocol instance

 consists of a list of routes.";

 list static-route {

 key "id";

 leaf id {

 type string;

 }

 leaf description {

 type string;

 }

 uses ip-route-content;

 }

 }

 leaf name {

 type string;

 }

 leaf description {

 type string;

 }

 leaf address-family {

 type identityref {

 base address-family;

 }

 default "af-ipv4";

 description

 "Address family used by the routing protocol instance.";

 }

 leaf type {

 type identityref {

 base routing-protocol;

 }

 mandatory true;

 description

 "Type of the routing protocol.";

 }

 leaf routing-table {

 type routing-table-ref;

 description

 "The routing table to which the protocol instance is

 connected. By default it is the main routing table for the

 given address family.";

 }

 leaf import-filter {

 type route-filter-ref;

 description

 "Reference to a route filter that is used for

 filtering routes passed from this routing protocol instance

 to the routing table specified by the 'routing-table'

 sibling node. If this leaf is not present, the behavior is

 protocol-specific, but typically it means that all routes

 are accepted.";

 }

 leaf export-filter {

 type route-filter-ref;

 description

 "Reference to a route filter that is used for

 filtering routes passed from the routing table specified

 by the 'routing-table' sibling to this routing protocol

 instance. If this leaf is not present, the behavior is

 protocol-specific - typically it means that all routes

 are accepted, except for the 'direct' and 'static'

 pseudo-protocols which accept no routes from

 anywhere.";

 }

 }

 }

 container route-pipes {

 description

 "Route pipes facilitate transport of routes between pairs

 of routing tables.";

 list route-pipe {

 key "name";

 description

 "A route-pipe is a unidirectional connection between

 'origin' and 'recipient'.";

 leaf name {

 type string;

 }

 leaf description {

 type string;

 }

 leaf origin {

 type routing-table-ref;

 mandatory true;

 description

 "The originating routing-table.";

 }

 leaf recipient {

 type routing-table-ref;

 mandatory true;

 description

 "The receiving routing-table.";

 }

 leaf route-filter {

 type route-filter-ref;

 description

 "All routes passing through the route pipe are filtered by

 the route filter referred to by this leaf. If it is not

 present, all routes from 'origin' are passed to

 'destination'.";

 }

 }

 }

 container route-filters {

 description

 "Non-trivial route filters are expected to be defined in

 other modules.";

 list route-filter {

 key "name";

 description

 "A route filter is used for filtering routes between

 routing protocol instances and routing tables (import

 filter) and vice versa (export filter), and in route pipes

 that connect pairs of routing tables.";

 leaf name {

 type string;

 }

 leaf description {

 type string;

 }

 leaf type {

 type identityref {

 base route-filter;

 }

 default "route-filter";

 description

 "Type of the route-filter. The default value

 represents an all-blocking filter.";

 }

 }

 }

 /* Operational state data */

 container routing-tables {

 config false;

 description

 "Routing tables and their contents.";

 list routing-table {

 min-elements 1;

 description

 "Exactly one routing table MUST be present for every 'name'

 entry appearing in '/routing/configured-routing-tables'.";

 leaf name {

 type routing-table-ref;

 }

 leaf address-family {

 type identityref {

 base address-family;

 }

 default "af-ipv4";

 description

 "Address family of all routes in the routing table.";

 }

 list route {

 leaf source-protocol {

 type routing-protocol-instance-ref;

 description

 "Protocol instance from which the route comes.";

 }

 leaf last-modified {

 type yang:date-and-time;

 description

 "Time stamp of the last modification of the

 route. If the route was never modified, it is the time

 when the route was inserted to the routing table.";

 }

 uses ip-route-content;

 }

 }

 }

 }

}

<CODE ENDS>

6. IANA Considerations

This document requests the following registration of a namespace URI in

the IETF XML registry [RFC3688]:

URI: urn:ietf:params:xml:ns:yang:ietf-routing

Registrant Contact: The IESG.

XML: N/A, the requested URI is an XML namespace.

7. Security Considerations

TBD.

8. Acknowledgments

The author wishes to thank the following individuals who provided

helpful suggestions and/or comments on this document: TBD.

9. References

9.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3688]
Mealling, M., "The IETF XML Registry", BCP 81, RFC

3688, January 2004.

[RFC4741]
Enns, R., "NETCONF Configuration Protocol", RFC 4741,

December 2006.

[XML-

INFOSET]

Tobin, R. and J. Cowan, "XML Information Set (Second

Edition)", World Wide Web Consortium Recommendation

REC-xml-infoset-20040204, February 2004.

[RFC6020]

Bjorklund, M, "YANG - A Data Modeling Language for

Network Configuration Protocol (NETCONF)", RFC 6020,

September 2010.

[RFC6021]
Schoenwaelder, J., "Common YANG Data Types", RFC 6021,

September 2010.

[YANG-IF]

Bjorklund, M, "A YANG Data Model for Interface

Configuration", Internet-Draft draft-bjorklund-netmod-

interfaces-cfg-00, December 2010.

9.2. Informative References

[RFC6087]
Bierman, A., "Guidelines for Authors and Reviewers of

YANG Data Model Documents", RFC 6087, January 2011.

[RFC6110]

Lhotka, L., "Mapping YANG to Document Schema Definition

Languages and Validating NETCONF Content", RFC 6110,

February 2011.

http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3688
http://tools.ietf.org/html/rfc4741
http://tools.ietf.org/html/rfc6020
http://tools.ietf.org/html/rfc6020
http://tools.ietf.org/html/rfc6021
http://tools.ietf.org/html/draft-bjorklund-netmod-interfaces-cfg-00
http://tools.ietf.org/html/draft-bjorklund-netmod-interfaces-cfg-00
http://tools.ietf.org/html/rfc6087
http://tools.ietf.org/html/rfc6087
http://tools.ietf.org/html/rfc6110
http://tools.ietf.org/html/rfc6110

Appendix A. Example Module for Routing Information Protocol

This appendix demonstrates how the "ietf-routing" module can be

extended to support a new routing protocol. Appendix Appendix A.1

contains a YANG module that is used for this purpose. It is intended

only as an illustration and not as a real definition of a data model

for the RIP routing protocol. This module also imports the "ietf-

interfaces" module defined in [YANG-IF].

Appendix Appendix A.2 then contains a complete instance XML document -

a reply to the NETCONF <get> message from a server that uses the RIP

protocol as well as static routing. A route filter is also defined in

order to prevent static routes to private networks from being

redistributed to RIP. The instance document also uses data nodes from

the two example YANG modules "ex-ethernet" and "ex-ip" defined in

[YANG-IF].

Appendix A.1. Example YANG Module for Routing Information Protocol

module example-rip {

 namespace "http://example.com/rip";

 prefix rip;

 import ietf-interfaces {

 prefix if;

 }

 import ietf-routing {

 prefix rt;

 }

 identity rip {

 base rt:routing-protocol;

 description

 "Identity for the RIP routing protocol.";

 }

 typedef rip-metric {

 type uint8 {

 range "0..16";

 }

 }

 augment "/rt:routing/rt:routing-protocol-instances/" +

 "rt:routing-protocol-instance" {

 when "rt:type='rip:rip'";

 container rip-configuration {

 container rip-interfaces {

 list rip-interface {

 key "name";

 leaf name {

 type if:interface-ref;

 }

 leaf enabled {

 type boolean;

 default "true";

 }

 leaf metric {

 type rip-metric;

 default "1";

 }

 /* Additional per-interface RIP configuration */

 }

 }

 leaf update-interval {

 type uint8 {

 range "10..60";

 }

 units "seconds";

 default "30";

 description

 "Time interval between periodic updates.";

 }

 /* Additional RIP configuration */

 }

 }

 augment "/rt:routing/rt:routing-tables/rt:routing-table/rt:route" {

 when "../../../rt:routing-protocol-instances/" +

 "rt:routing-protocol-instance[rt:name=" +

 "current()/rt:source-protocol]/rt:type='rip:rip'";

 description

 "RIP-specific route components.";

 leaf metric {

 type rip-metric;

 }

 leaf tag {

 type uint16;

 default "0";

 description

 "This leaf may be used to carry additional info, e.g. AS

 number.";

 }

 }

}

Appendix A.2. Sample Reply to the NETCONF <get> Message

<?xml version="1.0" encoding="utf-8"?>

<nc:rpc-reply

 message-id="101"

 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:if="urn:ietf:params:xml:ns:yang:ietf-interfaces"

 xmlns:eth="http://example.com/ethernet"

 xmlns:ip="http://example.com/ip"

 xmlns:rip="http://example.com/rip"

 xmlns="urn:ietf:params:xml:ns:yang:ietf-routing">

 <nc:data>

 <if:interfaces>

 <if:interface>

 <if:name>eth0</if:name>

 <if:type>eth:ethernet</if:type>

 <if:location>05:00.0</if:location>

 <ip:ip>

 <ip:address>

 <ip:ip>192.0.2.1</ip:ip>

 <ip:prefix-length>24</ip:prefix-length>

 </ip:address>

 </ip:ip>

 </if:interface>

 <if:interface>

 <if:name>eth1</if:name>

 <if:type>eth:ethernet</if:type>

 <if:location>05:00.1</if:location>

 <ip:ip>

 <ip:address>

 <ip:ip>192.168.1.1</ip:ip>

 <ip:prefix-length>24</ip:prefix-length>

 </ip:address>

 </ip:ip>

 </if:interface>

 </if:interfaces>

 <routing>

 <configured-routing-tables>

 <name>rt0</name>

 </configured-routing-tables>

 <routing-protocol-instances>

 <routing-protocol-instance>

 <name>direct</name>

 <type>direct</type>

 </routing-protocol-instance>

 <routing-protocol-instance>

 <name>st0</name>

 <description>

 Static routing is used for the internal network.

 </description>

 <type>static</type>

 <static-routes>

 <static-route>

 <id>id-6378</id>

 <destination-prefix>192.168.2.0/24</destination-prefix>

 <next-hop>192.168.1.254</next-hop>

 </static-route>

 </static-routes>

 </routing-protocol-instance>

 <routing-protocol-instance>

 <name>rip0</name>

 <type>rip:rip</type>

 <export-filter>to-rip</export-filter>

 <rip:rip-configuration>

 <rip:rip-interfaces>

 <rip:rip-interface>

 <rip:name>eth0</rip:name>

 </rip:rip-interface>

 </rip:rip-interfaces>

 </rip:rip-configuration>

 </routing-protocol-instance>

 </routing-protocol-instances>

 <route-filters>

 <route-filter>

 <name>to-rip</name>

 <description>

 Block redistribution of static routes.

 </description>

 </route-filter>

 </route-filters>

 <routing-tables>

 <routing-table>

 <name>rt0</name>

 <route>

 <destination-prefix>192.168.1.0/24</destination-prefix>

 <source-protocol>direct</source-protocol>

 <outgoing-interface>eth0</outgoing-interface>

 <last-modified>2010-02-24T17:11:23+01:00</last-modified>

 </route>

 <route>

 <destination-prefix>192.168.2.0/24</destination-prefix>

 <source-protocol>st0</source-protocol>

 <next-hop>192.168.1.254</next-hop>

 <rip:tag>64500</rip:tag>

 <last-modified>2010-02-24T17:11:27+01:00</last-modified>

 </route>

 <route>

 <destination-prefix>0.0.0.0/0</destination-prefix>

 <next-hop>192.0.2.2</next-hop>

 <rip:metric>2</rip:metric>

 <rip:tag>64500</rip:tag>

 <source-protocol>rip0</source-protocol>

 <last-modified>2010-03-03T13:00:23+01:00</last-modified>

 </route>

 </routing-table>

 </routing-tables>

 </routing>

 </nc:data>

</nc:rpc-reply>

Author's Address

Ladislav Lhotka Lhotka CESNET EMail: lhotka@cesnet.cz

mailto:lhotka@cesnet.cz

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology and Notation
	3. Objectives
	4. Design of the Routing Data Model
	4.1. Route
	4.2. Routing Tables
	4.3. Routing Protocol Instances
	4.3.1. Defining New Routing Protocols
	4.4. Route Pipes
	4.5. Route Filters
	5. Core Routing YANG Module
	6. IANA Considerations
	7. Security Considerations
	8. Acknowledgments
	9. References
	9.1. Normative References
	9.2. Informative References
	Appendix A. Example Module for Routing Information Protocol
	Appendix A.1. Example YANG Module for Routing Information Protocol
	Appendix A.2. Sample Reply to the NETCONF <get> Message
	Author's Address

