
NETMOD L. Lhotka
Internet-Draft CZ.NIC
Intended status: Standards Track April 2, 2013
Expires: October 4, 2013

Modeling JSON Text with YANG
draft-lhotka-netmod-yang-json-01

Abstract

 This document defines rules for mapping data models expressed in YANG
 to configuration and operational state data encoded as JSON text. It
 does so by specifying a procedure for translating the subset of YANG-
 compatible XML documents to JSON text, and vice versa.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 4, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Lhotka Expires October 4, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Modeling JSON with YANG April 2013

Table of Contents

1. Introduction . 3
2. Terminology and Notation 4
3. Specification of the Translation Procedure 5
3.1. Names and Namespaces 6
3.2. Mapping XML Elements to JSON Objects 7
3.3. Mapping YANG Datatypes to JSON Values 8
3.3.1. Numeric Types . 8
3.3.2. The "string" Type 8
3.3.3. The "boolean" Type 8
3.3.4. The "enumeration" Type 8
3.3.5. The "bits" Type 8
3.3.6. The "binary" Type 8
3.3.7. The "leafref" Type 8
3.3.8. The "identityref" Type 8
3.3.9. The "empty" Type 9
3.3.10. The "union" Type 9
3.3.11. The "instance-identifier" Type 9

3.4. Example . 10
3.5. IANA Considerations 12
3.6. Security Considerations 12
3.7. Acknowledgments . 12

4. References . 13
4.1. Normative References 13
4.2. Informative References 13

 Author's Address . 14

Lhotka Expires October 4, 2013 [Page 2]

Internet-Draft Modeling JSON with YANG April 2013

1. Introduction

 The aim of this document is define rules for mapping data models
 expressed in the YANG data modeling language [RFC6020] to
 configuration and operational state data encoded as JavaScript Object
 Notation (JSON) text [RFC4627]. The result can be potentially
 applied in two different ways:

 1. JSON may be used instead of the standard XML [XML] encoding in
 the context of the NETCONF protocol [RFC6241] and/or with
 existing data models expressed in YANG. An example application
 is the YANG-API Protocol [YANG-API].

 2. Other documents that choose JSON to represent structured data can
 use YANG for defining the data model, i.e., both syntactic and
 semantic constraints that the data have to satisfy.

 JSON mapping rules could be specified in a similar way as the XML
 mapping rules in [RFC6020]. This would however require solving
 several problems. To begin with, YANG uses XPath [XPath] quite
 extensively, but XPath is not defined for JSON and such a definition
 would be far from straightforward.

 In order to avoid these technical difficulties, this document employs
 an alternative approach: it defines a relatively simple procedure
 which allows for translating the subset of XML that can be modeled
 using YANG to JSON, and vice versa. Consequently, validation of a
 JSON text against a data model can done by translating the JSON text
 to XML, which is then validated according to the rules stated in
 [RFC6020].

 The translation procedure is adapted to YANG specifics and
 requirements, namely:

 1. The translation is driven by a concrete YANG data model and uses
 information about data types to achieve better results than
 generic XML-JSON translation procedures.

 2. Various document types are supported, namely configuration data,
 configuration + state data, RPC input and output parameters, and
 notifications.

 3. XML namespaces specified in the data model are mapped to
 namespaces of JSON objects. However, explicit namespace
 identifiers are rarely needed in JSON text.

 4. Translation of XML attributes, mixed content, comments and
 processing instructions is not supported.

https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6020

Lhotka Expires October 4, 2013 [Page 3]

Internet-Draft Modeling JSON with YANG April 2013

2. Terminology and Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in [RFC6020]:

 o anyxml

 o augment

 o container

 o data node

 o data tree

 o datatype

 o feature

 o identity

 o instance identifier

 o leaf

 o leaf-list

 o list

 o module

 o submodule

 The following terms are defined in [XMLNS]:

 o local name

 o prefixed name

 o qualified name

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6020

Lhotka Expires October 4, 2013 [Page 4]

Internet-Draft Modeling JSON with YANG April 2013

3. Specification of the Translation Procedure

 The translation procedure defines a 1-1 correspondence between the
 subset of YANG-compatible XML documents and JSON text. This means
 that the translation can be applied in both directions and is always
 invertible.

 Any YANG-compatible XML document can be translated, except documents
 with mixed content. This is only a minor limitation since mixed
 content is marginal in YANG - it is allowed only in "anyxml" nodes.

 An implementation of the translation procedure MAY translate "anyxml"
 nodes and their contents from XML to JSON or vice versa, but the
 specific details of this translation are outside the scope of this
 document. Note that the contents of "anyxml" nodes are not relevant
 for validity in terms of a YANG data model.

 The following subsections specify rules mainly for translating XML
 documents to JSON text. Rules for the inverse translation are stated
 only where necessary, otherwise they can be easily inferred.

 REQUIRED parameters of the translation procedure are:

 o YANG data model,

 o type of the input XML document,

 o optional features (defined via the "feature" statement) that are
 considered active.

 The permissible types of XML documents are listed in Table 1 together
 with the corresponding part of the data model that is used for the
 translation.

Lhotka Expires October 4, 2013 [Page 5]

Internet-Draft Modeling JSON with YANG April 2013

 +------------------------------+--------------------------------+
 | Document Type | Data Model Section |
 +------------------------------+--------------------------------+
 | configuration and state data | main data tree |
 | | |
 | configuration | main data tree ("config true") |
 | | |
 | RPC input parameters | "input" nodes under "rpc" |
 | | |
 | RPC output parameters | "output" nodes under "rpc" |
 | | |
 | notification | "notification" nodes |
 +------------------------------+--------------------------------+

 Table 1: YANG Document Types

 A particular application may decide to use only a subset of document
 types from Table 1. For instance, YANG-API Protocol [YANG-API] does
 not use notifications.

 XML documents can be translated to JSON text only if they are valid
 instances of the YANG data model and selected document type, also
 taking into account the active features, if there are any.

3.1. Names and Namespaces

 The local part of a JSON name is always identical to the local name
 of the corresponding XML element.

 Each JSON name lives in a namespace which is uniquely identified by
 the name of the YANG module where the corresponding data node is
 defined. If the data node is defined in a submodule, then the
 namespace identifier is the name of the main module to which the
 submodule belongs. The translation procedure MUST correctly map YANG
 namespace URIs to YANG module names and vice versa.

 The namespace SHALL be expressed in JSON text by prefixing the local
 name in the following way:

 <module name>:<local name>

 Figure 1: Encoding a namespace identifier with a local name.

 The namespace identifier MUST be used for local names that are
 ambiguous, i.e., whenever the data model permits a sibling node with
 the same local name. Otherwise, the namespace identifier is
 OPTIONAL.

Lhotka Expires October 4, 2013 [Page 6]

Internet-Draft Modeling JSON with YANG April 2013

 When mapping namespaces from JSON text to XML, the resulting XML
 document may use default namespace declarations (via the "xmlns"
 attribute), prefix-based namespace declarations (via attributes
 beginning with "xmlns:"), or any combination thereof, following the
 rules stated in [XMLNS]. If prefixed names are used, their prefix
 SHOULD be the one defined by the "prefix" statement in the YANG
 module where each data node is defined.

3.2. Mapping XML Elements to JSON Objects

 XML elements are translated to JSON objects in a straightforward way:

 o An XML element that is modeled as YANG leaf is translated to a
 name/value pair and the JSON datatype of the value is derived from
 the YANG datatype of the leaf (see Section 3.3 for the datatype
 mapping rules).

 o An XML element that is modeled as YANG container is translated to
 a JSON object.

 o A sequence of one or more sibling XML elements with the same
 qualified name that is modeled as YANG leaf-list is translated to
 a name/array pair, and the array elements are primitive values
 whose type depends on the datatype of the leaf-list (see

Section 3.3).

 o A sequence of one or more sibling XML elements with the same
 qualified name that is modeled as YANG list is translated to a
 name/array pair, and the array elements are JSON objects. Unlike
 the XML encoding, which requires the list keys to come first and
 in the order specified by the data model, the order of members
 within a list entry is arbitrary, because JSON objects are
 fundamentally unordered collections of members.

 Note that the same XML element may be translated in different ways,
 depending on the definition of the corresponding data node in YANG.
 For example,

 <foo>42</foo>

 is translated to

 "foo": 42

 if the "foo" node is defined as a leaf with the "uint8" datatype, or
 to

 "foo": ["42"]

Lhotka Expires October 4, 2013 [Page 7]

Internet-Draft Modeling JSON with YANG April 2013

 if the "foo" node is defined as a leaf-list with the "string"
 datatype.

3.3. Mapping YANG Datatypes to JSON Values

3.3.1. Numeric Types

 A value of one of the YANG numeric types ("int8", "int16", "int32",
 "int64", "uint8", "uint16", "uint32", "uint64" and "decimal64") is
 mapped to a JSON number using the same lexical representation.

3.3.2. The "string" Type

 A "string" value is mapped to an identical JSON string, subject to
 JSON encoding rules.

3.3.3. The "boolean" Type

 A "boolean" value is mapped to the corresponding JSON value 'true' or
 'false'.

3.3.4. The "enumeration" Type

 An "enumeration" value is mapped in the same way as a string except
 that the permitted values are defined by "enum" statements in YANG.

3.3.5. The "bits" Type

 A "bits" value is mapped to a string identical to the lexical
 representation of this value in XML, i.e., space-separated names
 representing the individual bit values that are set.

3.3.6. The "binary" Type

 A "binary" value is mapped to a JSON string identical to the lexical
 representation of this value in XML, i.e., base64-encoded binary
 data.

3.3.7. The "leafref" Type

 A "leafref" value is mapped according to the same rules as the type
 of the leaf being referred to.

3.3.8. The "identityref" Type

 An "identityref" value is mapped to a string representing the
 qualified name of the identity. Its namespace MAY be expressed as
 shown in Figure 1. If the namespace part is not present, the

Lhotka Expires October 4, 2013 [Page 8]

Internet-Draft Modeling JSON with YANG April 2013

 namespace of the name of the JSON object containing the value is
 assumed.

3.3.9. The "empty" Type

 An "empty" value is mapped to '[null]', i.e., an array with the
 'null' value being its only element.

 This representation was chosen instead of using simply 'null' in
 order to facilitate the use of empty leafs in common programming
 languages. When used in a boolean context, the '[null]' value,
 unlike 'null', evaluates to 'true'.

3.3.10. The "union" Type

 YANG "union" type represents a choice among multiple alternative
 types. The actual type of the XML value MUST be determined using the
 procedure specified in Sec. 9.12 of [RFC6020] and the mapping rules
 for that type are used.

 For example, consider the following YANG definition:

 leaf-list bar {
 type union {
 type uint16;
 type string;
 }
 }

 The sequence of three XML elements

 <bar>6378</bar>
 <bar>14.5</bar>
 <bar>infinity</bar>

 will then be translated to this name/array pair:

 "bar": [6378, "14.5", "infinity"]

3.3.11. The "instance-identifier" Type

 An "instance-identifier" value is a string representing a simplified
 XPath specification. It is mapped to an analogical JSON string in
 which all occurrences of XML namespace prefixes are either removed or
 replaced with the corresponding module name according to the rules of

Section 3.1.

 When translating such a value from JSON to XML, all components of the

https://datatracker.ietf.org/doc/html/rfc6020

Lhotka Expires October 4, 2013 [Page 9]

Internet-Draft Modeling JSON with YANG April 2013

 instance-identifier MUST be given appropriate XML namespace prefixes.
 It is RECOMMENDED that these prefixes be those defined via the
 "prefix" statement in the corresponding YANG modules.

3.4. Example

 Consider a simple data model defined by the following YANG module:

Lhotka Expires October 4, 2013 [Page 10]

Internet-Draft Modeling JSON with YANG April 2013

 module ex-json {

 namespace "http://example.com/ex-json";

 prefix "ej";

 import ietf-inet-types {
 prefix "inet";
 }

 container top {
 list address {
 key "seqno";
 leaf seqno {
 type uint8;
 }
 leaf ip {
 type inet:ip-address;
 mandatory "true";
 }
 }
 container phases {
 typedef angle {
 type decimal64 {
 fraction-digits "2";
 }
 units "radians";
 }
 leaf max-phase {
 default "6.28";
 type angle;
 }
 leaf-list phase {
 type angle;
 must ". <= ../max-phase";
 min-elements "1";
 }
 }
 }
 }

 Figure 2: Example YANG module.

 By using the translation procedure defined in this document, we can
 conclude that the following JSON text is valid according to the data
 model:

Lhotka Expires October 4, 2013 [Page 11]

Internet-Draft Modeling JSON with YANG April 2013

 {
 "top": {
 "address": [
 {
 "seqno": 1,
 "ip": "192.0.2.1"
 },
 {
 "seqno": 2,
 "ip": "2001:db8:0:1::1"
 }
],
 "phases": {
 "phase": [
 0.79,
 1.04,
 3.14
]
 }
 }
 }

 Figure 3: Example JSON text.

3.5. IANA Considerations

 TBD.

3.6. Security Considerations

 TBD.

3.7. Acknowledgments

 The author wishes to thank Andy Bierman, Martin Bjorklund and Phil
 Shafer for their helpful comments and suggestions.

Lhotka Expires October 4, 2013 [Page 12]

Internet-Draft Modeling JSON with YANG April 2013

4. References

4.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 Network Configuration Protocol (NETCONF)", RFC 6020,
 September 2010.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "NETCONF Configuration Protocol", RFC 6241,
 June 2011.

 [XML] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2006/REC-xml-20060816>.

 [XMLNS] Bray, T., Hollander, D., Layman, A., Tobin, R., and H.
 Thompson, "Namespaces in XML 1.0 (Third Edition)", World
 Wide Web Consortium Recommendation REC-xml-names-20091208,
 December 2009,
 <http://www.w3.org/TR/2009/REC-xml-names-20091208>.

4.2. Informative References

 [XPath] Clark, J., "XML Path Language (XPath) Version 1.0", World
 Wide Web Consortium Recommendation REC-xpath-19991116,
 November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

 [YANG-API]
 Bierman, A. and M. Bjorklund, "YANG-API Protocol",

draft-bierman-netconf-yang-api-01 (work in progress),
 November 2012.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2009/REC-xml-names-20091208
http://www.w3.org/TR/1999/REC-xpath-19991116
https://datatracker.ietf.org/doc/html/draft-bierman-netconf-yang-api-01

Lhotka Expires October 4, 2013 [Page 13]

Internet-Draft Modeling JSON with YANG April 2013

Author's Address

 Ladislav Lhotka
 CZ.NIC

 Email: lhotka@nic.cz

Lhotka Expires October 4, 2013 [Page 14]

