
Workgroup: rtgwg

Internet-Draft:

draft-li-dyncast-architecture-04

Published: 8 July 2022

Intended Status: Informational

Expires: 9 January 2023

Authors: Y. Li

Huawei Technologies

L. Iannone

Huawei Technologies

D. Trossen

Huawei Technologies

P. Liu

China Mobile

C. Li

Huawei Technologies

Dynamic-Anycast Architecture

Abstract

This document describes a proposal for an architecture for the

Dynamic-Anycast (Dyncast). It includes an architecture overview,

main components that shall exist, and the workflow. An example of

workflow is provided, focusing on the load-balance multi-edge based

service use-case, where load is distributed in terms of both

computing and networking resources through the dynamic anycast

architecture.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Definition of Terms

3. Architecture Main Concepts

4. Dyncast Architecture Workflow

4.1. Service Notification/Metrics Update

4.2. Service Demand Dispatch and Instance Affinity

5. Dyncast Control-plane vs Data-plane operations

6. Summary

7. Security Considerations

8. IANA Considerations

9. Contributors

10. Informative References

Acknowledgements

Authors' Addresses

1. Introduction

Edge computing has been expanding from single edge nodes to multiple

networked collaborating edge nodes to solve the issues like response

time, resource optimization, and network efficiency.

The current network architecture in edge computing provides

relatively static service dispatching, often to the closest edge

from an IGP perspective, or to the server with the most computing

resources without considering the network status, and even sometimes

just based on static configuration.

Traffic steering that takes into account computing resource metrics

seems to be an interesting paradigm that would benefit several use-

cases [I-D.liu-dyncast-ps-usecases]. Yet, more investigation is

still needed in key areas for this paradigm and, to this end, this

document aims at providing an architectural framework, which will

enable compute- and network-aware traffic steering decisions in edge

computing.

The Dyncast architecture presents an anycast based service and

access model addressing the problematic aspects of existing network

layer edge computing service deployment, including the unawareness

of computing resource information of service, static edge selection,

¶

¶

¶

¶

Dyncast:

Service:

Service instance:

D-Router:

D-MA:

D-SID:

isolated network and computing metrics and/or slow refresh of

status.

Dyncast assumes that there are multiple equivalent service instances

running on different edge nodes, globally providing (from a logical

point of view) one single service. A single edge may have limited

computing resources available, and different edges likely have

different resources available, such as CPU or GPU. The main

principle of Dyncast is that multiple edge nodes are interconnected

and collaborate with each other to achieve a holistic objective,

namely to dispatch service demands taking into account both service

instances status as well as network state (e.g., paths length and

their congestion). For this, computing resources available to serve

a request is one of the top metrics to be considered. At the same

time, the quality of the network path to an edge node may vary over

time and may hence be another key attribute to be considered for

said dispatching of service demands.

2. Definition of Terms

As defined in [I-D.liu-dyncast-ps-usecases], Dynamic

Anycast, taking the dynamic nature of computing resource metrics

into account to steer an anycast routing decision.

As defined in [I-D.liu-dyncast-ps-usecases], a monolithic

functionality that is provided by an endpoint according to the

specification for said service. A composite service can be built

by orchestrating monolithic services.

As defined in [I-D.liu-dyncast-ps-usecases],

running environment (e.g., a node) that makes the functionality

of a service available. One service can have several instances

running at different network locations.

A node supporting Dyncast functionalities as described in

this document. Namely it is able to understand both network-

related and service-instances-related metrics, take forwarding

decision based upon and manitain instance affinity, i.e.,

forwards packets belonging to the same service demand to the same

instance.

Dyncast Metric Agent (D-MA): A dyncast specific agent able to

gather and send metric updates (from both network and instance

prespective) but not performing forwarding decisions. May run on

a D-Router, but it can be also implementated as a separate module

(e.g., a software library) collocated with a service instance.

Dyncast Service ID, an identifier representing a service,

which the clients use to access said service. Such identifier

identifies all of the instances of the same service, no matter on

¶

¶

¶

¶

¶

¶

¶

D-BID:

Service demand:

Service request:

where they are actually running. D-SID is independent of which

service instance serves the service demand. Usually multiple

instances provide a (logically) single service, and service

demands are dispatched to the different instance through an

anycast model, i.e., choosing one instance among all available

instances.

Dyncast Binding ID, an address to reach a service instance

for a given D-SID. It is usually a unicast IP where service

instances are attached. Different service instances provide the

same service identified through D-SID but with different Dyncast

Binding IDs.

The demand for a specific service and addressed to

a specific D-SID.

The request for a specific service and addressed

to a specific service instance identified with D-BID.

3. Architecture Main Concepts

Dyncast assumes that there are multiple equivalent service instances

running on different edge sites, globally providing one single

service which is represented by D-SID. The network will take

forwarding decision for the service demand from the client according

to both service instances status as well as network state.

The architecture of Dyncast has two typical modes, distributed or

centralized.

Distributed mode: The resources and status of the different

service instances are propagated from the D-Routers connecting

the edge sites where the service is deployed to the D-Routers

with clients. In addition D-Routers have the network topology and

status. The ingress D-Router which receives the service demand

from the client decides independently which service instance to

access according to the service instances status and network

state and maintains instance affinity.

Centralized mode: The resources and status of the different

service instances are reported to the network controller from the

D-Routers connecting the edge sites where the service is

deployed. At the same time the controller collects the network

topology and status. The controller makes routing decisions for

each ingress D-Router according to the service instances status

and network state and downloads the decisions to all the ingress

D-Routers. When the ingress D-Router receives the service demand

from the client, it selects which service instance to access

according to the decision made by the controller, and maintains

the instance affinity subsequently.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

This document mainly introduces the detailed process of the

distributed mode, and the centralized mode will be introduced in

detail in the future.

Edge sites (edges for short) are normally the sites where edge

computing is performed. Service instances are initiated at different

edge sites. Thus, a single service can actually have a significant

number of instances running on different edges. A Dyncast Service ID

(D-SID) is used to uniquely identify a service (e.g., a matrix

computation for face recognition, or a game server). Service

instances can be hosted on servers, virtual machines, access routers

or gateway in edge data center.

Close to (one or more) Service instances is the Dyncast Metric Agent

(D-MA). This element has the task to gather information about

resources and status of the different instances as well as network-

related information. Such element may also run in a dyncast-enable

router (named D-Router), while other deployment scenarios may lead

to this element running separately on edge nodes.

A D-Router is actually the main element in a Dyncast network,

providing the capability to exchange the information about the

computing resources information of service instances which have been

gathered through D-MAs. A D-Router can also be a service access

point for clients. When a service demand arrives, it will be

delivered to the most appropriate service instance. A service demand

may be the first packet of a data flow rather than an explicit out

of band service request. This architectural document does not make

any specific assumption on this matter. This documents only assumes

that:

D-Routers are able to identify new service demands. The Dyncast

architecture presented in this document allows then to deliver

such a packet to the most appropriate service instance according

to information received from D-MAs and other D-Routers.

D-Router are able to identify packets belonging to an existing

service demand. The Dyncast architecture presented in this

document allows to deliver these packets always to the same

service instance selected at the initial service demand. We term

this capability as 'instance affinity'.

Note: As described above, D-Router can make decision based on per-

service-instance computing-aware information. Actually, the D-Router

can make the decison based on per-site computing-aware information.

In this case, the egress D-Router can send the packet to the

specific instance based on local policy, Load balancing, etc. This

will be described in the future.

¶

¶

¶

¶

*

¶

*

¶

¶

The element introduced above are depicted in Figure 1, which shows

the proposed Dyncast architecture. In Figure 1, the "infrastructure"

indicates the general IP infrastructure that does not necessarily

need to support Dyncats, i.e., not all routers of the infrastructure

need to be D-Routers.

Figure 1: Dyncast Architecture.

Figure 2 shows an example of Dyncast deployment, with 2 service

instantiated twice (2 instances) on two different edges, namely edge

site 2 and 3. Those service instances utilize different D-BIDs to

serve service demands. D-Router 1 doesn't connect the edge site

directly and needn't collect the metric updates by D-MA. But it has

client to access and need to take forwarding decision for the

client. D-Router 2 gets metric updates by D-MA which runs on it.

Edge site 2 has client present, so D-Router 2 need to take

forwarding decision. D-Router 3 gets metric updates from D-MA which

is a separate software module on edge computing platform in edge

site 3. No client is present at edge site 3, so D-Router 3 doesn't

need take forwarding decision.

¶

 edge site 1 edge site 2 edge site 3

 +------------+ +------------+

 +------------+ | +------------+ |

 | service | | | service | |

 | instance |-+ | instance |-+

 +------------+ +------------+

 | |

 +----------+ |

 | D-MA | |

 +----------+ +----------+

 | +-----------------+ | D-MA |

 +----------+ | | +----------+

 |D-Router 1| ----| Infrastructure |---- |D-Router 3|

 +----------+ | | +----------+

 | +-----------------+ |

 | | |

 | | |

 | +----------+ |

 | |D-Router 2| |

 | +----------+ |

 | | |

 | | |

 +-----+ +------+ +------+

 +------+| +------+ | +------+ |

 |client|+ |client|-+ |client|-+

 +------+ +------+ +------+

¶

Figure 2: Dyncast deployment example.

In Figure 2, the Dyncast Service ID (D-SID) follows an anycast

semantic, such as provided through an IP anycast address. It is used

to access a specific service no matter which service instance

eventually handles the service demand of the client. Clients or

other entities which want to access a service need to know about its

D-SID in advance. It can be achieved in different ways, for example,

 D-SID: Dyncast Service ID

 D-BID: Dyncast Binding ID

 Service/Metrics Information

 (D-SID 1, D-BID 21, <metrics>)

 (D-SID 2, D-BID 22, <metrics>)

 <----------------->

 +-------+

 +-------+ | D-SID 1

 |Clients|-+ +--------+

 +-------+ +--|D-BID 21| instance 1

 | | +--------+

 +----------+----+ | Edge 2

 |D-Router 2|D-MA|--| D-SID 2

 +----------+----+ | +--------+

 | +--|D-BID 22| instance 2

 +----------------+ +--------+

 | |

 | |

+------+ +----------+ | |

|Client|--|D-Router 1|--| Infrastructure |

+------+ +----------+ | |

 | | D-SID 2

 | | +--------+

 +----------------+ +---|D-BID 32| instance 3

 | | +--------+

 +----------+ +------+ Edge 3

 |D-Router 3| -| D-MA |

 +----------+ +------+ D-SID 1

 | +--------+

 +---|D-BID 31| instance 4

 +--------+

 <---------------------------------->

 (D-SID 2, D-BID 32, <metrics>)

 (D-SID 1, D-BID 31, <metrics>)

 Service/Metrics Information

using a special range of addresses associated to a certain service

or coding of anycast IP address as D-SID, or using DNS.

The Dyncast Binding ID (D-BID) is a unicast IP address. It is

usually the interface IP address through to reach a specific service

instance. Mapping and binding a D-SID to a D-BID is dynamic and

depends on the computing and network status at the time the service

demand first arrives (see Section 4.1 for the reporting of such

status). To ensure instance affinity, D-Routers are requested to

remember the instance that has been selected (e.g., by storing the

mapping) for delivering all packets to the same instance (see

Section 4.2 for discussing this aspect).

4. Dyncast Architecture Workflow

The following subsections provide an overview of how the

architectural elements introduced in the previous section do work

together.

4.1. Service Notification/Metrics Update

When a service instance is instantiated/terminated the service

information consisting in the mapping between the D-SID and the D-

BID has to be updated/deleteted as well. An update can also be

triggered by a change in relevant metrics (e.g., an instance becomes

overloaded). Computing resource information of service instance is

key information in Dyncast. Some of them may be relatively static

like CPU/GPU capacity, and some may be very dynamic, for example,

CPU/GPU utilization, number of sessions associated, number of

queuing requests. Changes in service-related relevant information

has to be collected by D-MA associated to each service instance.

Various ways can be used, for example, via routing protocols like

EBGP or via an API of a management system. Conceptually a D-Router

collects information coming from D-MA and keeps track of the IDs and

computing metrics of all service instances. The rate for metrics

update depends on the specific algorithm and is out of scope of this

document. The update will be sync up only among related D-routers,

and will not affect other routers/devices in the network.

Figure 2 shows an example of information shared by the Dyncast

elements. The D-MA which is deployed with D-Router2 shares binding

information concerning the two instances of the two services running

on edge 2 (upper right hand side of the figure). These information

is:

(D-SID 1, D-BID 21, metrics)

(D-SID 2, D-BID 22, metrics)

¶

¶

¶

¶

¶

* ¶

* ¶

The D-MA which is deployed as a separate module on edge 3 (lower

right hand side of the figure) shares binding information concerning

the two instances of the two services running on edge 3. These

information is:

(D-SID 1, D-BID 31, metrics)

(D-SID 2, D-BID 32, metrics)

Dyncast nodes share among themselves the service information

including the associated computing metrics for the service instances

attached to them. As a network node, a D-Router can also monitor the

network cost or metrics (e.g., congestion) to reach other D-Routers.

This is the focus of Dyncast control plane. Different mechanisms can

be used to share such information, for instance BGP ([RFC4760]), an

IGP, or a controller based mechanism. The specific mechanism is

beyond the scope of this document. The architecture assumes that the

Dyncast elements are able to share relevant information.

If, for instance, the client on the left hand side of Figure 2 sends

a service demand for D-SID1, D-Router1 has the knowledge of the

status of the service instance on both edge 2 and edge 3 and can

make a decision toward which D-BID to forward the demand.

There are different ways to represent the computing metrics. A

single digitalized value calculated from weighted attributes like

CPU/GPU consumption and/or number of sessions associated may be used

for simplicity reasons. However, it may not accurately reflect the

computing resources of interest. Multi-dimensional values give finer

information. This architectural document does not make any specific

assumption about metrics and how to encode or even use them. As

stated in Section 3, the only assumption is that a D-Router is able

to use such metrics so to take a decision when a service demand

arrives in order to map the demand onto a suitable service request.

As explained in the problem statement document [I-D.liu-dyncast-ps-

usecases], computing metrics may change very frequently, when and

how frequent such information should be exchanged among Dyncats

elements should be determined also in accordance with the

distribution protocol used for such purpose. A spectrum of

approaches can be employed,such as interval based updates, threshold

triggered updates, policy based updates, etc.

4.2. Service Demand Dispatch and Instance Affinity

This is the focus of the Dyncast data plane. When a new flow

(representing a service demand) arrives at a Dyncast ingress, such

ingress node selects the most appropriate egress according to the

network status and the computing resource of the attached service

instances.

¶

* ¶

* ¶

¶

¶

¶

¶

¶

Instance affinity is one of the key features that Dyncast should

support. It means that packets from the same 'flow' for a service

should always be sent to the same egress to be processed by the same

service instance. The affinity is determined at the time of newly

formulated service demand.

It is worth noting that different services may have different

notions of what constitutes a 'flow' and may thus identify a flow

differently. Typically a flow is identified by the 5-tuple value.

However, for instance, an RTP video streaming may use different port

numbers for video and audio, and it may be identified as two flows

if 5-tuple flow identifier is used. However they certainly should be

treated by the same service instance. Therefore a 3-tuple based flow

identifier is more suitable for this case. Hence, it is desired to

provide certain level of flexibility in identifying flows, or from a

more general perspective, in identifying the set of packets for

which to apply instance affinity. More importantly, the means for

identifying a flow for the purpose of ensuring instance affinity

must be application-independent to avoid the need for service-

specific instance affinity methods.

Specifically, Instance affinity information should be configurable

on a per-service basis. For each service, the information can

include the flow/packets identification type and means, affinity

timeout value, and etc. For instance, the affinity configuration can

indicate what are the values, e.g., 5-tuple or 3-tuple, to be used

as the flow identifier.

When the most appropriate egress and service instance is determined

when a new flow for a service demand arrives, a binding table should

save this association between new service demand and service

instance selection. The information in such binding table may

include flow/packets identification, affinity timeout value, etc.

The subsequent packets matching the entry are forwarded based on the

table. Figure 3 shows a possible example of flow binding table at

the ingress D-Router.

Figure 3: Example of what a binding table can look like.

¶

¶

¶

¶

+---+----------------+--------+

| Flow/Packets Identifier | | |

+------+--------+---------+--------+------+ D-BID egress | timeout|

|src_IP| dst_IP |src_port |dst_port|proto | | |

+------+--------+---------+--------+------+----------------+--------+

| X | D-SID 2| - | 8888 | tcp | D-BID 32 | xxx |

+------+--------+---------+--------+------+----------------+--------+

| Y | D-SID 2| - | 8888 | tcp | D-BID 12 | xxx |

+------+--------+---------+--------+------+----------------+--------+

5. Dyncast Control-plane vs Data-plane operations

In summary, Dyncast consists of the following Control-plane and

Data-plane operations:

Dyncast Control Plane:

Dyncast Service ID Notification: the D-SID, an anycast IP

address, should be available and known. This can be achieved

in different ways. For example, use a special range or coding

of anycast IP address as service IDs or using the DNS.

Dyncast Binding ID Notification: the mapping of (D-SID, D-

BID), i.e., service ID and the binding address, should be

notified to the D-Routers when the service instance starts (or

stops). Various ways can be used, for example, EBGP or

management system notification.

Metrics Notification: D-MA have to be able to share the

metrics for a service and its binding ID so that D-Routers can

select the "best" instance for each new service demand.

Dyncast Data Plane:

New service demand: an ingress D-Router selects the most

appropriate egress in terms of the network status and the

computing resources of the instances of the requested service.

Instance Affinity: Make sure the subsequent packets of an

existing service demand are always delivered to the same

service instance so that they can be served by the same

service instance.

6. Summary

This draft introduces a Dyncast architecture that enables the

service demand to be sent to an optimal service instance. It can

dynamically adapt to the computing resources consumption and network

status change. Dyncast is a network based architecture that supports

a large number of edges and is independent of the applications or

services hosted on the edge.

More discussion and input on control plane and data plane approach

are welcome.

7. Security Considerations

The computing resource information changes over time very frequent

with the creation and termination of service instance. When such

information is carried in routing protocol, too many updates can

¶

* ¶

-

¶

-

¶

-

¶

* ¶

-

¶

-

¶

¶

¶

[RFC4760]

[I-D.liu-dyncast-ps-usecases]

make the network fluctuate. Control plane approach should take it

into considerations.

More thorough security analysis to be provided in future revisions.

8. IANA Considerations

This document does not make any request to IANA.

9. Contributors

Huijuan Yao

yaohuijuan@chinamobile.com

China Mobile

Xia Chen

jescia.chenxia@huawei.com

Huawei

10. Informative References

Bates, T., Chandra, R., Katz, D., and Y. Rekhter,

"Multiprotocol Extensions for BGP-4", RFC 4760, DOI

10.17487/RFC4760, January 2007, <https://www.rfc-

editor.org/info/rfc4760>.

Liu, P., Eardley, P., Trossen, D., Boucadair, M.,

Contreras, L. M., and C. Li, "Dynamic-Anycast (Dyncast)

Use Cases and Problem Statement", Work in Progress,

Internet-Draft, draft-liu-dyncast-ps-usecases-03, 7 March

2022, <https://www.ietf.org/archive/id/draft-liu-dyncast-

ps-usecases-03.txt>.

Acknowledgements

TBD

Authors' Addresses

Yizhou Li

Huawei Technologies

Email: liyizhou@huawei.com

Luigi Iannone

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc4760
https://www.rfc-editor.org/info/rfc4760
https://www.ietf.org/archive/id/draft-liu-dyncast-ps-usecases-03.txt
https://www.ietf.org/archive/id/draft-liu-dyncast-ps-usecases-03.txt
mailto:liyizhou@huawei.com

Huawei Technologies

Email: Luigi.iannone@huawei.com

Dirk Trossen

Huawei Technologies

Email: dirk.trossen@huawei.com

Peng Liu

China Mobile

Email: liupengyjy@chinamobile.com

Cheng Li

Huawei Technologies

Email: c.l@huawei.com

mailto:Luigi.iannone@huawei.com
mailto:dirk.trossen@huawei.com
mailto:liupengyjy@chinamobile.com
mailto:c.l@huawei.com

	Dynamic-Anycast Architecture
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Definition of Terms
	3. Architecture Main Concepts
	4. Dyncast Architecture Workflow
	4.1. Service Notification/Metrics Update
	4.2. Service Demand Dispatch and Instance Affinity

	5. Dyncast Control-plane vs Data-plane operations
	6. Summary
	7. Security Considerations
	8. IANA Considerations
	9. Contributors
	10. Informative References
	Acknowledgements
	Authors' Addresses

