
Workgroup: rtgwg

Internet-Draft:

draft-li-dyncast-architecture-08

Published: 17 January 2023

Intended Status: Standards Track

Expires: 21 July 2023

Authors: Y. Li

Huawei Technologies

L. Iannone

Huawei Technologies

D. Trossen

Huawei Technologies

P. Liu

China Mobile

C. Li, Ed.

Huawei Technologies

Dynamic-Anycast Architecture

Abstract

This document describes an architecture for the Dynamic-Anycast

(Dyncast). It includes an architecture overview, main components,

and the workflow of control plane and dataplane.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 21 July 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

2.1. Requirements Language

3. Architecture and Components

4. Dyncast Architecture Workflow

4.1. Service Announcements

4.2. Metric Distributions

4.3. Service Demand Handling

4.4. Instance Affinity

5. Security Considerations

6. IANA Considerations

7. Contributors

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

1. Introduction

Edge computing has been expanding from single edge nodes to multiple

networked collaborating edge nodes to solve the issues like response

time, resource optimization, and network efficiency.

The current network architecture in edge computing provides

relatively static service dispatching, often to the closest edge

from an IGP perspective, or to the server with the most computing

resources without considering the network status, and even sometimes

just based on static configuration.

As described in [I-D.liu-can-ps-usecases],traffic steering that

takes into account computing resource metrics would benefit several

use-cases, such as AR/VR. This document provides an architectural

framework, which will enable compute- and network-aware traffic

steering decisions in edge computing.

The Dyncast architecture proposed in this document is an ingress-

based overlay architecture for the selection of a suitable service

instance from a set of possibly several ones, where 'suitable' may

be determined through a combination of networking and computing

related metrics.

Dyncast assumes that there are multiple service instances running on

different edge nodes, globally providing one single service. A

single edge may have limited computing resources available, and

¶

¶

¶

¶

¶

different edges likely have different resources available, such as

CPU or GPU.

The main principle of Dyncast is that multiple edge nodes are

interconnected and collaborate with each other to achieve a holistic

objective of dispatching service demands, by taking into account

both service instances status as well as network state (e.g., paths

length, price and their congestion).

This document describes an architecture to realize Dyncast, the

workflow of main procedures in control and data plane.

2. Terminology

Dyncast: As defined in [I-D.liu-can-ps-usecases], Dynamic

Anycast, taking the dynamic nature of computing resource metrics

into account to steer an anycast routing decision.

Service: As defined in [I-D.liu-can-ps-usecases], a monolithic

functionality that is provided by an endpoint according to the

specification for said service. A composite service can be built

by orchestrating monolithic services.

Service instance: As defined in [I-D.liu-can-ps-usecases],

running environment (e.g., a node) that makes the functionality

of a service available. One service can have several instances

running at different network locations.

D-Router: A node supporting Dyncast functionalities as described

in this document. Namely it is able to understand both network-

related and service-instances-related metrics, take forwarding

decision based upon and maintain instance affinity, i.e.,

forwards packets belonging to the same service demand to the same

instance.

Ingress D-Router: a service access point for Dyncast clients. It

makes the routing decision to encapsulate the service packets

into an overlay path to an Egress D-Router linked to the most

suitable edge site/instance.

Egress D-Router: An Egress D-Router is the egress endpoint of an

overlay path.

D-MA: Dyncast Metric Agent (D-MA): A dyncast specific agent able

to gather and send metric updates (from both network and instance

perspective) but not performing forwarding decisions. May run on

a D-Router, but it can be also implemented as a separate module

(e.g., a software library) collocated with a service instance.

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

D-SID: Dyncast Service ID, an identifier representing a service,

which the clients use to access said service. Such identifier

identifies all of the instances of the same service, no matter on

where they are actually running. D-SID is independent of which

service instance serves the service demand. Usually multiple

instances provide a (logically) single service, and service

demands are dispatched to the different instance through an

anycast model, i.e., choosing one instance among all available

instances.

D-BID: Dyncast Binding ID, an address to reach a service instance

for a given D-SID. It is usually a unicast IP where service

instances are attached. Different service instances provide the

same service identified through D-SID but with different Dyncast

Binding IDs.

Service demand: The demand for a specific service and addressed

to a specific D-SID.

Service request: The request for a specific service instance.

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Architecture and Components

Dyncast assumes that there are multiple equivalent service instances

running on different edge sites, providing one single service which

is represented by D-SID. The network will take forwarding decision

for the service demand from the client according to both service

instances status as well as network status. The architecture is

shown below.

*

¶

*

¶

*

¶

* ¶

¶

¶

Figure 1: Dyncast Architecture.

Edge sites (edges for short) are normally the sites where edge

computing is performed. Service instances are initiated at different

edge sites. Thus, a single service can actually have a significant

number of instances running on different edges. A Dyncast Service ID

(D-SID) is used to uniquely identify a service (e.g., a matrix

computation for face recognition, or a game server). Service

instances can be hosted on servers, virtual machines, access routers

or gateway in edge data center.

Close to (one or more) Service instances is the Dyncast Metric Agent

(D-MA). This element has the task to gather information about

resources and status of the different instances as well as network-

related information. The information of resource and status will be

presented as one or more metrics and associate with the D-SID. D-MAs

also need to send the D-SID routes with computing-related metrics to

the Egress D-Routers proactively. A D-MA may also run in a dyncast-

enable router (named D-Router), while other deployment scenarios may

lead to this element running separately on edge nodes. In the case

 edge site 1 edge site 2

 +------------+ +------------+

 +------------+ | +------------+ |

 | service | | | service | |

 | instance |-+ | instance |-+

 +------------+ +------------+

 | |

 +----------+ |

 | D-MA | |

 +----------+ |

 | +----------+

 | +-----------------+ | D-MA |

 +----------+ | Underlay | +----------+

 |D-Router 1| ----| Infrastructure |---- |D-Router 3|

 +----------+ | | +----------+

 +-----------------+

 |

 |

 +----------+

 +---------------- |D-Router 2|--------------+

 | +----------+ |

 | | |

 | | |

 +-----+ +------+ +------+

 +------+| +------+ | +------+ |

 |client|+ |client|-+ |client|-+

 +------+ +------+ +------+

¶

of running in a D-Router, the D-SID routes with computing-related

metrics can be synchronized up within the system.

The D-Router is the main element in a Dyncast network. There are two

types of D-Routers: Egress D-Router and Ingress D-Router.

Egress D-Router: An Egress D-Router is the egress endpoint of an

overlay path. It distributes information on D-SID metrics, as

well as information of identifying the Egress D-Router, to the

associated Ingress D-Routers. Normally, a site may be linked to

one or more Egress D-routers.

Ingress D-Router: a service access point for Dyncast clients. It

will receive the information on D-SIDs metrics and egress D-

Routers as distributed from associated Egress D-Routers, and

generate the routing decision based on the network-related and

computing-related metrics. Some network metrics can be learned on

the ingress D-Router by detecting, such as the latency and

bandwidth from the ingress to an egress D-Router. Usually, the

routing decision will indicate the Ingress D-Router to

encapsulate the service packets into an overlay path to an Egress

D-Router linked to the most suitable edge site/instance.

Note: Depending on deployment requirements, per-instance computing-

related metrics or per-site aggregated computing-related metrics can

be used in routing decision. In deployment, using per-site

aggregated computing-related metrics is a more practical choice.

When a service packet is decapsulated on an Egress D-Router, it will

be sent to the service instance within the edge site by looking up

the destination address in the FIB.

Within the edge site, Load balancing and/or NAT may be used if

needed. When using NAT, the D-SID will be translated into a unicast

address associated to a specific service instance, and this unicast

address is called D-BID(Dyncast Binding ID). There is no needed to

configure a B-SID for a service instance if NAT is not needed.

In Figure 1, the "underlay infrastructure" indicates the general IP

infrastructure that does not need to support Dyncast. The Dyncast

routes will be distributed among the overlay D-Routers, and will not

affect the underlay nodes. An implementation may use an IP protocol

or an IT solution in Layer 3, Layer 3.5, Layer 4 or even Layer 7 to

distribute the Dyncast routes with computing-related metrics. This

document will not define a specific solution in current stage.

The above text describe a distributed architecture of Dyncast.

However, a centralized architecture can also work. In the

centralized architecture, the computing-related metrics from the

Egress D-Routers or D-MAs are collected by a centralized controller/

¶

¶

*

¶

*

¶

¶

¶

¶

¶

PCE. Considering both the network-related metrics and computing-

related metrics, the Controller/PCE can calculate the best path for

a D-SID and send it to the related Ingress D-Router. An

implementation may use an IP protocol or an IT solution in Layer 3,

Layer 3.5, Layer 4 or even Layer 7 to collect the Dyncast routes

with computing-related metrics. This document will not define a

specific solution in current stage.

4. Dyncast Architecture Workflow

The following section provides an overview of how the Dyncast

solution works in the distributed architecture.

4.1. Service Announcements

Normally, a service is associated with an IP address, which can be

an IPv6 address. In Dyncast, this IP address is called D-SID, and it

can be used by multiple service instances, which makes it as an

Anycast address in routing. This address can be learned via DNS

resolution or other mechanisms, this document will not limit this.

4.2. Metric Distributions

As described above, a D-MA will collect computing-related metrics

and associates the metrics to a related D-SID route. It will also

send the D-SID route with the metrics to the connected Egress D-

Router. The Egress D-Router will distribute the D-SID route with the

metrics to the related Ingress D-Routers. The metrics include the

computing-related metrics and potential other network metrics if

needed.

As explained in the problem statement document

[I-D.liu-can-ps-usecases], computing metrics may change very

frequently, when and how frequent such information should be

distributed should be determined also in accordance with the

distribution protocol used for such purpose. A spectrum of

approaches can be employed, such as interval based updates,

threshold triggered updates, policy based updates, etc.

The following example is provided for better understanding of how

Dyncast metrics are distributed. Routes of D-SID1 and D-SID2 with

related metrics are sent from the D-MA to D-Router 2. D-Router 2

generates overlay routes of D-SID1 and D-SID2, and distribute them

to the associated Ingress D-Router 1.

¶

¶

¶

¶

¶

¶

Figure 2: Dyncast deployment example.

4.3. Service Demand Handling

Ingress D-Routers can make their routing decision based on the

received routes and metrics. The metrics include network-related

metrics and computing-related metrics, while the network metrics can

be learned by detecting on the ingress D-Router, and the computing-

related metrics are learned from the received D-SID's routes. This

document will not define any algorithm of making the routing

decision. The routing decision may indicate the Ingress D-Router to

encapsulate the service packets into an overlay path towards to the

'best' Egress D-Router. In the example provided in above figure, the

Ingress D-Router 1 generate the routes of D-SID1 and D-SID2 with

next hop as an overlay path to a specific Egress D-router 2 or D-

Router 3.

 D-SID: Dyncast Service ID

 +-------+

 +-------+ |

 |Clients|-+ +-------+

 +-------+ +--|D-SID 1| instance 1

 | | +-------+

 +----------+----+ | Edge 2

 |D-Router 2|D-MA|--|

 Dyncast Forwarding Table +----------+----+ | +-------+

 D-SID 1, <metrics>, overlay path to D-router 2 | +--|D-SID 2| instance 2

 D-SID 2, <metrics>, overlay path to D-router 2 +----------------+ +-------+

 D-SID 1, <metrics>, overlay path to D-router 3 | |

 D-SID 2, <metrics>, overlay path to D-router 3 | |

 +------+ +----------+ | Underlay |

 |Client|-----|D-Router 1|-----------------------| Infrastructure |

 +------+ +----------+ | |

 | |

 | | +-------+

 +----------------+ +---|D-SID 2| instance 3

 | | +-------+

 +----------+ +------+ Edge 3

 |D-Router 3|-----| D-MA |

 +----------+ +------+

 | +-------+

 +---|D-SID 1| instance 4

 +-------+

 <-------------------------------- <--------------

 (Overlay route of D-SID 1, <metrics>) (D-SID 1, <metrics>)

 (Overlay route of D-SID 2, <metrics>) (D-SID 2, <metrics>)

 Service overlay route with metrics Service route with metrics

¶

When a new service transaction starts, an initial service packet is

sent from the client to its Dyncast Ingress D-Router. Upon receiving

the service packet, the ingress will forward the packets to the

'best' egress D-Router through an overlay path. When the service

packet reaches the egress D-router, the outer header of the overlay

encapsulation will be decapsulated and the inner service packet will

be sent to the 'best' service instance.

4.4. Instance Affinity

Instance affinity is one of the key features that Dyncast should

support. It means that packets from the same 'flow' for a service

should always be sent to the same egress to be processed by the same

service instance. The affinity is determined at the time of newly

formulated service demand.

Note: Different services may have different notions of what

constitutes a 'flow' and may thus identify a flow differently.

Typically a flow is identified by the 5-tuple value. However, for

instance, an RTP video streaming may use different port numbers for

video and audio, and it may be identified as two flows if 5-tuple

flow identifier is used. However they certainly should be treated by

the same service instance. Therefore a 3-tuple based flow identifier

is more suitable for this case. Hence, it is desired to provide

certain level of flexibility in identifying flows, or from a more

general perspective, in identifying the set of packets for which to

apply instance affinity. More importantly, the means for identifying

a flow for the purpose of ensuring instance affinity must be

application-independent to avoid the need for service-specific

instance affinity methods.

Specifically, Instance affinity information should be configurable

on a per-service basis. For each service, the information can

include the flow/packets identification type and means, affinity

timeout value, and etc.

This document will not define the specific mechanism of affinity,

and it can be discussed in specific solution drafts.

5. Security Considerations

The computing resource information changes over time very frequent

with the creation and termination of service instance. When such

information is carried in routing protocol, too many updates can

make the network fluctuate. Control plane approach should take it

into considerations.

6. IANA Considerations

TBD

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC8174]

[I-D.liu-can-ps-usecases]

[I-D.liu-dyncast-ps-usecases]

7. Contributors

Huijuan Yao, yaohuijuan@chinamobile.com, China Mobile

Xia Chen, jescia.chenxia@huawei.com, Huawei

Jianwei Mao, maojianwei@huawei.com

Hang Shi, shihang9@huawei.com, Huawei

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

Liu, P., Eardley, P., Trossen, D., Boucadair, M.,

Contreras, L. M., Li, C., and Y. Li, "Computing-Aware

Networking (CAN) Problem Statement and Use Cases", Work

in Progress, Internet-Draft, draft-liu-can-ps-

usecases-00, 23 October 2022, <https://www.ietf.org/

archive/id/draft-liu-can-ps-usecases-00.txt>.

Liu, P., Eardley, P., Trossen, D., Boucadair, M.,

Contreras, L. M., Li, C., and Y. Li, "Dynamic-Anycast

(Dyncast) Problem Statement and Use Cases", Work in

Progress, Internet-Draft, draft-liu-dyncast-ps-

usecases-04, 8 July 2022, <https://www.ietf.org/archive/

id/draft-liu-dyncast-ps-usecases-04.txt>.

Authors' Addresses

Yizhou Li

Huawei Technologies

China

Email: liyizhou@huawei.com

Luigi Iannone

* ¶

* ¶

* ¶

* ¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.ietf.org/archive/id/draft-liu-can-ps-usecases-00.txt
https://www.ietf.org/archive/id/draft-liu-can-ps-usecases-00.txt
https://www.ietf.org/archive/id/draft-liu-dyncast-ps-usecases-04.txt
https://www.ietf.org/archive/id/draft-liu-dyncast-ps-usecases-04.txt
mailto:liyizhou@huawei.com

Huawei Technologies

Email: Luigi.iannone@huawei.com

Dirk Trossen

Huawei Technologies

Email: dirk.trossen@huawei.com

Peng Liu

China Mobile

China

Email: liupengyjy@chinamobile.com

Cheng Li (editor)

Huawei Technologies

China

Email: c.l@huawei.com

mailto:Luigi.iannone@huawei.com
mailto:dirk.trossen@huawei.com
mailto:liupengyjy@chinamobile.com
mailto:c.l@huawei.com

	Dynamic-Anycast Architecture
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	2.1. Requirements Language

	3. Architecture and Components
	4. Dyncast Architecture Workflow
	4.1. Service Announcements
	4.2. Metric Distributions
	4.3. Service Demand Handling
	4.4. Instance Affinity

	5. Security Considerations
	6. IANA Considerations
	7. Contributors
	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses

