
Workgroup: QUIC

Internet-Draft:

draft-li-quic-optimizing-ack-in-wlan-04

Published: 12 May 2022

Intended Status: Experimental

Expires: 13 November 2022

Authors: T. Li

Renmin University of China

K. Zheng

Huawei

R.A. Jadhav

Huawei

J. Kang

Huawei

Optimizing ACK mechanism for QUIC

Abstract

The dependence on frequent acknowledgments (ACKs) is an artifact of

current transport protocol designs rather than a fundamental

requirement. This document analyzes the problems caused by

contentions and collisions on wireless medium between data packets

and ACKs in WLAN and it proposes an ACK mechanism that minimizes the

intensity of ACK Frame in QUIC, improving the performance of

transport layer connection.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 November 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Requirements Language

2. Problem Statement

3. Overview of Standards on ACK Mechanism

4. Optimized ACK Mechanism for QUIC

4.1. Reducing ACK intensity

4.2. OWD-based RTTmin estimation

4.3. Sender-Side Operation

4.4. Receiver-side Operation

4.5. Generating ACK

4.6. Modification to QUIC Protocol

4.6.1. Transport Parameter: ack-intensity-support

4.6.2. ACK-INTENSITY Frame

4.6.3. TIMESTAMP Frame

4.6.4. ACK Delay Redefinition

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Authors' Addresses

1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

2. Problem Statement

High-throughput transport over wireless local area network (WLAN)

becomes a demanding requirement with the emergence of 4K wireless

projection, VR/AR-based interactive gaming, Metaverse, and more.

However, the shared nature of the wireless medium induces contention

between data transport and backward signaling, such as

acknowledgment. ACKs share the same medium route with data packets,

causing similar medium access overhead despite the much smaller size

of the ACKs. Contentions and collisions, as well as the wasted

wireless resources by ACKs, lead to significant throughput decline

on the data path. This draft follows the roadmap as depicted in

[AOD]

¶

¶

¶

3. Overview of Standards on ACK Mechanism

RFC 9000 [RFC9000] specifies a simple delayed ACK mechanism that a

receiver can send an ACK for every other packet, and for every

packet when reordering is observed, or when the max_ack_delay timer

expires. However, this ACK mechanism may not match the number of

ACKs to the transport's required intensity under different network

conditions. For example, when the data throughput of a WLAN

transport is extremely high, QUIC will generate a large number of

ACKs. In this case, minimizing the ACK intensity of QUIC is not only

a win for data throughput improvement but also a win for energy and

CPU efficiency.

RFC 1122 [RFC1122] and RFC 5681 [RFC5681] were two core

functionality standards that introduced delayed ACK, which was the

default acknowledgment mechanism in most Linux distributions. RFC

4341 [RFC4341] and RFC 5690 [RFC5690] described an acknowledgment

congestion control mechanism in which the minimum ACK frequency

allowed is twice per send window. RFC 3449 [RFC3449] discussed the

imperfection and variability of TCP's acknowledgment mechanism

because of asymmetric effects and recommended scaling ACK frequency

as a mitigation to these effects. These RFCs reveal that the

dependence on frequent ACKs is an artifact of current transport

protocol designs rather than a fundamental requirement. Based on

this insight, some work-in-progress IETF drafts have paid great

attention to ACK scaling technologies in both TCP and QUIC working

groups.

First of all, [ACK-PULL] proposed the TCP ACK pull mechanism, which

allows a sender to request the ACK for a data segment to be sent

without additional delay by the receiver. This helps in some cases

when the delayed ACKs degrade transport performance.

Instead of pulling more ACKs, [QUIC-SCALING] recommended that

reducing the ACK frequency by sending an ACK for at least every 10

received packets and [QUIC-SATCOM] recommended an ACK frequency of

four ACKs every round-trip time (RTT), aiming to reduce link

transmission costs for asymmetric paths.

Different from using an empirical value of ACK frequency, instead,

we try to improve the scalability by proposing a novel ACK mechanism

named Tame ACK (TACK), whose frequency is a function of bandwidth-

delay product of network connections. The detailed TCP-based

implementation (i.e., TCP-TACK) details and evaluation results have

been shown in our prior work [Tong]. TCP-based implementation

depends on the middleboxes to permit the extended-option-packets

through, which might limit applicable scenarios. While QUIC is a

flexible framework of transport protocol that uses UDP as a

substrate to avoid requiring changes to legacy operating systems and

¶

¶

¶

¶

middleboxes, and encrypts most of the packets including ACKs to

avoid incurring a dependency on middleboxes. Hence, this draft

focuses on applying TACK to optimize the ACK mechanism for QUIC.

It is worth noting that [IYENGAR-ACK] has proposed an extension of

sender controlled ACK-FREQUENCY frame for QUIC, which is possible to

be reused to help the sender sync the dynamically adjusted TACK

frequency with the receiver in this case.

4. Optimized ACK Mechanism for QUIC

4.1. Reducing ACK intensity

ACK intensity can be quantified by the unit of Hz, i.e., number of

ACKs per second. Byte-counting ACK and periodic ACK are two

fundamental ways to reduce ACK intensity on the transport layer.

1. Byte-counting ACK: ACK intensity is controlled by sending an ACK

for every L (L >= 2) incoming full-sized packets, in which the

packet size equals to the Max Packet Size (set in the

max_packet_size parameter in QUIC). The intensity of byte-counting

ACK (f_b) is proportional to data throughput (bw):

f_b = bw/L*max_packet_size (1)

In general, f_b can be reduced by setting a large value of L.

However, for a given L, f_b increases with bw. This means when data

throughput is extremely high, the ACK intensity still might be

comparatively large. In other words, the intensity of byte-counting

ACK changes proportionately with bandwidth.

2. Periodic ACK: Byte-counting ACK's unbounded intensity can be

attributed to the coupling between ACK sending and packet arrivals.

Periodic ACK can decouple ACK intensity from packet arrivals,

achieving a bounded ACK intensity when bw is high. The intensity of

periodic ACK (f_pack) is:

f_pack = 1/alpha (2)

Where alpha is the time interval between two ACKs and is a function

of RTT. However, when bw is extremely low, the ACK intensity is

always as high as that in the case of a high throughput. In other

words, the intensity of periodic ACK is unadaptable to bandwidth

change, which wastes resources.

Following the design of TACK [Tong], we combine the above two ways,

and set the minimum ACK intensity in a QUIC connection as f_quic =

min{f_b,f_pack}. Through Equations (1) and (2), we have

f_quic = min{bw/(L*max_packet_size), 1/alpha} (3)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

We set alpha = RTTmin/beta, which means sending beta ACKs per

RTTmin. RTTmin is the minimum RTT observed for a given network path.

As a consequence, the minimum ACK intensity in a QUIC connection can

be given as follow:

f_quic = min{bw/(L*max_packet_size), beta/RTTmin} (4)

where beta indicates the number of ACKs per RTT, and L indicates the

number of full-sized data packets counted before sending an ACK. To

minimize the ACK intensity, a smaller beta or a larger L is

expected. Sara Landstrom et al. has given a lower bound of beta in

[Sara], i.e., beta >= 2. We have further given an upper bound of L,

which can be derived according to the loss rate on the data path

(plr_data) and the ack path (plr_ack), i.e., L <= feedback_info/

(plr_data*plr_ack). Where feedback_info denotes the amount of

information carried by an ACK. The detailed derivation can be

refered in [Tong].

Qualitatively, periodic ACK is applied when bandwidth-delay product

(bdp) is large (i.e., bdp >= beta*L* max_packet_size), and byte-

counting ACK is applied when bdp is small (i.e., bdp < beta*L*

max_packet_size).

In terms of a transport with a large bdp, beta = 2 should be

sufficient to ensure utilization, but the large bottleneck buffer

(i.e., one bdp) makes it necessary to acknowledge data more often.

In general, the minimum send window (SWNDmin) can be roughly

estimated as follow:

SWNDmin = beta*bdp/(beta-1) (5)

Ideally, the bottleneck buffer requirement is decided by the minimum

send window, i.e., SWNDmin - bdp. Since doubling the ACK frequency

reduces the bottleneck buffer requirement substantially from 1 bdp

to 0.33 bdp, beta = 4 is RECOMMENDED to provide redundancy [Sara],

being more robust in practice.

4.2. OWD-based RTTmin estimation

In this document, the RTTmin is the minimum RTT samples observed at

the sender for a given network path during a period of time, and

OWDmin is the minimum OWD samples observed on the same network path

during a period of time.

An RTT estimation system contains a sender and a receiver. The

sender can hardly generate per-packet RTT samples, which is the root

cause of the minimum RTT estimation biases in the case of sending

fewer ACKs. When multiple packets carrying departure timestamps are

transported between endpoints via the same path , an RTT of this

path can be sampled at the sender upon receiving an ACK frame.

¶

¶

¶

¶

¶

¶

¶

¶

However, when sending fewer ACK frames, more data packets might be

received during the ACK interval, generating only one RTT sample

among multiple packets is likely to result in biases. For example, a

larger minimum RTT estimate. In general, the higher the throughput,

the larger the biases. One alternative way to reduce biases can be

that, each ACK frame carries multiple timestamps (as well as ACK

delays in RFC 9002 [RFC9002]) for the sender to generate more RTT

samples. However, (1) the overhead is high, which is unacceptable

especially for high-bandwidth transport. Also, (2) the number of

data packets might be far more than the maximum number of timestamps

that an ACK frame is capable of carrying. Since the receiver is

capable to monitor per-packet state, the one-way delay (OWD) of each

packet can be easily computed according to the departure timestamps

(carried in the packet) and the arrival timestamps of each packet.

In this case, QUIC SHOULD adopt the OWD-based RTTmin estimation. The

rationale is that the variation of OWD reflects the variation of RTT

over near-symmetric links. The OWD-based RTTmin estimation requires

the sender to record the departure timestamp in each ack-eliciting

packet. Meanwhile, at the receiver, the per-packet OWD samples

SHOULD be computed upon packet arrivals and a function of computing

the minimum OWD SHOULD be newly added. The receiver then generates

an ACK frame to the sender, in which the ACK delay and departure

timestamp for the packet that achieves the minimum OWD is reported.

The ACK delay is defined as the delay incurred between when the

packet is received and when the ACK frame is sent. Based on the

information reported by the incoming ACK frames and the ACK arrival

timestamps, the sender can generate RTT samples and then compute

RTTmin accordingly.

In this document, RTTmin is used to update the ACK intensity. In

general, RTTmin can also be used by other modules. For example, some

congestion controllers depends on RTTmin to estimate the congestion

window [Neal]. RTTmin is also used by QUIC loss detection to reject

implausibly small rtt samples RFC 9002 [RFC9002].

4.3. Sender-Side Operation

According to Formula (4), the run-time ACK intensity in QUIC are

decided by bw, and RTTmin. Generally, the RTTmin and bw are

calculated at the sender.

Before estimating the RTTmin, the RTT samples should be computed

based on the ACK frames collected during a period of time. Assume

that a packet is sent by the sender at time t_1 and arrives at time

t_3, and the ACK frame is sent at time t_4. The ACK delay can be

computed at the receiver. For example, the receiver computes the ACK

delay delta_t = t_4 - t_3, and syncs the ACK delay to the sender via

an ACK frame. The ACK delay can also be computed at the sender. For

example, the receiver directly syncs an ACK frame carrying t_4 and

¶

¶

¶

t_3 to the sender, the sender then computes the ACK delay delta_t =

t_4 - t_3.

The sender therefore computes an RTT sample according to delta_t,

t_1, and the arrival time (t_2) of the ACK frame, i.e., RTT_sample =

t_2 - t_1 - delta_t. Measuring delta_t at the receiver assures an

explicit correction for a more accurate RTT estimate. RTT samples

SHOULD be smoothed using exponentially weighted moving average

(EWMA) as specified in [RFC6298]. The sender then computes the

RTTmin according to these RTT samples during a period of time.

The bw estimation can be acquired in a similar manner to BBR [Neal].

Since minimizing the ACK intensity induces excessive ACK delay, the

value of bw may be the average value over a long period of time.

However, the biases introduced in ACK intensity computation is

limited.

After computing the f_quic, the sender periodically syncs it to the

receiver to update the intensity of ACK Frame by sending a new ACK-

INTENSITY frame.

The sender SHOULD generate an ACK-INTENSITY frame on a regular

basis. For example, when the change of f_quic exceeds a threshold,

the ACK-INTENSITY frame should be sent to update the ACK intensity

in time. The interval of ACK-INTENSITY frame can also be set

according to the update window of RTTmin and bw.

4.4. Receiver-side Operation

Currently, the QUIC receiver reports ACK delays for only the largest

acknowledged packet in an ACK frame, hence an RTT sample is

generated using only the largest acknowledged packet in the received

ACK frame. For a more accurate RTTmin estimate when sending fewer

ACK frames, QUIC SHOULD adopt the OWD-based RTTmin estimation. The

OWD-based RTTmin estimation requires the QUIC receiver to filter the

departure timestamp for the packet that achieves the minimum OWD

during the interval between two ACK frames and report the ACK delay

of this packet. Whether redefining the meaning of ACK delay or not,

it depends on the negotiation between endpoints of the QUIC

connection.

Upon packet arrivals, the receiver is capable to generate per-packet

OWD samples according to the difference between packet departure

timestamp and packet arrival timestamp. The receiver then computes

the minimum OWD by comparing the per-packet OWD samples. The OWD

estimation does not require clock synchronization here because the

relative values are adopted.

Afterwards, based on the ACK delay and the departure timestamp

corresponding to the packet that achieves the minimum OWD, the

¶

¶

¶

¶

¶

¶

¶

sender calculates the RTT of this packet as a minimum RTT sample.

Ultimately, the minimum RTT is computed according to these minimum

RTT samples.

The ACK Delay field SHOULD be carried in the ACK Frame. Other fields

carried in the ACK frame have the same meaning as defined in RFC

9002 [RFC9002].

The receiver adopts the newly updated ACK intensity once it receives

the ACK-INTENSITY frame from the sender.

4.5. Generating ACK

The newly proposed ACK mechanism SHOULD be applied when there is no

out-of-order delivery. When reordering happens, the ACK Frame SHOULD

be generated immediately.

4.6. Modification to QUIC Protocol

4.6.1. Transport Parameter: ack-intensity-support

A new field named ack-intensity-support should be added for

negotiation between both parties whether starting the dynamic ACK

intensity function in QUIC connection. The endpoints sends this

parameter during handshakes. Only when both parties agree, ACK

intensity refreshment can be adopted.

ack-intensity-support (0x XX):This parameter has two values (0 or 1)

specifying whether the sending endpoint is willing to adopt ACK

intensity refreshment. When the value is set as 1, it means that the

sending endpoint want to start ACK intensity refreshment during

connection. When the value is set as 0, it means that the sending

endpoint does not support this function.

4.6.2. ACK-INTENSITY Frame

An ACK-INTENSITY frame is shown in Figure 1.

Figure 1: ACK-INTENSITY Frame

¶

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| 0x b0(i) ...

+-+

| Sequence Number(i) ...

+-+

| ACK Intensity (i) ...

+-+

An ACK-INTENSITY frame contains the following fields:

Sequence Number: A variable-length integer indicating the sequence

number assigned to the ACK-INTENSITY frame by the sender.

ACK Intensity: A variable-length integer indicating the updated

f_quic calculated by the sender.

ACK-INTENSITY frames are ack-eliciting. However, their loss does not

require retransmission.

Multiple ACK-INTENSITY frames SHOULD be generated by the sender

during a connection to notify the receiver the variation of ACK

intensity requirement under network dynamics.

4.6.3. TIMESTAMP Frame

Instead of the invasive way of adding a new field in the QUIC public

packet header, it is RECOMMENDED that a new frame be added for

exchanging the departure timestamp of each packet.

A TIMESTAMP frame is shown in Figure 2.

Figure 2: TIMESTAMP Frame

A TIMESTAMP frame contains the following fields:

Departure Timestamp: An integer indicating the departure time of a

packet.

QUIC SHOULD carry the TIMESTAMP Frame in each packet.

4.6.4. ACK Delay Redefinition

The ACK Delay field is carried in the ACK Frame. Currently, the QUIC

receiver reports ACK delays for only the largest acknowledged packet

in an ACK frame, hence an RTT sample is generated using only the

largest acknowledged packet in the received ACK frame. For a more

accurate RTTmin estimate when sending fewer ACK frames, QUIC SHOULD

adopt the OWD-based RTTmin estimation. The OWD-based RTTmin

estimation requires the QUIC receiver to filter the departure

¶

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| 0x b1(i) ...

+-+

| Departure Timestamp (i) ...

+-+

¶

¶

¶

[RFC1122]

[RFC2119]

[RFC3449]

[RFC4341]

[RFC5681]

[RFC5690]

timestamp for the packet that achieves the minimum OWD during the

interval between two ACK frames and report the ACK delay of this

packet. Whether redefining the meaning of ACK delay or not, it

depends on the negotiation between endpoints of the QUIC connection.

In other words, QUIC SHOULD change the way of computing ACK Delay

according to the arrival timestamp of the packet with minimum OWD

instead of the arrival timestamp of the largest acknowledged packet.

5. Security Considerations

TBD

6. IANA Considerations

The value for ack-intensity-support transport parameter and ACK-

INTENSITY frame should be allocated.

7. References

7.1. Normative References

Braden, R., Ed., "Requirements for Internet Hosts -

Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989, <https://www.rfc-editor.org/info/

rfc1122>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Balakrishnan, H., Padmanabhan, V., Fairhurst, G., and M.

Sooriyabandara, "TCP Performance Implications of Network

Path Asymmetry", BCP 69, RFC 3449, DOI 10.17487/RFC3449,

December 2002, <https://www.rfc-editor.org/info/rfc3449>.

Floyd, S. and E. Kohler, "Profile for Datagram Congestion

Control Protocol (DCCP) Congestion Control ID 2: TCP-like

Congestion Control", RFC 4341, DOI 10.17487/RFC4341,

March 2006, <https://www.rfc-editor.org/info/rfc4341>.

Allman, M., Paxson, V., and E. Blanton, "TCP Congestion

Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,

<https://www.rfc-editor.org/info/rfc5681>.

Floyd, S., Arcia, A., Ros, D., and J. Iyengar, "Adding

Acknowledgement Congestion Control to TCP", RFC 5690, DOI

10.17487/RFC5690, February 2010, <https://www.rfc-

editor.org/info/rfc5690>.

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3449
https://www.rfc-editor.org/info/rfc4341
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc5690
https://www.rfc-editor.org/info/rfc5690

[RFC6298]

[RFC9000]

[RFC9002]

[ACK-PULL]

[AOD]

[IYENGAR-ACK]

[Neal]

[QUIC-SATCOM]

[QUIC-SCALING]

Paxson, V., Allman, M., Chu, J., and M. Sargent,

"Computing TCP's Retransmission Timer", RFC 6298, DOI

10.17487/RFC6298, June 2011, <https://www.rfc-editor.org/

info/rfc6298>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

info/rfc9000>.

Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection

and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,

May 2021, <https://www.rfc-editor.org/info/rfc9002>.

7.2. Informative References

Gomez, C., Ed. and J. Crowcroft, Ed., "TCP ACK Pull",

Work in Progress, Internet-Draft, draft-gomez-tcpm-ack-

pull-01, 4 November 2019, <https://datatracker.ietf.org/

doc/html/draft-gomez-tcpm-ack-pull-01>.

Li, T., Zheng, K., and K. Xu, "Acknowledgment On Demand

for Transport Control", IEEE Internet Computing 25(2):

109-115, 2021.

Iyengar, J., Ed. and I. Swett, Ed., "Sender Control of

acknowledgment Delays in QUIC", Work in Progress,

Internet-Draft, draft-iyengar-quic-delayed-ack-02, 2

November 2020, <https://datatracker.ietf.org/doc/html/

draft-iyengar-quic-delayed-ack-02>.

Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H.,

and V. Jacobson, "BBR: Congestion-based congestion

control", ACM QUEUE 14(5):20-53, 2016.

Kuhn, N., Ed., Fairhurst, G., Ed., Border, J., Ed.,

and E. Stephan, Ed., "QUIC for SATCOM", Work in Progress,

Internet-Draft, draft-kuhn-quic-4-sat-06, 30 October

2020, <https://datatracker.ietf.org/doc/html/draft-kuhn-

quic-4-sat-06>.

Fairhurst, G., Ed., Custura, A., Ed., and T. Jones,

Ed., "Changing the Default QUIC ACK Policy", Work in

Progress, Internet-Draft, draft-fairhurst-quic-ack-

scaling-03, 14 September 2020, <https://

https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9002
https://datatracker.ietf.org/doc/html/draft-gomez-tcpm-ack-pull-01
https://datatracker.ietf.org/doc/html/draft-gomez-tcpm-ack-pull-01
https://datatracker.ietf.org/doc/html/draft-iyengar-quic-delayed-ack-02
https://datatracker.ietf.org/doc/html/draft-iyengar-quic-delayed-ack-02
https://datatracker.ietf.org/doc/html/draft-kuhn-quic-4-sat-06
https://datatracker.ietf.org/doc/html/draft-kuhn-quic-4-sat-06
https://datatracker.ietf.org/doc/html/draft-fairhurst-quic-ack-scaling-03

[Sara]

[Tong]

datatracker.ietf.org/doc/html/draft-fairhurst-quic-ack-

scaling-03>.

Landstrom, S. and L. Larzon, "Reducing the tcp

acknowledgment frequency", ACM SIGCOMM CCR 37(3):5-16,

2007.

Li, T., Zheng, K., Xu, K., Jadhav, R. A., Xiong, T.,

Winstein, K., and K. Tan, "TACK: Improving Wireless

Transport Performance by Taming Acknowledgments", ACM

SIGCOMM 2020:15-30, 2020.

Authors' Addresses

Tong Li

Renmin University of China

Room 421, Information Building, Renmin University of China

Haidian District

Beijing

China

Email: tong.li@ruc.edu.cn

Kai Zheng

Huawei

Information Road, Haidian District

Beijing

China

Email: kai.zheng@huawei.com

Rahul Arvind Jadhav

Huawei

D2-03,Huawei Industrial Base

Longgang District

Shenzhen

China

Email: rahul.jadhav@huawei.com

Jiao Kang

Huawei

D2-03,Huawei Industrial Base

Longgang District

Shenzhen

China

Email: kangjiao@huawei.com

https://datatracker.ietf.org/doc/html/draft-fairhurst-quic-ack-scaling-03
https://datatracker.ietf.org/doc/html/draft-fairhurst-quic-ack-scaling-03
mailto:tong.li@ruc.edu.cn
mailto:kai.zheng@huawei.com
mailto:rahul.jadhav@huawei.com
mailto:kangjiao@huawei.com

	Optimizing ACK mechanism for QUIC
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Requirements Language
	2. Problem Statement
	3. Overview of Standards on ACK Mechanism
	4. Optimized ACK Mechanism for QUIC
	4.1. Reducing ACK intensity
	4.2. OWD-based RTTmin estimation
	4.3. Sender-Side Operation
	4.4. Receiver-side Operation
	4.5. Generating ACK
	4.6. Modification to QUIC Protocol
	4.6.1. Transport Parameter: ack-intensity-support
	4.6.2. ACK-INTENSITY Frame
	4.6.3. TIMESTAMP Frame
	4.6.4. ACK Delay Redefinition

	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Authors' Addresses

