
Network Working Group Charles H. Lindsey
Internet-Draft University of Manchester
 September 2001

Signed Headers in Mail and Netnews

draft-lindsey-usefor-signed-01.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as "work
 in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 The huge growth of Netnews/Usenet in recent years has been
 accompanied by many attempts to abuse the system by various forms
 of malpractice, particularly the forging of various headers,
 causing it to appear that articles came from parties other than
 those that actually injected them or conveyed some Approval that
 the real poster was not entitled to give. Insofar as Netnews is
 regularly gatwayed to and from Email systems, these problems also
 extend to the Email domain.

 This document provides a cryptographically secure means whereby it
 can be established beyond doubt that relevant headers of a Netnews
 article or an Email message have not been tampered with in
 transit, and that they were indeed originated by the person
 purporting to have done so. It seeks to supplement, rather than to
 supplant, the existing protocols for signing the bodies of
 articles and messages.

[This proposal arises from the activities of the Usenet Format Working
Group, which is charged with updating the Netnews standards. Comments
are invited, preferably sent to the mailing list of the Group at

https://datatracker.ietf.org/doc/html/draft-lindsey-usefor-signed-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

usenet-format@landfield.com.]

Lindsey [Page 1]

 Signed Headers in Mail and Netnews May 2000

 Table of Contents

1. Introduction .. 3
1.1. Scope and Objectives 3
1.2. Notations and Conventions 4
1.2.1. Requirements notation 4
1.2.2. Syntactic notation 4

1.3. Overview .. 4
2. Basic Structure of Authenticating Headers 5
2.1. Syntax of the Signed header 5
2.2. Semantics of the Signed header 7
2.3. Syntax of the Verified header 10
2.4. Semantics of the Verified header 10

3. Protocol definition ... 11
3.1. Requirements for canonicalization algorithms 11
3.2. The PGP-Head-1 protocol 12
3.2.1. The PGP-Head-1 canonicalization algorithm 13
3.2.2. The PGP-Head-1 cryptographic algorithm 15
3.2.3. The PGP-Head-1 Macro Definition 16

4. Applications .. 16
5. Examples .. 17
5.1. Newgroup Control message 17
5.2. Mail message re-signed by mailing list owner 18

6. Security .. 19
7. References .. 20
8. Acknowledgements .. 21
9. Contact Address ... 21
10. Intellectual Property Rights 21
Appendix A - Model implementation 21
Appendix A.1 - The PGP-Head-1 canonicalization 21
Appendix A.2 - Parsing of the Signed header 25
Appendix A.3 - The Signing program 28
Appendix A.4 - The Verification program 29
Appendix B - Test cases ... 30
Appendix C - PGP Public Key 32

Lindsey [Page 2]

 News Article Format July 2001

1. Introduction

[Remarks enclosed in square brackets and aligned with the left margin,
such as this one, are not part of this draft, but are editorial notes to
explain matters amongst ourselves, or to point out alternatives, or to
indicate work yet to be done.]

1.1. Scope and Objectives

[This is a Draft of a Draft, for discussion within the USEFOR mailing
list until the best format for putting it forward has been decided on.
It remains to be decided whether it should be aimed towards an
Experimental Protocol or the Standards track.]

 "Netnews" is a set of protocols [USEFOR] that enables news "articles"
 to be broadcast to potentially-large audiences, using a flooding
 algorithm which propagates copies throughout a network of
 participating hosts. The huge growth in the use of this protocol in
 recent years has been accompanied by many attempts to abuse the
 system by causing it to appear that articles came from parties other
 than those that actually injected them, or that they had been posted
 with some Approval that the real poster was not entitled to give, or
 that they otherwise appeared to be different from what they actually
 were. The effects of such abuse are particularly accute in the case
 of "Control" articles which can cause newsgroups to be created or
 removed on hosts worldwide, or which can cause unauthorized deletion
 of articles already received and stored on such hosts. It is
 therefore considered essential to provide a cryptographically secure
 means whereby it can be established beyond doubt that the source and
 structure of articles are exactly as they purport to be.

 "Electronic Mail" is a system for routing "messages" [RFC 2822]
 between individual computer users, usually on a one-to-one basis. The
 formats of Email messages and News articles have deliberately been
 made to be similar, so that messages may be gatewayed to news systems
 and vice-versa. In order that the same protection may be provided
 end-to-end for articles passing through such gateways, the protocal
 described here has been designed so that it will also work in the
 Email environment. If it should be found to have further applications
 in the Email environment, then that would be an added bonus.

 An existing experimental protocol "pgpverify" [PGPVERIFY] is already
 in widespread use for authenticating Control messages for creating
 and removing newsgroups within Usenet, and has proven itself very
 successful in mitigating the effects of malicious attacks against the
 integrity of Usenet. This present proposal is largely based upon
 pgpverify; however, pgpverify is unsuitable for more widespread use
 as it stands because it is unable to cope with folded headers and
 with the changes that mail messages in particular are likely to

https://datatracker.ietf.org/doc/html/rfc2822

 undergo during transport. A second similar experimental protocol
 "pgpmoose" [PGPMOOSE] is also currently in use for protecting
 moderated newsgroups against unauthorized postings.

Lindsey [Page 3]

 Signed Headers in Mail and Netnews May 2000

 There also exist protocols for the cryptographic signature of bodies
 of articles, notably S/Mime and PGP/Mime [RFC 2015] and [RFC 2015bis]
 , and it is moreover common to sign such bodies using PGP alone
 without the use of Mime [RFC 2045] et seq at all. However, these
 protocols cannot, by their nature, be used to sign headers. Moreover,
 since the signature is applied after any Content-Transfer-Encoding
 [RFC 2045], it may be impossible to verify the signature if the
 Content-Transfer-Encoding should be changed as the message passes
 through a succession of sites during transport. Nevertheless, this
 present proposal does not attempt to usurp those protocols, but
 merely provides the means to sign headers, both of complete messages
 and of headers embedded in Mime messages and multiparts.

[This document has been designed to fit on top of the draft currently in
preparation for News [USEFOR]. If it is thought wise to issue this
document before [USEFOR] is complete, then that reference will have to
be to [RFC 1036] instead.]

1.2. Notations and Conventions

1.2.1. Requirements notation

 Certain words, when capitalized, are used to define the significance
 of individual requirements. The key words "MUST", "SHOULD", "MAY" and
 the same words followed by "NOT" are to be interpreted as described
 in [RFC 2119].

1.2.2. Syntactic notation

 This document uses the Augmented Backus Naur Form described in [RFC
 2234]. A discussion of this is outside the bounds of this document,
 but it is expected that implementors will be able to quickly
 understand it with reference to the defining document.

1.3. Overview

 This proposal makes provision for Signed headers to be included in
 news articles and in Mime messages and multiparts. A Signed header
 provides a cryptographic signature over a named set of other headers,
 including lower level headers contained in Mime messages and
 multiparts below the current level. Such signatures can give
 assurance to a recipient who verifies them that those headers have
 not been changed or added to in transit, and/or that the article was
 indeed sent by its purported originator.

 The bodies of articles, Mime messages and multiparts are not directly
 included in the Signature. Rather, the intention is that each such
 body part should have a Content-MD5 (or similar) header computed for
 it, and that header should then be included in the Signature instead.

https://datatracker.ietf.org/doc/html/rfc2015
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc1036
https://datatracker.ietf.org/doc/html/rfc2119

 There is also provision for Verified headers which may be added by
 agents that have checked a Signed header. Verified headers may
 themselves be included in further Signed headers; this may be
 especially useful in the case of gateways which find it necessary to

Lindsey [Page 4]

 Signed Headers in Mail and Netnews May 2000

 change an article in ways that invalidate an original signature.

 Every effort has been made to ensure that signatures remain
 verifiable in spite of all reasonable (and even unreasonable) changes
 to which they may be subjected in transit. These include changes to
 the Content-Transfer-Encoding of body parts (a principle reason for
 including them only via the Content-MD5 header), changes in the order
 of headers and of their layout, and encodings and re-encodings of
 unusual character sets. This is to be achieved by converting headers
 into a canonical form before they are signed. New headers, yet to be
 invented, need provide no problem, and there is no commitment to any
 particular character set (provided field-names remain in US-ASCII, as
 at present).

 Provision is made for different protocols which may be required in
 the future. However, this proposal defines just one, recommended
 protocol, and it is not desirable that other protocols should be
 defined unless and until serious deficiencies in the existing ones
 have been revealed.

2. Basic Structure of Authenticating Headers

 A Signed or a Verified header may appear in the headers of a news
 article or a mail message, or in the headers of a Mime multipart
 sub-part or of a Mime message/rfc822 object (or indeed of any similar
 Mime object yet to be invented). In all cases, the term "current
 level" encompasses the entire set of headers in that same object.
 Where the headers at the current level include a "Content-Type:
 multipart/*" or "Content-Type: message/*" header, lower-level
 headers can arise within its sub-parts.

 Examples of Netnews articles and Email messages containing these
 headers may be found in section 5 below.

2.1. Syntax of the Signed header

 Signed = "Signed" ["-" DIGIT9] ":" 1*SP header-ref-list
 1*(";" header-parameter) CRLF
 DIGIT9 = %x31-39 ; 1..9
 header-ref-list= header-ref *([CFWS] "," [CFWS] header-ref)
 header-ref = ["+" / "-"] [subpart-indicator] field-name /
 [subpart-indicator] macro-name
 subpart-indicator
 = 1*(DIGIT9 *DIGIT ":")
 field-name ; see section [RFC 2822]
 CFWS ; see [RFC 2822]
 FWS ; see [RFC 2822]
 macro-name = '$' <a name, in the format of a field-name,
 defined for the protocol indicated in the

https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2822

 signed-header-parameter>
 header-parameter
 = signed-header-parameter / other-header-parameter
 signed-header-parameter
 = signed-token "=" value

Lindsey [Page 5]

 Signed Headers in Mail and Netnews May 2000

 signed-token = [CFWS] ("protocol" / "key" / "sig") [CFWS] /
 <Any other token defined for a particular protocol>
 other-header-parameter
 = attribute "=" value
 attribute = iana-token / x-token
 iana-token = <A token defined in an experimental
 or standards-track RFC and registered with
 IANA>
 value = token / quoted-string
 x-token = [CFWS] "x-" token-core [CFWS]
 token = [CFWS] token-core [CFWS]
 token-core = 1*<any (US-ASCII) CHAR except SP, CTLs,
 or tspecials>
 tspecials = "(" / ")" / "<" / ">" / "@" /
 "," / ";" / ":" / "
 "/" / "[" / "]" / "?" / "="
 quoted-string ; see [RFC 2822]
 protocol-value = ietf-token / x-token
 ietf-token = <An extension token defined by a standards-track
 or experimental protocol RFC and registered
 with IANA>
 key-id-value = token
 signature-value= [CFWS] DQUOTE [FWS] 1*(btext [FWS]) DQUOTE [CFWS]
 btext = %x41-5A / %x61-7A / %x30-39 / "+" / "/" / "="
 ; base 64 chars

 The header-parameters MUST include a "protocol" parameter and a "sig"
 parameter, of which the "sig" paramameter MUST be the last parameter
 and MUST NOT be followed by CFWS (though it MAY be followed by WS).
 Any other-header-parameter that is present SHOULD be ignored.

 NOTE: The requirement for an explicit SP after the ":" is to
 ensure compatibility with the syntax of Netnews [USEFOR]; it is
 not strictly necessary for Email.

 The use of a DIGIT9 in the Signed header allows for 10 distinct such
 headers at any one level. This is more than sufficient for the
 intended usage (it would be most unusual to get beyond Signed-2)
 whilst still permitting implementations to check field-names against
 a fixed list of valid names. There MUST NOT be more than one Signed
 header with no DIGIT9, or the same DIGIT9, within one set of headers.

 The header-ref-list indicates those header-refs, at or below the
 current level, which are covered by the signature. The ordering of
 this list is significant. A header-ref prefixed by a "+", or not
 prefixed at all, indicates a header-ref to be added to the list
 defined by those preceding it (unless already present therein), and a
 header-ref prefixed by "-" indicates a header-ref to be removed from
 the header-refs defined by the list preceding it. Any macro-names in

https://datatracker.ietf.org/doc/html/rfc2822

 the header-ref-list MUST be defined, in the definition of the
 protocol, to expand into a header-ref-list which does not itself
 contain any subpart-indicators or further macro-names.

Lindsey [Page 6]

 Signed Headers in Mail and Netnews May 2000

 NOTE: If some header-ref in the list matches no header in the
 actual article, then it comprises an assertion that no such
 header was present when the article was signed. Headers which
 are routinely added to or altered as the article progresses
 through transports (such as Path, Received and Xref, and even
 Sender and Content-Transfer-Encoding) SHOULD NOT be included in
 a header-ref-list, and neither should any header which appears
 twice in the set of headers. A header-ref prefixed by "-" may be
 used to exclude any header-ref arising from the expansion of a
 macro-name.

 Tokens are case-insensitive. "PGP-Head-1" (section 3.2) is the
 preferred protocol defined by this proposal. It is desirable to keep
 the number of recognized protocols to an absolute minimum, and it is
 anticipated that further protocols would only be needed in the event
 that serious cryptographic deficiencies were to be found in the
 existing ones.

 The "key" parameter identifies the key used to generate the signature
 in a notation dependent upon the protocol (but commonly "0x" followed
 by hexadecimal digits). The CFWS following it MAY include a comment
 containing an identification of the person or entity which owns that
 key.

2.2. Semantics of the Signed header

 Where the headers at the current level include a "Content-Type:
 multipart/*" or "Content-Type: message/*" header, lower-level headers
 within its sub-parts may be referenced as follows:

 (i) A header-ref not containing any subpart-indicator references the
 header of that name, if any, at the current level. Header-refs
 are, for this purpose, considered as case-insensitive.

 (ii) A header-ref of the form "<m>:XXXX/" (or "<m>:<n>:...XXXX"),
 where <m> and <n> are numbers and the current level contains a
 "Content-Type: multipart/*" header, references the header that
 would be referenced by "XXXX" alone (or by "<n>:...XXXX") in the
 <m>th sub-part of that multipart, that sub-part now being
 regarded as the current level.

 (iii)A header-ref of the form "1:XXXX", where the current level
 contains a "Content-Type: message/rfc822" header (or any other
 message type which provides for its own set of headers),
 references the header that would be referenced by "XXXX" alone
 in that message object.

 (iv) A header-ref that does not match up with multipart or message
 Content-Type headers as indicated above MUST NOT be used.

 (v) For example "3:2:Content-MD5" references the Content-MD5 header
 of the second part of a multipart, which is itself the third
 part of a multipart established at the current level.

Lindsey [Page 7]

 Signed Headers in Mail and Netnews May 2000

 A protocol, as established by this proposal or by any extension to
 it, comprises three parts: a "canonicalization algorithm", a
 "cryptographic algorithm", and possibly a "macro definition".

 The signature of a Signed header is constructed in accordance with a
 given header-ref-list as follows:

 1. A partial Signed header is constructed from that header-ref-list
 and such header-parameters (excluding "sig") as are required by
 the protocol, including at least a "protocol" parameter and, most
 likely, a "key" parameter identifying the cryptographic key used
 (possibly followed by a comment indicating the person or entity
 responsible), all followed by a CRLF.

 2. A reduced header-ref-list is obtained by first expanding any
 macro-names defined in the macro definition of the protocol,
 duplicating any subpart-indicator in front of each header-ref in
 the expansion; then any "+" prefixes are stripped, and finally,
 working from left to right, if a header-ref duplicates a preceding
 one the second copy is removed, and if a header-ref is prefixed by
 "-", that copy and any previous ones (without that prefix) are
 removed.

 3. The partial Signed header (with its original header-ref-list)
 followed by all the headers referenced by the reduced header-ref-
 list (being headers at the current level or encapsulated within
 multiparts at any lower level and taken in their order within the
 reduced header-ref-list) are concatenated to produce a list of
 headers to be signed.

 4. The list of headers to be signed is subjected to the
 canonicalization algorithm of the protocol to produce a
 canonicalized list.

 5. The canonicalized list is subjected to the cryptographic algorithm
 of the protocol to produce a character stream representing the
 signature encoded in base64 [RFC 2045].

 6. A "sig" parameter is appended to the partial Signed header, its
 value consisting of a quoted-string containing the base64-encoded
 stream, split into convenient lines by the insertion of FWS.

 7. The Signed header thus constructed is then incorporated into the
 set of headers at the current level.

 The signature of a Signed header is verified as follows:

 1. The "sig" parameter is removed from the Signed header to give a
 partial Signed header.

https://datatracker.ietf.org/doc/html/rfc2045

 2-4.The corresponding steps of the process that constructed the
 header are taken, producing a canonicalized list.

Lindsey [Page 8]

 Signed Headers in Mail and Netnews May 2000

 5. The public key identified according to the "protocol" parameter is
 now used by the cryptographic algorithm of that protocol to verify
 that canonicalized list. This may result in a simple pass-fail, or
 it may return some indication of the privileges (such as the
 authority to issue certain news control messages or to manage some
 mailing list) enjoyed by the owner of that key.

 The purpose of a Signed header is solely to establish that the
 headers referenced in it were present in an article when that article
 passed through the hands of the person or entity that generated the
 signature (and hence that it did indeed pass through those hands). It
 SHOULD NOT be taken as an endorsement of whatever is contained in the
 body of the article. If the contents of the body require such
 endorsement, then the body SHOULD be signed separately, for example
 in accordance with PGP/Mime [RFC 2015] and [RFC 2015bis].

 Signatures will typically be generated by the originators of articles
 (to prove the origin), by moderators of moderated newsgroups (to
 testify to their Approved header), by managers of mailing lists, and
 occasionally by gateways. They SHOULD NOT be generated by
 intermediate transports and relayers through which the article might
 pass. This is intended to be an end-to-end protocol, and signatures
 SHOULD ONLY be added when new, hitherto unsigned, information is
 added. Moreover, the set of headers included within the signature
 SHOULD be no more than is necessary to achieve the security desired.

 NOTE: It will be observed that no provision has been made to
 include the bodies of an article or of its sub-parts in the
 signature. If (as will indeed often be the case) it is required
 to attest that the body (or sub-part) dispatched along with the
 set of headers is the same as the body that was delivered at the
 far end, then the proper procedure is to construct a Content-MD5
 header [RFC 1864] for that body (or sub-part) and to include
 that Content-MD5 amongst the headers that are signed. Doing it
 this way confers three advantages:
 a) The Content-MD5 header is constructed in such a way that it
 is immune to changes of Content-Transfer-Encoding to which an
 article, or its sub-parts, may be subjected during transport.
 b) Given that many user agents already routinely construct a
 Content-MD5 header, and verify it on receipt (a practice much to
 be commended), it should be possible to generate a Signed header
 without an extra pass through the entire body (especially in the
 common case where there are no sub-parts). This applies
 particularly in the case of additional signatures by moderators
 or mailing list managers, who may not need to examine the body
 at all.
 c) If a Content-MD5 header should fail to verify (perhaps
 because of some transmission error) the verification of a Signed
 header might still succeed, giving the recipient at least some

https://datatracker.ietf.org/doc/html/rfc2015
https://datatracker.ietf.org/doc/html/rfc1864

 partial information as to where any problem might lie.

 NOTE: If, at some future time, a Content-SHA1 header (or any
 similar header based upon a different hashing algorithm) should
 be invented, it could equally well be used for this purpose.

Lindsey [Page 9]

 Signed Headers in Mail and Netnews May 2000

2.3. Syntax of the Verified header

 Verified = "Verified" ["-" DIGIT9] ":" 1*SP name-addr
 *(";" header-parameter) CRLF
 name-addr ; see [RFC 2822]
 header-parameter
 =/ verified-header-parameter
 verified-header-parameter
 = signature-token "=" signature-value /
 hashcheck-token "=" hashcheck-value
 signature-token= [CFWS] "signature" [CFWS]
 hashcheck-token= [CFWS] "hashcheck" [CFWS]
 signature-value= [CFWS] ("good" / "FAILED") [CFWS]
 hashcheck-value= [CFWS] DQUOTE ("good" / "FAILED")
 FWS header-ref-list DQUOTE [CFWS]

 The Verified header is a "variant header" (i.e. it may be present or
 not, and in a different form, in different copies of the same article
 or message).

 The use of a DIGIT9 in the Verified header allows for 10 distinct
 such headers in one article. Each Verified header MUST match some
 Signed header with the same DIGIT9 in that same set of headers. There
 MAY be more than one Verified header with the same DIGIT9 within one
 set of headers (but observe that it would not then be possible to
 include those headers in a further Signed header).

 Tokens used for attributes are case-insensitive. The only parameters
 defined by this proposal are the "signature" and "hashcheck"
 parameters. Any other-header-parameter that is present SHOULD be
 ignored. The absence of a "signature" parameter should be taken as
 indicating that the verification had succeeded. The "hashcheck"
 parameter is to indicate that a Content-MD5 (or similar) header
 identified in the header-ref-list had been verified, or not as the
 case may be.
[Do we also want a "confidence" parameter for the verifier to express
his certainty of the identity of the original Signer, and if so, what
notation to use?]

2.4. Semantics of the Verified header

 The Verified header is intended to be added to an article by an agent
 through which the article passes, and serves as an assertion that the
 corresponding Signed header has been cryptographically verified by
 the person or entity identified in the name-addr (or otherwise if the
 "FAILED" value is present). The addr-spec contained in that name-
 addr MUST be a valid email address by which that person or entity may
 be contacted. The original Signed header MUST NOT be removed from the
 article. The Verified header (supposing it is the only one present

https://datatracker.ietf.org/doc/html/rfc2822

 with that particular DIGIT9, if any) MAY itself be included in a
 further Signed header added at the same time.

Lindsey [Page 10]

 Signed Headers in Mail and Netnews May 2000

 NOTE: The purpose of a Verified header is to save the ultimate
 recipient the trouble of verifying the cryptographic signature
 himself (which can be time consuming, and may require knowledge
 of public keys not in his possession). Such a verification, if
 performed close to the ultimate recipient (such as by the news
 or mail server to which he connects) could normally be regarded
 as adequate evidence of authenticity, even if not signed itself.
 It would be hard (certainly in the case of Netnews) for a
 malicious interloper to cause such a verification to appear
 bearing the identity of the local server of each ultimate
 recipient.

 NOTE: The Verified header is also useful in the case that a
 gateway (or a moderator) makes some change to an article that
 renders an original Signed header invalid. Such a gateway can
 therefore certify that the original form of the Signed header
 had been verified, and can then re-sign the article (including
 the added Verified header). Likewise, a site (such as the
 originator's own server) with a well known public key can verify
 and resign an article whose originator's public key may be less
 well known. However, Verified headers SHOULD NOT be added as
 routine by other intermediate sites.

 It is normally the business of the reading agent of the ultimate
 recipient to check the correctness of a Content-MD5 or similar
 header. Nevertheless, an earlier agent that has added a Verified
 header and also checked such a Content-MD5 header MAY so indicate by
 including a "hashcheck" parameter.

3. Protocol definition

3.1. Requirements for canonicalization algorithms

 It is a sad fact of life that those implementing agents for handling
 Netnews and Email cannot resist the temptation to "improve" articles
 passed through them by rewriting headers that are thought not to
 conform to some real or supposed standard. Experience shows that, in
 the majority of cases, such tinkering makes matters worse rather than
 better, and for that reason [USEFOR] and, to a lesser extent, [RFC
 2822] and [RFC 2821] try to forbid it, especially when perpetrated by
 relaying and transport agents (there are arguments in favour of
 allowing injecting agents and other agents close to the originator to
 do some limited cleanups, especially where it is impractical to
 return the article to the originator for correction).

 Furthermore, in the case of Email it is often required for the
 transport protocols to modify articles en route, most notably when
 articles containing octets with the 8th bit set have to be passed
 through a channel that permits only 7bit.

https://datatracker.ietf.org/doc/html/rfc2821

 It is a further sad fact of life that agents which make such changes
 are not going to go away just because some standard says so.
 Therefore, the canonicalization algorithm SHOULD endeavour to enable
 the headers of articles to be signed and verified in accordance with

Lindsey [Page 11]

 Signed Headers in Mail and Netnews May 2000

 this proposal in spite of such tinkerings, insofar as they can be
 anticipated. The following list indicates some common practices which
 are worth detecting and protecting against.

 o Headers may be re-folded to fit within some preferred overall
 line length. This may result in the creation of whitespace where
 none existed before.
 o Trailing whitespace may be removed, and line endings changed
 to/from CRLF.
 o Field-names may be converted into some usual canonical form (e.g.
 "Mime-Version" into "MIME-Version").
 o Phrases, or parts thereof, may be converted to or from quoted-
 strings.
 o Date-times may be rewritten in some preferred format, or into
 some preferred timezone.
 o Headers with non-ASCII characters may be converted to or from the
 notation defined in [RFC 2047].
 Observe that there is no canonical way to do this conversion
 and it is, moreover, frequently performed in contexts where it
 is not strictly allowed.
[Other contributions to this list welcomed.]

 Since the slightest change to a canonicalization algorithm will
 render it inoperable with previous versions, such an algorithm MUST
 NOT be changed once it has been defined by this proposal, or any
 extension thereof. In the event of some inadequacy being found, it
 would be necessary to devise and standardize a new algorithm, a task
 not to be undertaken lightly. For this reason, canonicalization
 algorithms SHOULD be designed to cope with the widest possible range
 of headers, including those not yet invented. Therefore, they SHOULD
 NOT, so far as possible, rely on the ability to parse any particular
 header.

 NOTE: A canonicalization algorithm is required simply to produce
 an octet stream for submission to the cryptographic algorithm.
 That stream does not have to be human readable, nor does it have
 to be a syntactically-correct header, nor does it have to be
 convertible back into the original header, or into any correct
 header at all. Insofar as many original headers can, in
 principle, be mapped into the same octet stream, this in no way
 reduces the utility of the algorithm, even though it might
 enable conspiracy theorists to imagine, and even implement,
 various sorts of covert channels for use by malicious
 interlopers.

3.2. The PGP-Head-1 protocol

 The "The PGP-Head-1" protocol is comprised of a canonicalization
 algorithm, a cryptographic algorithm, and a macro definition.

https://datatracker.ietf.org/doc/html/rfc2047

Lindsey [Page 12]

 Signed Headers in Mail and Netnews May 2000

3.2.1. The PGP-Head-1 canonicalization algorithm

 For the purposes of this algorithm, the headers Subject, Comments,
 Organization and Summary, and all headers starting with "X-", are to
 be considered "unstructured" and all other headers "structured"
 (whether or not they were so described in any other standard).
 Headers are considered to be constrained to the following syntax:

 structured-header
 = header-name ":"
 1*SP structured-header-content CRLF
 unstructured-header
 = header-name ":"
 1*SP unstructured-header-content CRLF
 header-name = 1*name-character *("-" 1*name-character)
 name-character= ALPHA / DIGIT
 structured-header-content
 = *structured-header-zone
 unstructured-header-content
 = unstructured-header-zone
 structured-header-zone
 = neutral-zone / quoted-zone / sharp-zone /
 square-zone / comment-zone
 unstructured-header-zone
 = *(FWS / encoded-word / <any visible character>)
 neutral-zone = 1*(FWS / encoded-word /
 <any character except DQUOTE, "<", "[", "(">)
 quoted-zone = DQUOTE *(FWS /
 <any character except unquoted DQUOTE>)
 DQUOTE
 sharp-zone = "<" *(FWS /
 <any character except unquoted ">">) ">"
 square-zone = "[" *(FWS /
 <any character except unquoted "]">) "]"
 comment-zone = "(" *(FWS / encoded-word / comment-zone /
 <any character except unquoted ")">) ")"
 encoded-word = "=?" pure-token "?" pure-token "?"
 1*<any printable US-ASCII character other than
 "?" or SP> "?="
 pure-token = 1*<any (US-ASCII) CHAR except SP, CTLs,
 or tspecials>

 o where '<any visible character>' means any octet other than those
 representing the US-ASCII characters NULL, CR, LF, TAB and SP,
 o where 'except unquoted "x"' means except any "x" not immediately
 preceded by a "\" and thus constituting a quoted-pair, and
 o where an encoded-word does not include "(" or ")" when in a
 comment-zone, and does not include DQUOTE, "<", "[", or "(" when
 in a neutral-zone.

 Observe that certain field-names containing non-alphanumeric
 characters, and permitted by [RFC 2822] (though never used in
 practice) are excluded from this protocol. Moreover, it is not
 assumed that this protocol will work on any of the obsolete syntax
 defined by [RFC 2822].

Lindsey [Page 13]

https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2822

 Signed Headers in Mail and Netnews May 2000

 NOTE: All known Email and Netnews headers (and a lot more
 besides) are encompassed within this syntax. Observe that the
 various zones cannot possibly overlap, and that any encoded-word
 must be fully contained within its zone. All encoded-words
 permitted by [RFC 2047] (and more besides) are covered. The
 structure is easily parsed by a straightforward state machine
 (though the nesting of comment-zones is a nuisance, as is the
 impossibility to detect whether a sequence beginning "=?" was
 really an encoded-word until you get to the matching "?=").

 Each header to be included in the algorithm, which will in general
 consist of several lines (those after the first commencing with
 whitespace), is processed as follows:

 1. The header-name at the start of the header is converted to
 lowercase, the whitespace following it (if any) is removed, and a
 single SP is inserted.

 2. Any date-time occurring in a Date, Resent-Date or Expires header
 (but not in any other header) is converted to UTC and written as a
 date-time in the format
 07 dec 2000 23:59:60 +0000
 Note absence of day-of-week, leading zero included in day, month-
 name in lower case, year as four digits, seconds included, and
 timezone 0000 preceded by a "+" as opposed to a "-", and observe
 that any FWS will be removed in the next step, giving
 07dec200023:59:60+0000

 NOTE: Observe that the effect is to treat "31 Dec 2000 23:59:60
 +0000" (which is a legitimate date-time as defined by [RFC 2822]
) as being different from "1 Jan 2001 00:00:00 +0000".

 3. Within each unstructured-header-zone and each comment-zone, all
 instances of FWS are replaced by a single SP; within each
 neutral-, quote-, sharp- or square-zone, all instances of FWS are
 omitted (thus the header has now been unfolded into a single
 line). Any whitespace at the end of the header is removed, and it
 is ensured that the header ends with a single CRLF.

 4. The DQUOTEs (ASCII '"') enclosing each quoted-zone are removed
 (but not any quoted DQUOTE or any DQUOTE within other zones so
 that, in particular, they are not removed within msg-ids).

 5. Any encoded-word (where allowed by the above syntax, and whether
 or not its length is more than 75 characters) is replaced by the
 sequence of octets obtained by decoding it. Moreover, where two
 adjacent encoded-words are separated by whitespace, that
 whitespace is removed (see [RFC 2047]).

https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2047

 NOTE: The decoding of encoded-words must take place last,
 because it could produce arbitrary sequences of octets (when
 decoding into UCS-16, for example) which might then be confused
 with US-ASCII characters such as DQUOTE, etc. Whitespace needs

Lindsey [Page 14]

 Signed Headers in Mail and Netnews May 2000

 to be removed entirely from structured headers because it is
 possible it may have been introduced by folding in unexpected
 places en route, subsequent to the original signing.

 Typical results of the use of this canonicalization algorithm can be
 found with the example in section 5.2 below. Test data for use with
 implementations of this algorithm, and containing many obscure cases,
 can be found in Appendix B.

 If, during signing, a header is found not to conform to the given
 syntax (in particular, if the closing delimiter of some zone is not
 found), then the signing MUST be aborted (and it MAY be aborted if
 the header is malformed for some other reason). When verifying a
 signature, however, an implementation MAY attempt to continue even
 when the final zone of a header has no closing delimiter.

 NOTE: If an internet mail message in the format defined by [RFC
 2822] is converted into X.400 mail by a gateway conforming to
 [RFC 1327] and then back into internet mail, then it is likely
 that any signature made in accordance with this proposal will
 fail to verify. For example, comments in headers containing
 addresses (such as in From, Reply-To, etc.) may be converted
 into phrases and moved in front of the addr-spec, or even
 removed entirely, and thus the canonicalized form of the message
 will have been changed. This old convention, for storing the
 Real Name of the person associated with the address in a
 following comment, is now deprecated by both [RFC 2822] and
 [USEFOR], but even where phrases are used for this purpose it is
 possible that other changes to the message will still render the
 signature unverifiable. Note that there is in any case no
 expectation that an internet mail message signed according to
 this proposal will ever be able to be verified once it has been
 passed permanently into an X.400 system, nor vice versa.

3.2.2. The PGP-Head-1 cryptographic algorithm

[Open PGP is the obvious choice for this, since it is widely available
and is blessed by the IETF. My only reservation is that it comes with a
rather poor certification system as compared with, say, SPKI. So this
choice might yet have to be reviewed.]

 The stream of octets resulting from the canonicalization algorithm is
 signed, in binary mode (signature type 0x00), in accordance with Open
 PGP [RFC 2440].

 NOTE: The signature is made in binary mode just in case any [RFC
 2047] decoding into UCS-16 has produced octets which might be
 mistaken for isolated CR, LF or trailing SP characters, which
 are treated specially in PGP text mode, and also because the

https://datatracker.ietf.org/doc/html/rfc1327
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2440

 treatment of trailing whitespace differs between Open PGP and
 some earlier PGP implementations.

Lindsey [Page 15]

 Signed Headers in Mail and Netnews May 2000

 The output of the algorithm MUST be Ascii-armored [RFC 2440], but the
 Armor Header Line ("BEGIN PGP SIGNATURE"), the Armor Headers (e.g.
 "Version:"), the blank line following the Armor Headers, and the
 Armor Tail ("END PGP SIGNATURE") are to be omitted (thus yielding a
 sequence of base64 characters). Observe that these characters will
 include a CRC checksum, which SHOULD be on a separate line from the
 rest of the signature.

 The signature included within the Ascii-armor MAY include
 certificates as evidence that the signing key has the necessary
 authorization to sign articles of that nature, but such usage is in
 general deprecated except between parties that have agreed otherwise
 or where, for some reason, an unusual signatory is signing and
 attaches a certificate from the usual signatory.

 The signature SHOULD use the DSA public-key algorithm and the SHA-1
 hashing algorithm, and be incorporated in a Version 4 Signature
 Packet in the new format. It MAY alternatively use the combination
 RSA/MD5 with Version 3 in the old format (for compatibility with PGP
 2.6.x) and it MAY use the combination RSA/SHA-1 with Version 4 in the
 new format. Verifiers MUST be able to verify all of these forms.

3.2.3. The PGP-Head-1 Macro Definition

 Two macro-names are defined, "$news-standard" and "$mail-standard".

 "$news-standard" is a macro representing a set of common headers that
 SHOULD normally be included when signing the headers of a Netnews
 article, and is defined to expand into the header-ref-list

 Date, Newsgroups, Distribution, Message-ID, From, Reply-To,
 Followup-To, References, Subject, Keywords, Control, Content-Type,
 Content-ID

 "$mail-standard" performs the same function for mail messages, and is
 defined to expand into the header-ref-list

 Date, From, Reply-To, To, Cc, In-Reply-To, References, Subject,
 Keywords, Content-Type, Content-ID

 NOTE: Those lists have carefully excluded those headers (such as
 Sender and Content-Transfer-Encoding) which are liable to be
 added or altered by sites downstream from the one which
 generated the Signed header.

4. Applications

 It is anticipated that protocols for specific applications of the
 signature mechanisms described in this proposal will be devised,
 whether under the auspices of the IETF or otherwise. For example, the

https://datatracker.ietf.org/doc/html/rfc2440

 need to be able to verify the origin of Control messages for creating
 and removing newsgroups and for cancelling articles was a prime
 motivation for creating this proposal.

Lindsey [Page 16]

 Signed Headers in Mail and Netnews May 2000

 It is up to each such application to specify appropriate mechanisms
 for establishing a Public Key Infrastructure suited to its purpose.
 Such an infrastructure would provide for the storing, distribution
 and authorization of the necessary public keys (and for revocations
 thereof). This proposal establishes no preferred mechanisms in this
 regard, except to draw attention to the possible usefulness of the
 Content-Type application/pgp-keys as defined in [RFC 2015] and [RFC
 2015bis].

5. Examples

5.1. Newgroup Control message

 A 'newgroup' control message in the format given in [USEFOR].

 Newsgroups: comp.foo
 From: "Charles Lindsey" <group-admin@isc.example>
 Subject: cmsg newgroup comp.foo moderated
 Control: newgroup comp.foo moderated
 Approved: newgroups-request@isc.example
 Message-ID: <919190727.4918@isc.example>
 Date: Tue, 16 Feb 1999 18:45:27 -0000
 MIME-Version: 1.0
 Content-Type: multipart/mixed; boundary=88888888
 Signed: $news-standard,+1:content-md5,+1:content-type,+3:content-md5,
 +3:content-type; protocol=pgp-head-1; key="0xA336D40C"
 (DSS-example);
 sig="
 iQA/AwUAO40EkyQRKsmjNtQMEQIwGgCfSYj8sgrRgRNQIwWKKnk+M9j0o+wAn2Mp
 fS2zwmmrA/KvCXyiTFsk35pr
 =8p5V"

 This is a multipart message in MIME format.

 --88888888
 Content-Type: application/news-groupinfo
 Content-MD5: 68BGYb5+8KAVeqno7Et7Ug==

 For your newsgroups file:
 comp.foo For Foo discussions (Moderated)

 --88888888
 Content-Type: text/plain

 comp.foo a moderated newsgroup which passed its vote for creation
 by 424:8 as reported in news.announce.newgroups on 10 Feb 99.

 --88888888

https://datatracker.ietf.org/doc/html/rfc2015

Lindsey [Page 17]

 Signed Headers in Mail and Netnews May 2000

 Content-Type: application/news-transmission
 Content-MD5: cjeIxiGbPsrse1G/w9cfqQ==

 Newsgroups: comp.foo
 Path: not-for-relaying
 Distribution: local
 From: "Charles Lindsey" <group-admin@isc.example>
 Message-ID: <919190727.4918$p=1@isc.example>
 Date: Tue, 16 Feb 1999 18:45:27 -0000
 Subject: Charter for newsgroup com.foo
 Approved: newgroups-request@isc.example

 The charter, culled from the call for votes:

 Comp.foo is a moderated newsgroup for discussing all manner of
 Foos.

 Moderation submission address:
 comp-foo@bar.example

 --88888888--

5.2. Mail message re-signed by mailing list owner

 received: from house.example by bar.example (8.8.8/AL/MJK-2.0)
 id XAA10880; Sat, 13 Feb 1999 23:00:14 GMT
 Resent-From: "Example Mail Server" <majordomo@com.example>
 Precedence: list
 Received: (from list@localhost)
 by house.example (8.9.2/8.9.2) id OAA28279;
 Sat, 13 Feb 1999 14:59:56 -0800 (PST)
 From: <"[john]"@
 temple.example> (John Smith)
 Organization: http://www.temple.example/john
 Subject: Submission to mailing list
 in connection with foo.
 Message-ID: <19990213145946.20115@main.temple.example>
 Date: Sat, 13 Feb 1999 22:59:46 +0000
 Mime-Version: 1.0
 Content-Type: text/plain; charset=us-ascii
 Content-MD5: ayoAIdYN8PZqpOgij7VG2Q==
 Signed: $mail-standard,content-md5;
 protocol=PGP-Head-1; key="0xA336D40C" (DSS-example);
 sig="
 iQA/AwUAO40E1yQRKsmjNtQMEQLvzQCgtNnWdN2lwYtFoajEen96111IMboAn2hV
 z9edcA/oc2F6ui8nIj/X5/UW
 =buij"
 Verified: majordomo-request@com.example; signature=good;
 hashcheck="good content-md5"

http://www.temple.example/john

Lindsey [Page 18]

 Signed Headers in Mail and Netnews May 2000

 Signed-1: message-id,date,resent-from,
 verified,signed; protocol=PGP-HEAD-1; key="0xA336D40C";
 sig="
 iQA/AwUAO40GgCQRKsmjNtQMEQLsNACdFPk9gPtPq9qpWMLXlurvhBLqMbAAoLg0
 uOVRa6sHqBo2bVf+P/7qy0bF
 =FyFy"

 Text of John's message.

 --
 John's signature.

 Passing the original form of this through the PGP-Head-1
 canonicalization algorithm produces the following, in the case of the
 "Signed:" header (observe lines folded for convenience of this
 document - the true line endings being indicated by "CRLF"):

 signed: $mail-standard,content-md5;protocol=PGP-Head-1;key=0xA336
 D40C(DSS-example)CRLF
 date: 13feb199922:59:46+0000CRLF
 from: <"[john]"@temple.example>(John Smith)CRLF
 subject: Submission to mailing list in connection with foo.CRLF
 content-type: text/plain;charset=us-asciiCRLF
 content-md5: ayoAIdYN8PZqpOgij7VG2Q==CRLF

 And here is the result of canonicalizing to produce the "Signed-1:"
 header:

 signed-1: message-id,date,resent-from,verified,signed;protocol=PG
 P-HEAD-1;key=0xA336D40CCRLF
 message-id: <19990213145946.20115@main.temple.example>CRLF
 date: 13feb199922:59:46+0000CRLF
 resent-from: ExampleMailServer<majordomo@com.example>CRLF
 verified: majordomo-request@com.example;signature=good;hashcheck=
 goodcontent-md5CRLF
 signed: $mail-standard,content-md5;protocol=PGP-Head-1;key=0xA336
 D40C(DSS-example);sig=iQA/AwUAO40E1yQRKsmjNtQMEQLvzQCgtNnWdN2lwYt
 FoajEen96111IMboAn2hVz9edcA/oc2F6ui8nIj/X5/UW=buijCRLF

 NOTE: the second signature signed only that which it had added
 itself, plus sufficient of the original headers to identify the
 original message. It did not need to scan the body to recompute
 the MD5 hash, but effectively included it by signing the
 original "Signed:" header.

6. Security

 TBD
[What is there to say here?]

Lindsey [Page 19]

 Signed Headers in Mail and Netnews May 2000

7. References

 [PGPMOOSE] Greg Rose, [I need a URL for this], October 1995.

 [PGPVERIFY] David Lawrence,
 <ftp://ftp.isc.org/pub/pgpcontrol/README.html>.

 [RFC 1036] M. Horton and R. Adams, "Standard for Interchange of
 USENET Messages", RFC 1036, December 1987.

 [RFC 1327] S. Hardcastle-Kille, "Mapping between X.400(1988) / ISO
 10021 and RFC 822", RFC 1327, May 1992.

 [RFC 1864] J. Myers and M. Rose, "The Content-MD5 Header Field", RFC
1864, October 1995.

 [RFC 2015] M. Elkins, "MIME Security with Pretty Good Privacy (PGP)",
RFC 2015, October 1996.

 [RFC 2015bis] M. Elkins, D. Del Torto, R. Levien, and T. Roessler,
 "MIME Security with OpenPGP", draft-ietf-openpgp-mime-06.txt,
 April 2001.

 [RFC 2045] N. Freed and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",

RFC 2045, November 1996.

 [RFC 2047] K. Moore, "MIME (Multipurpose Internet Mail Extensions)
 Part Three: Message Header Extensions for Non-ASCII Text", RFC

2047, November 1996.

 [RFC 2119] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC 2234] D. Crocker and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [RFC 2440] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer,
 "OpenPGP Message Format", RFC 2440, November 1998.

 [RFC 2821] John C. Klensin and Dawn P. Mann, "Simple Mail Transfer
 Protocol", RFC 2821, April 2001.

 [RFC 2822] P. Resnick, "Internet Message Format", RFC 2822, April
 2001.

 [USEFOR] Charles H. Lindsey, "News Article Format", draft-ietf-
usefor-article-format-03.txt.

ftp://ftp.isc.org/pub/pgpcontrol/README.html
https://datatracker.ietf.org/doc/html/rfc1036
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1327
https://datatracker.ietf.org/doc/html/rfc1864
https://datatracker.ietf.org/doc/html/rfc1864
https://datatracker.ietf.org/doc/html/rfc2015
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-mime-06.txt
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2440
https://datatracker.ietf.org/doc/html/rfc2821
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/draft-ietf-usefor-article-format-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-usefor-article-format-03.txt

Lindsey [Page 20]

 Signed Headers in Mail and Netnews May 2000

8. Acknowledgements

 The author acknowledges the work of David Lawrence, as original
 author of "pgpverify", for many of the ideas contained herein, and
 also many contributions from members of the usenet-format mailing
 list.

9. Contact Address

 Charles. H. Lindsey
 5 Clerewood Avenue
 Heald Green
 Cheadle
 Cheshire SK8 3JU
 United Kingdom
 Phone: +44 161 436 6131
 Email: chl@clw.cs.man.ac.uk

 Comments on this draft should preferably be sent to the mailing list
 of the Usenet Format Working Group at

 usenet-format@landfield.com.

 This draft expires six months after the date of publication (see Page
 1) (i.e. in March 2002).

10. Intellectual Property Rights

[The usual texts from RFC 2026 to be inserted here.]

Appendix A - Model implementation

 The following is written in PERL, with full use made of facilities
 provided by the Perl CPAN library.

Appendix A.1 - The PGP-Head-1 canonicalization

 package Canon;

 use MIME::Words qw(decode_mimewords);
 use Date::Parse;
 use Date::Format;
 use Time::Local;
 use Exporter ();
 @ISA = qw(Exporter);
 @EXPORT = qw(set_protocol $canonicalize %macros);

 my $protocol;
 my %unstructureds = ();
 my %dates = ();

https://datatracker.ietf.org/doc/html/rfc2026

 my @ph1_news_standard = qw(date newsgroups distribution message-id
 from reply-to followup-to references
 subject keywords control content-type

Lindsey [Page 21]

 Signed Headers in Mail and Netnews May 2000

 content-id);
 my @ph1_mail_standard = qw(date from reply-to to cc in-reply-to
 references subject keywords content-type
 content-id);

 sub set_protocol {
 $_ = shift;
 SWITCH: {

 # PGP-Head-1 protocol
 /^pgp-head-1$/o && do {
 %macros = (
 'news-standard' => \@ph1_news_standard,
 'mail-standard' => \@ph1_mail_standard,
);
 %unstructureds = ('subject', 1, 'comments', 1,
 'organization', 1, 'summary', 1);
 %dates = ('date', 1, 'resent-date', 1, 'expires', 1);
 $canonicalize = \&ph1_canon;
 $protocol = $_;
 last SWITCH;
 };

 # other protocols go in here

 die "Unknown protocol $_\n";
 }
 }

 sub ph1_canon {
 my $tag = lc shift;
 my $line = shift;
 my $signing = shift; # for more stringent checks when signing
 my ($ss,$mm,$hh,$day,$month,$year,$zone,$time,$dummy,@dateval);

 $is_structured = (not $unstructureds{$tag}) && $tag !~ m/^x-/o;
 $is_date = $dates{$tag};
 @outlist = ($tag, ': ');
 $outptr = \@outlist; # will point to @encodelist during encoding
 $state = 0; # for the state machine
 $encoding = 0; # part of the state machine
 $pending = 0; # to remember the FWS between encoded-words

 do {
 # lexical split of $line into plain ($x) + next delimiter ($y)
 $line =~ m/(.*?) # anything except the following:
 (\\\S # quoted-pair
 | [][)><("] # various bracket delimiters

 | =\?(?!=) | \?=\s+=\? | \?= # for encoded-words
 | \s*$ # trailing whitespace
) /sogx;
 $x = $1; $y = $2;

Lindsey [Page 22]

 Signed Headers in Mail and Netnews May 2000

 # convert $x into canonical form
 if ($is_date && $state == 0) {
 $x =~ s/(\S*)\s+/$1 /sog; # reduce FWS to SP
 if ($x !~ m/^\s*$/) { # zone not empty
 if ($signing && $x !~ m/^\s?
 ((mon|tue|wed|thu|fri|sat|sun)\s?,\s?)?
 [0-9]{1,2}\s
 (jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\s
 [0-9]{4}\s
 [0-9]{2}:[0-9]{2}:[0-9]{2}\s
 [-+][0-9]{4}\s?
 /oix) {die "Bad Date '", $x, "'\n"}
 if (not (
 (($ss,$mm,$hh,$day,$month,$year,$zone) = strptime($x))
 && ($time = timegm(0,$mm,$hh,$day,$month,$year)) >= 0
 # $ss not used, in case it is a leap second
)) {die "Bad Date '", $x, "'\n"}
 ($dummy,$mm,$hh,$day,$month,$year) = gmtime($time - $zone);
 @dateval = ($ss,$mm,$hh,$day,$month,$year);
 # $ss restored
 $x = lc strftime("%d%h%Y%T+0000", @dateval);
 }
 } elsif ($is_structured && $state <= 0) {
 $x =~ s/(\S*)\s+/$1/sog; # eliminate FWS
 } else { # unstructured, or in a comment-zone
 $x =~ s/(\S*)\s+/$1 /sog; # reduce FWS to SP
 }
 push @$outptr, $x;

 # state machine to process $y
 if ($is_structured) {
 if ($state == 0) { # neutral-zone
 if ($y eq '"')
 {$state = -1; _end_encoding()}
 elsif ($y eq '<')
 {$state = -2; push @$outptr, $y; _end_encoding()}
 elsif ($y eq '[')
 {$state = -3; push @$outptr, $y; _end_encoding()}
 elsif ($y eq '(')
 {$state = 1; push @$outptr, $y; _end_encoding()}
 elsif ($y eq '=?')
 {_start_encoding(); push @$outptr, $y}
 elsif ($y =~ m/\?=/o)
 {push @$outptr, $y; _end_encoding()}
 elsif ($y =~ m/^[])>]$/o) {
 if ($signing) {die "Unbalanced '", $y, "'\n"}
 else {push @$outptr, $y}
 }
 else {$y =~ s/^\s*$/\r\n/o; push @$outptr, $y}

 # eliminate trailing WS; insert CRLF

 } else { # other zones
 if ($y =~ s/^\s*$/\r\n/o && $signing)
 {die "Unbalanced header ", $line}

Lindsey [Page 23]

 Signed Headers in Mail and Netnews May 2000

 if ($state == -1) { # in quoted-zone
 if ($y eq '"') {$state = 0}
 else {push @$outptr, $y}
 }
 elsif ($state == -2) { # in sharp-zone
 if ($y eq '>') {$state = 0}
 push @$outptr, $y;
 }
 elsif ($state == -3) { # in square-zone
 if ($y eq ']') {$state = 0}
 push @$outptr, $y;
 }
 elsif ($state > 0) { # in comment-zone
 if ($y eq '(')
 {$state ++; push @$outptr, $y; _end_encoding()}
 elsif ($y eq ')')
 {$state --; push @$outptr, $y; _end_encoding()}
 elsif ($y eq '=?')
 {_start_encoding(); push @$outptr, $y}
 elsif ($y =~ m/\?=/o)
 {push @$outptr, $y; _end_encoding()}
 else {push @$outptr, $y}
 }
 }
 } else { # unstructured
 $y =~ s/^\s*$/\r\n/o; # eliminate trailing WS; insert CRLF
 if ($y eq '=?')
 {_start_encoding(); push @$outptr, $y}
 elsif ($y =~ m/\?=/o)
 {push @$outptr, $y; _end_encoding()}
 else {push @$outptr, $y}
 }

 } until $y eq "\r\n";
 if ($encoding) {_end_encoding()}
 $line = join('', @outlist);
 return $line;
 }

 sub _start_encoding { # entered at every '=?'
 @encodelist = ();
 $outptr = \@encodelist; # divert output during encoding
 $encoding = 1;
 }

 sub _end_encoding { # entered at every '?=' or unexpected delimiter
 my $token = "[^][()<>@,;:\"\?.=\x00-\x20\x7f-\xff]+";
 my $encoded_text = "[^\?\x00-\x20\x7f-\xff]+";
 if ($encoding) {

 $outptr = \@outlist; # cease output diversion
 if ($y =~ m/^\?=/o) { # '?=' as expected
 $encodelist[$#encodelist] = '?='; # in case it was '?=\s=?'
 $x = join('', @encodelist);
 $genuine = $x =~ m/^=\?$token\?$token\?$encoded_text\?=$/o;

Lindsey [Page 24]

 Signed Headers in Mail and Netnews May 2000

 if ($genuine)
 {$x = decode_mimewords($x)} # dies if it fails
 if ($is_structured && $state <= 0) {
 if ($genuine) {$x =~ s/\s//go} # eliminate FWS
 } else {
 if ($pending && not $genuine) {push @$outptr, ' '}
 }
 push @$outptr, $x;
 } else { # unexpected delimiter during encoding
 if ($pending && (not $is_structured || $state > 0)) {
 push @$outptr, ' ';
 }
 push @$outptr, @encodelist;
 }
 $encoding = 0;
 if ($pending = $y =~ m/^\?=\s+=\?/o) {
 _start_encoding();
 push @$outptr, ('=?');
 }
 }
 }

Appendix A.2 - Parsing of the Signed header

 # This module must be stored in Mail/Field/Signed.pm
 # relative to the other programs in the suite
 package Mail::Field::Signed;

 use strict;
 use vars qw(@ISA);
 use MIME::Field::ParamVal;
 use Canon;
 use Carp;

 @ISA = qw(MIME::Field::ParamVal);

 INIT: {
 my $x = bless([]);

 $x->register('Signed');
 $x->register('Signed_1');
 $x->register('Signed_2');
 $x->register('Signed_3');
 $x->register('Signed_4');
 $x->register('Signed_5');
 $x->register('Signed_6');
 $x->register('Signed_7');
 $x->register('Signed_8');
 $x->register('Signed_9');

 }

 sub parse {
 my ($self, $string, $signing) = @_;
 my $clean_string = _skip_CFWS($string);

Lindsey [Page 25]

 Signed Headers in Mail and Netnews May 2000

 my $macro;
 $self->set($self->parse_params($clean_string));
 $self->{string} = $string;
 $self->{header_refs} = ();
 set_protocol($self->protocol);
 do {
 if ($self->{_} =~
 m/\G(((\d+:)*)(\$)|([-+]?)((\d+:)*))([-\w]+)(?!:)/og) {
 # ((---$2--)($4) (--$5-)(---$6--))(--$8--)
 if (defined $4) {
 if ($macro = $macros{$8})
 {$self->_incorporate_header('', $2, @{$macro})}
 else { die "Unknown macro ", $8, "\n" }
 } else {$self->_incorporate_header($5, $6, ($8))}
 } else { die "Bad header-ref-list ", $string, "\n" }
 } while ($self->{_} =~ m/,/og);
 foreach ('protocol', 'key') {
 unless($self->param($_)) {die "$_ missing\n"};
 }
 return $self;
 }

 sub tag {
 my $self = shift;
 return Mail::Field::tag($self);
 }

 sub protocol {
 my $self = shift;
 return lc($self->param('protocol'));
 }

 sub key {
 my $self = shift;
 return lc($self->param('key'));
 }

 sub sig {
 my $self = shift;
 return lc($self->param('sig'));
 }

 sub stringify {
 my $self = shift;
 return $self->{string};
 }

 sub header_refs {
 my $self = shift;

 @{$self->{header_refs}};
 }

 sub _incorporate_header {
 my ($self, $plusminus, $level, @additions) = @_;

Lindsey [Page 26]

 Signed Headers in Mail and Netnews May 2000

 my $refs = \@{$self->{header_refs}};
 foreach (@additions) {
 if ($plusminus eq '-') {
 # item to be removed from list
 for (my $i = 0; $i < @$refs; $i++)
 {if (@$refs[$i] eq $level.$_) {splice(@$refs, $i, 1)} }
 } else {
 # item to be added to list
 I: {
 for (my $i = 0; $i < @$refs; $i++)
 {if (@$refs[$i] eq $level.$_) {last I} }
 push (@$refs, $level.$_); # only if not already present
 }
 }
 }
 }

 sub _skip_CFWS {
 my $line = shift;
 my $count = 0;
 my @buf = ();
 while ($line =~ m/\G([^\s\("]*)\s*|\G(\()|\G(")/sog) {
 # (---$1----) ($2) (3)
 if ($1) {push @buf, ($1)}
 elsif ($2) { # comment
 $count += 1;
 do {
 $line =~ m/\G[^()]*([()])/sog
 or die "Unclosed comment\n";
 $count += ($1 eq '(') ? +1 : -1;
 } until ($count == 0);
 } elsif ($3) { # quoted-string
 push @buf, ('"');
 do {
 $line =~ m/\G([^\"\s]+)|\G(\s+)|\G(")/sog;
 # (---$1---) (-$2) (3)
 if ($1) {push @buf, ($1)}
 elsif ($2) {push @buf, (' ')}
 elsif ($3) {push @buf, ('"'); last}
 }
 }
 }
 return join('', @buf);
 }

 sub extract_headers {
 my ($self, $article, $FH, $proc, $signing) = @_;
 my $ref;
 my $signed = $self->stringify;

 $signed =~ s/\s*;[^;]*\bsig\b[^;]*$//io; # remove "; sig=..."
 print $FH (&$proc($self->tag, $signed, $signing));
 foreach $ref ($self->header_refs) {
 _extract_header($article, $ref, $FH, $proc, $signing);
 }

Lindsey [Page 27]

 Signed Headers in Mail and Netnews May 2000

 }

 sub _extract_header {
 my ($article, $ref, $FH, $proc, $signing) = @_;
 $ref =~ m/((\d+):((\d+:)*))?([-\w]+)/o;
 # ((-$2) (---$3--)) (--$5--)
 if ($1) # $ref of the form "1:header"; call ourself recursively
 {_extract_header($article->parts($2-1), $3.$5,
 $FH, $proc, $signing)}
 else { # $ref is a header at the current level
 if ($article->head->count($5) > 1)
 {die "Cannot sign duplicated header ", $5, "\n"}
 elsif ($article->head->count($5) == 1) {
 print $FH (&$proc($5, $article->head->get($5), $signing));
 }
 }
 }

 1;

Appendix A.3 - The Signing program

 use English;
 use Mail::Header;
 use Mail::Field;
 use Mail::Field::Signed;
 use MIME::Parser;
 use Canon;

 $signing = 1; # This is a program to sign headers

 # Read partial Signed header from file
 open SIGNED, "<".$ARGV[0];
 $signed = new Mail::Header *SIGNED;
 @names = $signed->tags;
 $tag = $names[0];
 if ($tag !~ m/^signed(-[1-9])?$/oi || $#names != 0)
 {die "Invalid SIGNED file ", $ARGV[0], "\n"}
 $line = Mail::Field->extract($tag, $signed);

 if ($line->sig) {die "'sig' already present\n"}

 $parser = new MIME::Parser output_to_core=>'ALL';
 $parser->parse_nested_messages('NEST');
 # special treatment for message/rfc822
 $article = $parser->read(*STDIN) or die "Malformed article\n";

 if ($article->head->count($tag))
 {die "Message already signed\n"}

 $tmp = "/tmp/sign-$$";
 open(FH, "> $tmp") or die "Cannot open $tmp: $!\n";
 $line->extract_headers($article, *FH, $canonicalize, $signing);
 close(FH);

Lindsey [Page 28]

 Signed Headers in Mail and Netnews May 2000

 # The remainder of this code is dependent upon the particular
 # implementation of OpenPGP.

 $key = $line->param('key');
 $pgp =
 "pgps -fab +verbose=0 +textmode=off -u $key <$tmp 2>/dev/null |";
 open(FH, $pgp) or die "Cannot open pipe from pgp: $!\n";

 undef $INPUT_RECORD_SEPARATOR;
 $_ = <FH>; # The OpenPGP signature record
 unlink $tmp;
 s/^.*[^\w+\/=\n].*\n|^\n//mog; # remove non-base64 lines
 s/^/ /mog; # indent by 3 spaces
 s/\A/;\n sig="\n/mo; s/\Z/"/mo; # enclose in '; sig="..."'

 $article->head->add($tag, $line->stringify . $_);
 $article->print;

Appendix A.4 - The Verification program

 use English;
 use Mail::Header;
 use Mail::Field;
 use Mail::Field::Signed;
 use MIME::Parser;
 use Canon;

 $signing = 0; # This is a program to verify signed headers
 $parser = new MIME::Parser output_to_core=>'ALL';
 $parser->parse_nested_messages('NEST');
 # special treatment for message/rfc822
 $article = $parser->read(*STDIN) or die "Malformed article\n";

 $tag = $ARGV[0];
 unless ($tag =~ m/^Signed(-[1-9])?/io)
 {die "Bad parameter ", $tag, "\n"}

 $line = Mail::Field->extract($tag, $article);
 unless ($line) {die $tag, " header not found\n"}
 unless ($line->param('sig')) {die "Malformed Signed header\n"}

 $tmp = "/tmp/sign-$$";
 open(FH, "> $tmp") or die "Cannot open $tmp: $!\n";
 $line->extract_headers($article, *FH, $canonicalize, $signing);
 close(FH);

 # The remainder of this code is dependent upon the particular
 # implementation of OpenPGP.

 use IPC::Open2;

 $pgp = "pgpv -f --batchmode -o $tmp 2>&1";
 open2(*PIPEOUT, *PIPEIN, $pgp);

 $armour = $line->param('sig');

Lindsey [Page 29]

 Signed Headers in Mail and Netnews May 2000

 $armour =~ s/\s//sog;
 $armour =~ s/([\w+\/=]{64})/$1\n/sog;
 $armour =~ s/(=[\w+\/]{4}\Z)/\n$1/so;
 print PIPEIN "-----BEGIN PGP SIGNATURE-----\n",
 "Charset: noconv\n\n",
 $armour, "\n",
 "-----END PGP SIGNATURE-----\n";
 close(PIPEIN);
 undef $INPUT_RECORD_SEPARATOR;
 $result = <PIPEOUT>;
 unlink $tmp;

 $result =~ s/^This signature applies to another message\n//mo;
 $result =~ m/Key ID +([0-9a-fA-F]+)/iom;
 unless ("0x" . $1 eq $line->param('key')) {
 print "Signature was for key ", $line->param('key'),
 ", not for 0x", $1, "\n";
 $badsig = 1;
 }
 $badsig |= ($result !~ m/Good signature/iom);
 print $result;
 exit $badsig;

Appendix B - Test cases

 The following, believe it or not, is a valid email message. Note
 that there were various TABs and much trailing whitespace in it (but
 they are unlikely to have survived through to the published form of
 this document).

 Subject: Unstructured headers can contain unmatched (s and unescaped
 "s; (comments like this) and "quoted strings" are not
 treated specially.
 SUMMARY: Multiple spaces, tabs and foldings
 in unstructured headers are reduced to a single SP, and trailing
 whitespace (of which there is much in these examples)) is ignored.
 X-Header: All X headers are "treated "as unstructured")
 from: "Scooby Doo" <foo@bar.example> (all FWS in
 structured headers is removed, except in comments)
 tO: "John (the Boss) Smith" <bar@foo.example> ,
 "Bill \"fingers\"
 Sykes" <"#*\"~"@twist.example> (Observe unescaped \(and escaped "
 within quoted strings, and (properly matched) parentheses within
 comments)
 rEPLY-tO:"#*\"~"@twist.example
 (Observe "s elided, since not in <...>)
 Message-ID: <"*\"~and-other-grunge)(]["@[127.0.0.1"Ugh!]>
 (Yes that is a legal msg-id, including the " in the domain-literal)
 Sender: foo@[127.0.0.1"Ugh!] (another " in a domain-literal)

Lindsey [Page 30]

 Signed Headers in Mail and Netnews May 2000

 Cc: foo@[127.0.0.1(this is not], bar@[a comment)127.0.0.1],
 "=?utf-8?Q?not_an_encoded_word?="
 <=?utf-8?Q?not_an_encoded_word?=@bar.example>,
 =?us-ascii?Q?Joe_D._Bloggs_=5Bwho=20else=5d?= <foo@bar.example>,
 =?us-ascii?Q?C&A?=@bar.example (treated as an encoded-word even
 though, syntactically, it isn't)
 (in comment but =?is0-8859-1?Q?not(an_encoded-word?=))
 (=?us-ascii?Q?encoded-word_split_into-?=
 =?us-ascii?b?cGFydHM=?=)
 Comments: An unstructured encoded word can have
 =?us-ascii?Q?any_characters_in_it_<>()[]"?= =?bogus_e.w?=
 Date: (pre comment) sAt, 13 fEb
 1999 14:59:56 -0800 (PST)
 Keywords: (various illegal constructs which nevertheless get through)
 \(Not a comment\), \" (naked quoted-pair), \ (not a quoted-SP)

 Comments: Various mismatches, which should be rejected.
 Foo:) (naked \))
 Bar: ((mismatched parens)
 Baz: <"mismatch"
 Fred: ["mismatch"
 Date: Sat, 13 Feb 1999 23:00:14 GMT
 Date: 29 Feb 2001 23:00:14 +0000

 The following is the result of applying the PGP-Head-1
 canonicalization to it (lines folded for convenience, as before, and
 blank lines inserted between headers for readability).

 subject: Unstructured headers can contain unmatched (s and unesca
 ped "s; (comments like this) and "quoted strings" are not treated
 specially.CRLF

 summary: Multiple spaces, tabs and foldings in unstructured heade
 rs are reduced to a single SP, and trailing whitespace (of which
 there is much in these examples)) is ignored.CRLF

 x-header: All X headers are "treated "as unstructured")CRLF

 from: ScoobyDoo<foo@bar.example>(all FWS in structured headers is
 removed, except in comments)CRLF

 to: John(theBoss)Smith<bar@foo.example>,Bill\"fingers\"Sykes<"#*\
 "~"@twist.example>(Observe unescaped \(and escaped " within quot
 ed strings, and (properly matched) parentheses within comments)CRLF

 reply-to: #*\"~@twist.example(Observe "s elided, since not in <...
 \&.>)CRLF

 message-id: <"*"~and-other-grunge)(]["@[127.0.0.1"Ugh!]>(Yes tha
 t is a legal msg-id, including the " in the domain-literal)CRLF

 sender: foo@[127.0.0.1"Ugh!](another " in a domain-literal)CRLF

Lindsey [Page 31]

 Signed Headers in Mail and Netnews May 2000

 cc: foo@[127.0.0.1(thisisnot],bar@[acomment)127.0.0.1],=?utf-8?Q?
 not_an_encoded_word?=<=?utf-8?Q?not_an_encoded_word?=@bar.example
 >,JoeD.Bloggs[whoelse]<foo@bar.example>,C&A@bar.example(treated a
 s an encoded-word even though, syntactically, it isn't)(in commen
 t but =?is0-8859-1?Q?not(an_encoded-word?=))(encoded-word split i
 nto-parts)CRLF

 comments: An unstructured encoded word can have any characters in
 it <>()[]" =?bogus_e.w?=CRLF

 date: (pre comment)13feb199922:59:56+0000(PST)CRLF

 keywords: (various illegal constructs which nevertheless get thro
 ugh)\(Notacomment\),\"(naked quoted-pair),\(not a quoted-SP)CRLF

Appendix C - PGP Public Key

 For the benefit of those who would like to experiment with the
 examples given in section 5, the following is the Public Key for
 0xA336D40C (DSS-example).

 -----BEGIN PGP PUBLIC KEY BLOCK-----
 Version: PGPfreeware 5.0i for non-commercial use

 mQDiBDuB8NIRAgDeGDfg+ZlgHDZkkXDpeeaBJxIq9/pkuFL/6puw9j+k/JsKzLr9
 ktqlFgkdnDyYbWm26lWAmjliZEeIyggBlxSlAKD/lbF/4JAJox/7xqW8fuSc9sPO
 AwIA0rQJ1TEhIztyUYB5j4D9V7pHKyhbdifFEf1MwrYsnluiejd5/K623J4wQr/m
 +zMzr7lnX6ZLPkITKgfgpjoAWQIAzg9BAYwHGVgjRg82MxxlP5737ihfa0yWMeVn
 KTU1mToKMaokGMrMnvuOjvu6GmgHdbfgaFXThrnuerN8rRqVP7QLRFNTLWV4YW1w
 bGWJAEsEEBECAAsFAjuB8NIECwMBAgAKCRAkESrJozbUDIgdAKCc4eqIbAFlOB6O
 rWv8CzMPBNo2ZACeKOD6mS+GrEgQkD+cW1MytHVjFTE=
 =Zl1B
 -----END PGP PUBLIC KEY BLOCK-----

[Would it be useful to include descriptions of pgpverify and pgpmoose as
additional appendices?]

Lindsey [Page 32]

