
PCE Working Group S. Litkowski
Internet-Draft Orange
Intended status: Standards Track S. Sivabalan
Expires: September 1, 2017 Cisco
 D. Dhody
 Huawei
 February 28, 2017

Inter Stateful Path Computation Element communication procedures
draft-litkowski-pce-state-sync-01

Abstract

 The Path Computation Element Communication Protocol (PCEP) provides
 mechanisms for Path Computation Elements (PCEs) to perform path
 computations in response to Path Computation Clients (PCCs) requests.
 The stateful PCE extensions allow stateful control of Multi-Protocol
 Label Switching (MPLS) Traffic Engineering Label Switched Paths (TE
 LSPs) using PCEP.

 A Path Computation Client (PCC) can synchronize an LSP state
 information to a Stateful Path Computation Element (PCE). The
 stateful PCE extension allows a redundancy scenario where a PCC can
 have redundant PCEP sessions towards multiple PCEs. In such a case,
 a PCC gives control on a LSP to only a single PCE, and only one PCE
 is responsible for path computation for this delegated LSP. The
 document does not state the procedures related to an inter-PCE
 stateful communication.

 There are some use cases, where an inter-PCE stateful communication
 can bring additional resiliency in the design for instance when some
 PCC-PCE sessions fails. The inter-PCE stateful communication may
 also provide a faster update of the LSP states when an event occurs.
 Finally, when, in a redundant PCE scenario, there is a need to
 compute a set of paths that are part of a group (so there is a
 dependency between the paths), there may be some cases where the
 computation of all paths in the group is not handled by the same PCE:
 this situation is called a split-brain. This split-brain scenario
 may lead to computation loops between PCEs or suboptimal paths
 computation.

 This document describes the procedures to allow a stateful
 communication between PCEs for various use-cases and also the
 procedures to prevent computations loops.

Litkowski, et al. Expires September 1, 2017 [Page 1]

Internet-Draft state-sync February 2017

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 1, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction and problem statement 3
1.1. Reporting LSP changes 3
1.2. Split-brain . 4
1.3. Applicability to H-PCE 11

2. Proposed solution . 11
2.1. State-sync session 11
2.2. Master/Slave relationship between PCE 13

3. Procedures and protocol extensions 13

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Litkowski, et al. Expires September 1, 2017 [Page 2]

Internet-Draft state-sync February 2017

3.1. Opening a state-sync session 13
3.1.1. Capability advertisement 13

3.2. State synchronization 14
3.3. Maintaining LSP states from different sources 15
3.4. Incremental updates and report forwarding rules 15
3.5. Computation priority between PCEs and sub-delegation . . 16
3.6. Passive stateful procedures 18
3.7. PCE initiation procedures 18

4. Examples . 18
4.1. Example 1 . 18
4.2. Example 2 . 20
4.3. Example 3 . 22

 5. Using Master/Slave computation and state-sync sessions to
 increase scaling . 23

6. PCEP-PATH-VECTOR-TLV . 25
7. Security Considerations 26
8. Acknowledgements . 26
9. IANA Considerations . 26
9.1. PCEP-Error Object . 26
9.2. PCEP TLV Type Indicators 26
9.3. STATEFUL-PCE-CAPABILITY TLV 27

10. References . 27
10.1. Normative References 27
10.2. Informative References 27

 Authors' Addresses . 28

1. Introduction and problem statement

1.1. Reporting LSP changes

 When using a stateful PCE ([I-D.ietf-pce-stateful-pce]), a Path
 Computation Client (PCC) can synchronize an LSP state information to
 the stateful Path Computation Element (PCE). If the PCC grants the
 control on the LSP to the PCE, the PCE can update the LSP parameters
 at any time.

 In a multi PCE deployment (redundancy, loadbalancing...), with the
 current specification defined in [I-D.ietf-pce-stateful-pce], the PCC
 will be in charge of reporting the other PCEs of the LSP parameter
 change which brings additional hops and delays in notifying the
 overall network of the LSP parameter change.

 This delay may affect the reaction time of the other PCEs, if they
 need to take action after being notified of the LSP parameter change.

 Apart from the synchronization from the PCC, it is also useful if
 there is synchronization mechanism between the stateful PCEs. As
 stateful PCE make changes to its delegated LSPs, these changes

Litkowski, et al. Expires September 1, 2017 [Page 3]

Internet-Draft state-sync February 2017

 (pending LSPs and the sticky resources [RFC7399]) can be synchronized
 immediately to the other PCEs.

 +----------+
 | PCC1 | LSP1
 +----------+
 / \
 / \
 +---------+ +---------+
 | PCE1 | | PCE2 |
 +---------+ +---------+
 \ /
 \ /
 +----------+
 | PCC2 | LSP2
 +----------+

 In the figure above, we consider a loadbalanced PCE architecture, so
 PCE1 is responsible to compute paths for PCC1 and PCE2 is responsible
 to compute paths for PCC2. When PCE1 triggers an LSP update for
 LSP1, it sends a PCUpdate message to PCC1 for LSP1 containing the new
 parameters. PCC1 will take the parameters into account and will send
 a PCReport to PCE1 and PCE2 reflecting the changes. PCE2 will so be
 notified of the change only after receiving the PCReport from PCC1.

 Let's consider that the LSP1 parameters changed in a such way that
 LSP1 will take over ressources from LSP2 with an higher priority.
 After receiving the report from PCC1, PCE2 will so try to find a new
 path for LSP2. If we consider that there is a round trip delay of
 about 150msec between the PCEs and PCC1 and a round trip delay of
 10msec between the two PCEs, if will take more than 150msec for PCE2
 to be notified of the change.

 Adding a PCEP session between PCE1 and PCE2 may allow to reduce to
 the notification time, so PCE2 can react more quickly by taking the
 pending LSPs and sticky resources into account during path
 computation and reoptimization.

1.2. Split-brain

 In a resiliency case, a PCC has redundant PCEP sessions towards
 multiple PCEs. In such a case, a PCC gives control on an LSP to a
 single PCE only, and only this PCE is responsible for the path
 computation for the delegated LSP: the PCC achieves this by setting
 the D flag only to the active PCE. The election of the active PCE to
 delegate an LSP is controlled by each PCC. The PCC usually elects
 the active PCE by a local configured policy (by setting a priority).

https://datatracker.ietf.org/doc/html/rfc7399

Litkowski, et al. Expires September 1, 2017 [Page 4]

Internet-Draft state-sync February 2017

 Upon PCEP session failure, or active PCE failure, PCC may decide to
 elect a new active PCE by sending new PCRpt message with D flag set
 to this new active PCE. When the failed PCE or PCEP session comes
 back online, it will be up to the vendor to implement preemption.
 Doing preemption may lead to some traffic disruption on the existing
 path if path results from both PCEs are not exactly the same. By
 considering a network with multiple PCCs and implementing multiple
 stateful PCEs for redundancy purpose, there is no guarantee that at
 any time all the PCCs delegate their LSPs to the same PCE.

 +----------+
 | PCC1 | LSP1
 +----------+
 / \
 / \
 +---------+ +---------+
 | PCE1 | | PCE2 |
 +---------+ +---------+
 \ /
 fail \ /
 +----------+
 | PCC2 | LSP2
 +----------+

 In the example above, we consider that by configuration, both PCCs
 will firstly delegate their LSP to PCE1. So PCE1 is responsible for
 computing a path for LSP1 and LSP2. If the PCEP session between PCC2
 and PCE1 fails, PCC2 will delegate LSP2 to PCE2. So PCE1 becomes
 responsible only for LSP1 path computation while PCE2 is responsible
 for the path computation of LSP2. When the PCC2-PCE1 session is back
 online, PCC2 will keep using PCE2 as active PCE (no preemption in
 this example). So the result is a permanent situation where each PCE
 is responsible for a subset of path computation.

 We call this situation a split-brain scenario as there are multiple
 computation brains running at the same time while a central
 computation unit was required in some deployments.

 Further, there are use cases where a particular LSP path computation
 is linked to another LSP path computation: the most common use case
 is path disjointness (see [I-D.ietf-pce-association-diversity]). The
 set of LSPs that are dependant to each other may start from a
 different head-end.

Litkowski, et al. Expires September 1, 2017 [Page 5]

Internet-Draft state-sync February 2017

 / \
 / +------+ +------+ \
 | | PCE1 | | PCE2 | |
 | +------+ +------+ |
 | |
 | +------+ +------+ |
 | | PCC1 | ----------------------> | PCC2 | |
 | +------+ +------+ |
 | |
 | |
 | +------+ +------+ |
 | | PCC3 | ----------------------> | PCC4 | |
 | +------+ +------+ |
 | |
 \ /
 ___/

 / \
 / +------+ +------+ \
 | | PCE1 | | PCE2 | |
 | +------+ +------+ |
 | |
 | +------+ 10 +------+ |
 | | PCC1 | ----- R1 ---- R2 ------- | PCC2 | |
 | +------+ | | +------+ |
 | | | |
 | | | |
 | +------+ | | +------+ |
 | | PCC3 | ----- R3 ---- R4 ------- | PCC4 | |
 | +------+ +------+ |
 | |
 \ /
 ___/

 In the figure above, we want to create two link-disjoint LSPs:
 PCC1->PCC2 and PCC3->PCC4. In the topology, all link metrics are
 equal to 1 except the link R1-R2 which has a metric of 10. The PCEs
 are responsible for the path computation and PCE1 is the active PCE
 for all PCCs in the nominal case.

 Scenario 1:

Litkowski, et al. Expires September 1, 2017 [Page 6]

Internet-Draft state-sync February 2017

 In the nominal case (PCE1 as active PCE), we first configure
 PCC1->PCC2 LSP, as the only constraint is path disjointness, PCE1
 sends a PCUpdate message to PCC1 with the ERO: R1->R3->R4->R2->PCC2
 (shortest path). PCC1 signals and installs the path. When
 PCC3->PCC4 is configured, the PCE already knows the path of
 PCC1->PCC2 and can compute a link-disjoint path : the solution
 requires to move PCC1->PCC2 onto a new path to let room for the new
 LSP. PCE1 sends a PCUpdate message to PCC1 with the new ERO:
 R1->R2->PCC2 and a PCUpdate to PCC3 with the following ERO:
 R3->R4->PCC4. In the nominal case, there is no issue for PCE1 to
 compute a link-disjoint path.

 Scenario 2:

 Now we consider that PCC1 losts its PCEP session with PCE1 (all other
 PCEP sessions are UP). PCC1 delegates its LSP to PCE2.

 +----------+
 | PCC1 | LSP: PCC1->PCC2
 +----------+
 \
 \ D=1
 +---------+ +---------+
 | PCE1 | | PCE2 |
 +---------+ +---------+
 D=1 \ / D=0
 \ /
 +----------+
 | PCC3 | LSP: PCC3->PCC4
 +----------+

 We first configure PCC1->PCC2 LSP, as the only constraint is path
 disjointness, PCE2 (which is the new active PCE for PCC1) sends a
 PCUpdate message to PCC1 with the ERO: R1->32->R4->R2->PCC2 (shortest
 path). When PCC3->PCC4 is configured, PCE1 is not aware anymore of
 LSPs from PCC1, so it cannot compute a disjoint path for PCC3->PCC4
 and will send a PCUpdate message to PCC2 with a shortest path ERO:
 R3->R4->PCC4. When PCC3->PCC4 LSP will be reported to PCE2 by PCC2,
 PCE2 will ensure disjointness computation and will correctly move
 PCC1->PCC2 (as it owns delegation for this LSP) on the following
 path: R1->R2->PCC2. With this sequence of event and this PCEP
 session topology, disjointness is ensured.

 Scenario 3:

Litkowski, et al. Expires September 1, 2017 [Page 7]

Internet-Draft state-sync February 2017

 +----------+
 | PCC1 | LSP: PCC1->PCC2
 +----------+
 / \
 D=1 / \ D=0
 +---------+ +---------+
 | PCE1 | | PCE2 |
 +---------+ +---------+
 / D=1
 /
 +----------+
 | PCC3 | LSP: PCC3->PCC4
 +----------+

 With this new PCEP session topology, we first configure PCC1->PCC2,
 PCE1 computes the shortest path as it is the only LSP in the
 disjoint-group that it is aware of: R1->R3->R4->R2->PCC2 (shortest
 path). When PCC3->PCC4 is configured, PCE2 must compute a disjoint
 path for this LSP. The only solution found is to move PCC1->PCC2 LSP
 on another path, but PCE2 cannot do it as it does not have delegation
 for this LSP. In this setup, PCEs are not able to find a disjoint
 path.

 Scenario 4:

 +----------+
 | PCC1 | LSP: PCC1->PCC2
 +----------+
 / \
 D=1 / \ D=0
 +---------+ +---------+
 | PCE1 | | PCE2 |
 +---------+ +---------+
 D=0 \ / D=1
 \ /
 +----------+
 | PCC3 | LSP: PCC3->PCC4
 +----------+

 With this new PCEP session topology, we consider that PCEs are
 configured to fallback to shortest path if disjointness cannot be
 found. We first configure PCC1->PCC2, PCE1 computes shortest path as
 it is the only LSP in the disjoint-group that it is aware of:
 R1->R3->R4->R2->PCC2 (shortest path). When PCC3->PCC4 is configured,
 PCE2 must compute a disjoint path for this LSP. The only solution
 found is to move PCC1->PCC2 LSP on another path, but PCE2 cannot do
 it as it does not have delegation for this LSP. PCE2 then provides

Litkowski, et al. Expires September 1, 2017 [Page 8]

Internet-Draft state-sync February 2017

 shortest path for PCC3->PCC4: R3->R4->PCC4. When PCC3 receives the
 ERO, it reports it back to both PCEs. When PCE1 becomes aware of
 PCC3->PCC4 path, it recomputes the CSPF and provides a new path for
 PCC1->PCC2: R1->R2->PCC2. The new path is reported back to all PCEs
 by PCC1. PCE2 recomputes also CSPF to take into account the new
 reported path. The new computation does not lead to any path update.

 Scenario 5:

 / \
 / +------+ +------+ \
 | | PCE1 | | PCE2 | |
 | +------+ +------+ |
 | |
 | +------+ 100 +------+ |
 | | | -------------------- | | |
 | | PCC1 | ----- R1 ----------- | PCC2 | |
 | +------+ | +------+ |
 | | | | |
 | 6 | | 2 | 2 |
 | | | | |
 | +------+ | +------+ |
 | | PCC3 | ----- R3 ----------- | PCC4 | |
 | +------+ 10 +------+ |
 | |
 \ /
 _____________________________________/

 Now we consider a new network topology with the same PCEP session
 topology as the previous example. We configure both LSPs almost at
 the same time. PCE1 will compute a path for PCC1->PCC2 while PCE2
 will compute a path for PCC3->PCC4. As each other is not aware of
 the path of the second LSP in the group (not reported yet), each PCE
 is computing shortest path for the LSP. PCE1 computes ERO: R1->PCC2
 for PCC1->PCC2 and PCE2 computes ERO: R3->R1->PCC2->PCC4 for
 PCC3->PCC4. When these shortest paths will be reported to each PCE.
 Each PCE will recompute disjointness. PCE1 will provide a new path
 for PCC1->PCC2 with ERO: PCC1->PCC2. PCE2 will provide also a new
 path for PCC3->PCC4 with ERO: R3->PCC4. When those new paths will be
 reported to both PCEs, this will trigger CSPF again. PCE1 will
 provide a new more optimal path for PCC1->PCC2 with ERO: R1->PCC2 and
 PCE2 will also provide a more optimal path for PCC3->PCC4 with ERO:
 R3->R1->PCC2->PCC4. So we come back to the initial state. When
 those paths will be reported to both PCEs, this will trigger CSPF

Litkowski, et al. Expires September 1, 2017 [Page 9]

Internet-Draft state-sync February 2017

 again. An infinite loop of CSPF computation is then happening with a
 permanent flap of paths because of the split-brain situation.

 This permanent computation loop comes from the inconsistency between
 the state of the LSPs as seen by each PCE due to the split-brain:
 each PCE is trying to modify at the same time its delegated path
 based on the last received path information which defacto invalidates
 this receives path information.

 Scenario 6: multi-domain

 Domain/Area 1 Domain/Area 2
 ________________ ________________
 / \ / \
 / +------+ | | +------+ \
 | | PCE1 | | | | PCE3 | |
 | +------+ | | +------+ |
 | | | |
 | +------+ | | +------+ |
 | | PCE2 | | | | PCE4 | |
 | +------+ | | +------+ |
 | | | |
 | +------+ | | +------+ |
 | | PCC1 | | | | PCC2 | |
 | +------+ | | +------+ |
 | | | |
 | | | |
 | +------+ | | +------+ |
 | | PCC3 | | | | PCC4 | |
 | +------+ | | +------+ |
 \ | | |
 _______________/ ________________/

 In the example above, we want to create disjoint LSPs from PCC1 to
 PCC2 and from PCC4 to PCC3. All the PCEs have the knowledge of both
 domain topologies (e.g. using BGP-LS). For operation/management
 reason, each domain uses its own group of redundant PCEs. PCE1/PCE2
 in domain 1 have PCEP sessions with PCC1 and PCC3 while PCE3/PCE4 in
 domain 2 have PCEP sessions with PCC2 and PCC4. As PCE1/2 do not
 know about LSPs from PCC2/4 and PCE3/4 do not know about LSPs from
 PCC1/3, there is no possibility to compute the disjointness
 constraint. This scenario can also be seen as a split-brain
 scenario. This multi-domain architecture (with multiple groups of
 PCEs) can also be used in a single domain, where an operator wants to
 limit the failure domain by creating multiple groups of PCEs
 maintaining a subset of PCCs. As for the multi-domain example, there

Litkowski, et al. Expires September 1, 2017 [Page 10]

Internet-Draft state-sync February 2017

 will be no possibility to compute disjoint path starting from head-
 ends managed by different PCE groups.

 In this document, we will propose a solution that address the
 possibility to compute LSP association based constraints (like
 disjointness) in split-brain scenarios while preventing computation
 loops.

1.3. Applicability to H-PCE

 [I-D.dhodylee-pce-stateful-hpce] describes general considerations and
 use cases for the deployment of Stateful PCE(s) using the
 Hierarchical PCE [RFC6805] architecture. In this architecture there
 is a clear need to communicate between a child stateful PCE and a
 parent stateful PCE. The procedures and extensions as described in

Section 3 are equally applicable to H-PCE.

2. Proposed solution

 Our solution is based on :

 o The creation of the inter-PCE stateful PCEP session with specific
 procedures.

 o A Master/Slave relationship between PCEs.

2.1. State-sync session

 We propose to create a PCEP session between the stateful PCEs.
 Creating such session is already authorized by multiple scenarios
 like the one described in [RFC4655] (multiple PCEs that are handling
 part of the path computation) and [RFC6805] (hierarchical PCE) but
 was only focused on stateless PCEP sessions. As stateful PCE brings
 additional features (LSP state synchronization, path update ...),
 thus some new behaviors need to be defined.

 This inter-PCE PCEP session will allow exchange of LSP states between
 PCEs that would help some scenario where PCEP sessions are lost
 between PCC and PCE. This inter-PCE PCEP session is called a state-
 sync session.

 For example, in the scenario below, there is no possibility to
 compute disjointness as there is no PCE aware of both LSPs.

https://datatracker.ietf.org/doc/html/rfc6805
https://datatracker.ietf.org/doc/html/rfc4655
https://datatracker.ietf.org/doc/html/rfc6805

Litkowski, et al. Expires September 1, 2017 [Page 11]

Internet-Draft state-sync February 2017

 +----------+
 | PCC1 | LSP: PCC1->PCC2
 +----------+
 /
 D=1 /
 +---------+ +---------+
 | PCE1 | | PCE2 |
 +---------+ +---------+
 / D=1
 /
 +----------+
 | PCC3 | LSP: PCC3->PCC4
 +----------+

 If we add a state-sync session, PCE1 will be able to send PCReport
 messages for its LSP to PCE2 and PCE2 will do the same. All the PCEs
 will be aware of all LSPs even if PCC->PCE session are down. PCEs
 will then be able to compute disjoint paths.

 +----------+
 | PCC1 | LSP : PCC1->PCC2
 +----------+
 /
 D=1 /
 +---------+ PCEP +---------+
 | PCE1 | ----- | PCE2 |
 +---------+ +---------+
 / D=1
 /
 +----------+
 | PCC3 | LSP : PCC3->PCC4
 +----------+

 The procedures associated with this state-sync session are defined in
Section 3.

 Adding this state-sync session does not ensure that a path with LSP
 association based constraints can always been computed and does not
 prevent computation loop, but it increases resiliency and ensures
 that PCEs will have the state information for all LSPs. In addition,
 this session will allow for a PCE to update the other PCEs providing
 a faster synchronization mechanism than relying on PCCs only.

Litkowski, et al. Expires September 1, 2017 [Page 12]

Internet-Draft state-sync February 2017

2.2. Master/Slave relationship between PCE

 As seen in Section 1, performing a path computation in a split-brain
 scenario (multiple PCEs responsible for computation) may provide a
 non optimal LSP placement, no path or computation loops. To provide
 the best efficiency, an LSP association constraint based computation
 requires that a single PCE performs the path computation for all LSPs
 in the association group. Note that, it could be all LSPs belonging
 to a particular association group, or all LSPs from a particular PCC,
 or all LSPs in the network that need to be delegated to a single PCE
 based on the deployment scenarios.

 We propose to add a priority mechanism between PCEs to elect a single
 computing PCE. Using this priority mechanism, PCEs can agree on the
 PCE that will be responsible for the computation for a particular
 association group, or set of LSPs. The priority could be set per
 association, per PCC, or for all LSPs. How this priority is set or
 advertised is out of scope of this document. The rest of the text
 consider association group as an example.

 When a single PCE is performing the computation for a particular
 association group, no computation loop can happen and an optimal
 placement will be provided. The other PCEs will only act as state
 collectors and forwarders.

 In the scenario described in Section 2.1, PCE1 and PCE2 will decide
 that PCE1 will be responsible for the path computation of both LSPs.
 If we first configure PCC1->PCC2, PCE1 computes shortest path at it
 is the only LSP in the disjoint-group that it is aware of:
 R1->R3->R4->R2->PCC2 (shortest path). When PCC3->PCC4 is configured,
 PCE2 will not perform computation even if it has delegation but
 forwards the PCRpt to PCE1 through the state-sync session. PCE1 will
 then perform disjointness computation and will move PCC1->PCC2 onto
 R1->R2->PCC2 and provides an ERO to PCE2 for PCC3->PCC4:
 R3->R4->PCC4.

3. Procedures and protocol extensions

3.1. Opening a state-sync session

3.1.1. Capability advertisement

 A PCE indicates its support of state-sync procedures during the PCEP
 Initialization phase. The Open object in the Open message MUST
 contains the "Stateful PCE Capability" TLV defined in
 [I-D.ietf-pce-stateful-pce]. A new P (INTER-PCE-CAPABILITY) flag is
 introduced to indicate the support of state-sync.

Litkowski, et al. Expires September 1, 2017 [Page 13]

Internet-Draft state-sync February 2017

 The format of the STATEFUL-PCE-CAPABILITY TLV is shown in the
 following figure:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length=4 |
 +-+
 | Flags |P|F|D|T|I|S|U|
 +-+

 This document only updates the Flags field with :

 P (INTER-PCE-CAPABILITY - 1 bit): If set to 1 by a PCEP Speaker,
 the PCEP speaker indicates that the session MUST follow the state-
 sync procedures as described in this document. The P bit MUST be
 set by both speakers: if a PCEP Speaker receives a STATEFUL-PCE-
 CAPABILITY TLV with P=0 while it advertised P=1 or if both set P
 flag to 0, the session SHOULD open but the state-sync procedures
 MUST NOT be applied on this session.

 The U flag MUST be set when sending the STATEFUL-PCE-CAPABILITY TLV
 with the P flag set. S flag MAY be set if optimized synchronization
 is required as per [I-D.ietf-pce-stateful-sync-optimizations].

3.2. State synchronization

 When the INTER-PCE-CAPABILITY has been negotiated, each PCEP speaker
 will behave as a PCE and as a PCC at the same time regarding the
 state synchronization as defined in [I-D.ietf-pce-stateful-pce].
 This means that each PCEP Speaker:

 o MUST send a PCRpt message towards its neighbor with S flag set for
 each LSP in its LSP database learned from a PCC. (PCC role)

 o MUST send the End Of Synchronization Marker towards its neighbor
 when all LSPs have been reported. (PCC role)

 o MUST wait for the LSP synchronization from its neighbor to end
 (receiving an End Of Synchronization Marker). (PCE role)

 The process of synchronization runs in parallel on each PCE (no
 defined order).

 Optimized synchronization MAY be used as defined in
 [I-D.ietf-pce-stateful-sync-optimizations].

Litkowski, et al. Expires September 1, 2017 [Page 14]

Internet-Draft state-sync February 2017

 When a PCEP Speaker sends a PCReport on a state-sync session, it MUST
 add the SPEAKER-IDENTITY-TLV (defined in
 [I-D.ietf-pce-stateful-sync-optimizations]) in the LSP Object, the
 value used will refer to the PCC owner of the LSP. If a PCEP Speaker
 receives a PCReport on a state-sync session without this TLV, it MUST
 discard the PCReport and it MUST reply with a PCErr message using
 error-type=6 (Mandatory Object missing) and error-value=TBD1
 (SPEAKER-IDENTITY-TLV missing).

3.3. Maintaining LSP states from different sources

 When a PCE receives a PCReport on a state-sync session, it stores the
 LSP information into the original PCC address context (as the LSP
 belongs to the PCC). A PCE SHOULD maintain a single state for a
 particular LSP.

 A PCEP Speaker may receive a state information for a particular LSP
 from different sources: the PCC that owns the LSP (through a regular
 PCEP session) and some PCEs (through PCEP state-sync session). A
 PCEP Speaker MUST always keep the last received state information in
 its LSP database, overriding the previously received information.
 For example, a PCE first receives a report for an LSP1 from a PCC,
 and it then receives a report for LSP1 through a PCEP state-sync
 session. The last information received from the state-sync session
 must override the state that was previously received from the PCC.

 The PCEP Speaker MUST track the list of sources it learned a
 particular LSP state from.

 When it receives a PCReport requesting an LSP deletion from a
 particular source, it SHOULD remove this particular source from the
 list of sources associated with this LSP.

 When the list of sources becomes empty for a particular LSP, the LSP
 state MUST be removed. This means that all the sources must send a
 PCRpt with R=1 for an LSP to make the PCE removing the LSP state.

3.4. Incremental updates and report forwarding rules

 During the life of an LSP, its state may change (path, constraints,
 operational state ...) and a PCC will advertise a new PCReport to the
 PCE for each such change.

 When a PCE receives a new PCReport from a PCC, if the LSP state
 information has changed compared to the previous information (or if
 it is a new reported LSP), the PCE MUST forward the PCReport to all
 its state-sync sessions and MUST add the appropriate SPEAKER-
 IDENTITY-TLV in the PCReport.

Litkowski, et al. Expires September 1, 2017 [Page 15]

Internet-Draft state-sync February 2017

 When a PCE receives a new PCReport from a PCC with R flag set for
 delegated LSP, the PCE MUST forward the PCReport to all its state-
 sync sessions keeping the R flag set (Remove) and MUST add the
 appropriate SPEAKER-IDENTITY-TLV in the PCReport.

 When a PCE receives a PCReport from a state-sync session, it MUST NOT
 forward the PCReport to other state-sync sessions. This helps to
 prevent message loops between PCEs. As a consequence, a full mesh of
 PCEP sessions between PCEs is required.

 When a PCReport is forwarded, all the original objects and values are
 kept. As an example, the PLSP-ID used in the forwarded PCReport will
 be the same as the original one used by the PCC. Thus an
 implementation supporting this document MUST consider SPEAKER-
 IDENTITY-TLV and PLSP-ID together to uniquely identify an LSP on the
 state-sync session.

3.5. Computation priority between PCEs and sub-delegation

 A computation priority is necessary to ensure that a single PCE will
 perform the computation for all the LSPs in an association group:
 this will allow for a more optimized LSP placement and will prevent
 computation loops.

 All PCEs in the network that are handling LSPs in a common LSP
 association group SHOULD be aware of each other including the
 computation priority of each PCE. Note that there is no need for PCC
 to be aware of this. The computation priority is a number and the
 PCE having the highest priority SHOULD be responsible for the
 computation. If several PCEs have the same priority value, their IP
 address SHOULD be used as a tie-breaker to provide a rank: the
 highest IP address as more priority. How PCEs are aware of the
 priority of each other is out of scope of this document, but as
 example learning priorities could be done through IGP informations or
 local configuration.

 The definition of the priority MAY be global so the highest priority
 PCE will handle all path computations or more granular, so a PCE may
 have highest priority for only a subset of LSPs or association-
 groups.

 A PCEP Speaker receiving a PCReport from a PCC with D flag set that
 does not have the highest computation priority, SHOULD forward the
 PCReport on all state-sync sessions (as per Section 3.4) and SHOULD
 set D flag on the state-sync session towards the highest priority
 PCE, D flag will be unset to all other state-sync sessions. This
 behavior is similar to the delegation behavior handled at PCC side
 and is called a sub-delegation (the PCE subdelegates the control of

Litkowski, et al. Expires September 1, 2017 [Page 16]

Internet-Draft state-sync February 2017

 the LSP to another PCE). When a PCEP Speaker sub-delegates a LSP to
 another PCE, it looses the control on the LSP and cannot update it
 anymore by its own decision. When a PCE receives a PCReport with D
 flag set on a state-sync session, as a regular PCE, it becomes
 granted to update the LSP.

 If the highest priority PCE is failing or if the state-sync session
 between the local PCE and the highest priority PCE failed, the local
 PCE MAY decide to delegate the LSP to the next highest priority PCE
 or to take back control on the LSP. It is a local policy decision.

 When a PCE has the delegation for an LSP and needs to update this
 LSP, it MUST send a PCUpdate message to all state-sync sessions and
 to the PCC session on which it received the delegation. The D-Flag
 would be unset in the PCUpdate for state-sync sessions where as
 D-Flag would be set for the PCC. In case of subdelegation, the
 computing PCE will send the PCUpdate only to all state-sync sessions
 (as it has no direct delegation from a PCC). The D-Flag would be set
 for the state-sync session to the PCE that sub-delegated this LSP and
 the D-Flag would be unset for other state-sync sessions.

 The PCUpdate sent over a state-sync session MUST contain the SPEAKER-
 IDENTITY-TLV in the LSP Object (the value used must identify the
 target PCC). The PLSP-ID used is the original PLSP-ID generated by
 the PCC and learned from the forwarded PCReport. If a PCE receives a
 PCUpdate on a state-sync session without the SPEAKER-IDENTITY-TLV, it
 MUST discard the PCUpdate and MUST reply with a PCError message using
 error-type=6 (Mandatory Object missing) and error-value=TBD1
 (SPEAKER-IDENTITY-TLV missing).

 When a PCE receives a valid PCUpdate on a state-sync session, it
 SHOULD forward the PCUpdate to the appropriate PCC (identified based
 on the SPEAKER-IDENTITY-TLV value) that delegated the LSP originally
 and SHOULD remove the SPEAKER-IDENTITY-TLV from the LSP Object. The
 acknowlegment of the PCUpdate is done through a cascaded mechanism,
 and the PCC is the only responsible of triggering the acknowledgment:
 when the PCC receives the PCUpdate from the local PCE, it
 acknowledges it with a PCReport as per [I-D.ietf-pce-stateful-pce].
 When receiving the new PCReport from the PCC, the local PCE uses the
 defined forwarding rules on the state-sync session so the
 acknowledgment is relayed to the computing PCE.

 A PCE SHOULD NOT compute a path using an association-group constraint
 if it has delegation for only a subset of LSPs in the group. In this
 case, an implementation MAY use a local policy on PCE to decide if
 PCE does not compute path at all for this set of LSP or if it can
 compute a path by relaxing the association-group constraint.

Litkowski, et al. Expires September 1, 2017 [Page 17]

Internet-Draft state-sync February 2017

3.6. Passive stateful procedures

 In the passive stateful PCE architecture, the PCC is responsible of
 triggering a path computation request using a PCRequest message to
 its PCE. Similarly to PCReports which remains unchanged for passive
 mode, if a PCE receives a PCRequest for an LSP and if this PCE finds
 that it does not have the highest computation priority of this LSP,
 or groups..., it MUST forward the PCRequest to the highest priority
 PCE over the state-sync session. When the highest priority PCE
 receives the PCRequest, it computes the path and generates a PCReply
 only to the PCE that is received the PCRequest from. This PCE will
 then forward the PCReply to the requesting PCC. The handling of LSP
 object and the SPEAKER-IDENTITY-TLV in PCRequest and PCReply is
 similar to PCReport/PCUpdate.

3.7. PCE initiation procedures

 TBD

4. Examples

4.1. Example 1

Litkowski, et al. Expires September 1, 2017 [Page 18]

Internet-Draft state-sync February 2017

 / \
 / +------+ +------+ \
 | | PCE1 | | PCE2 | |
 | +------+ +------+ |
 | |
 | +------+ 10 +------+ |
 | | PCC1 | ----- R1 ---- R2 ------- | PCC2 | |
 | +------+ | | +------+ |
 | | | |
 | | | |
 | +------+ | | +------+ |
 | | PCC3 | ----- R3 ---- R4 ------- | PCC4 | |
 | +------+ +------+ |
 | |
 \ /
 ___/

 +----------+
 | PCC1 | LSP : PCC1->PCC2
 +----------+
 /
 D=1 /
 +---------+ +---------+
 | PCE1 |----| PCE2 |
 +---------+ +---------+
 / D=1
 /
 +----------+
 | PCC3 | LSP : PCC3->PCC4
 +----------+

 PCE1 computation priority 100
 PCE2 computation priority 200

 With this PCEP session topology where computation priority is global
 for all LSPs, we still want to have link disjoint LSPs PCC1->PCC2 and
 PCC3->PCC4.

 We first configure PCC1->PCC2, PCC1 delegates the LSP to PCE1, but as
 PCE1 does not have the highest computation priority, it will sub-
 delegate the LSP to PCE2 by sending a PCReport with D=1 and including
 the SPEAKER-IDENTITY-TLV over the state-sync session. PCE2 receives
 the PCReport and as it has delegation for this LSP, it computes the
 shortest path: R1->R3->R4->R2->PCC2. It then sends a PCUpdate to
 PCE1 (including the SPEAKER-IDENTITY-TLV) with the computed ERO.
 PCE1 forwards the PCUpdate to PCC1 (removing the SPEAKER-IDENTITY-

Litkowski, et al. Expires September 1, 2017 [Page 19]

Internet-Draft state-sync February 2017

 TLV). PCC1 acknowledges the PCUpdate by a PCReport to PCE1. PCE1
 forwards the PCReport to PCE2.

 When PCC3->PCC4 is configured, PCC3 delegates the LSP to PCE2, PCE2
 can compute a disjoint path as it has knowledge of both LSPs and has
 delegation also for both. The only solution found is to move
 PCC1->PCC2 LSP on another path, PCE2 can move PCC3->PCC4 as it has
 delegation for it. It creates a new PCUpdate with new ERO:
 R1->R2-PCC2 towards PCE1 which forwards to PCC1. PCE2 sends a
 PCUpdate to PCC3 with the path: R3->R4->PCC4.

 In this setup, PCEs are able to find a disjoint path while without
 state-sync and computation priority they could not.

4.2. Example 2

Litkowski, et al. Expires September 1, 2017 [Page 20]

Internet-Draft state-sync February 2017

 / \
 / +------+ +------+ \
 | | PCE1 | | PCE2 | |
 | +------+ +------+ |
 | |
 | +------+ 100 +------+ |
 | | | -------------------- | | |
 | | PCC1 | ----- R1 ----------- | PCC2 | |
 | +------+ | +------+ |
 | | | | |
 | 6 | | 2 | 2 |
 | | | | |
 | +------+ | +------+ |
 | | PCC3 | ----- R3 ----------- | PCC4 | |
 | +------+ 10 +------+ |
 | |
 \ /
 _____________________________________/

 +----------+
 | PCC1 | LSP : PCC1->PCC2
 +----------+
 / \
 D=1 / \ D=0
 +---------+ +---------+
 | PCE1 |----| PCE2 |
 +---------+ +---------+
 D=0 \ / D=1
 \ /
 +----------+
 | PCC3 | LSP : PCC3->PCC4
 +----------+

 PCE1 computation priority 200
 PCE2 computation priority 100

 In this example, we configure both LSPs almost at the same time.
 PCE1 sub-delegates PCC1->PCC2 to PCE2 while PCE2 keeps delegation for
 PCC3->PCC4, PCE2 computes a path for PCC1->PCC2 and PCC3->PCC4 and
 can achieve disjointness computation easily. No computation loop
 happens in this case.

Litkowski, et al. Expires September 1, 2017 [Page 21]

Internet-Draft state-sync February 2017

4.3. Example 3

 / \
 / +------+ +------+ \
 | | PCE1 | | PCE2 | |
 | +------+ +------+ |
 | |
 | +------+ 10 +------+ |
 | | PCC1 | ----- R1 ---- R2 ------- | PCC2 | |
 | +------+ | | +------+ |
 | | | |
 | | | |
 | +------+ | | +------+ |
 | | PCC3 | ----- R3 ---- R4 ------- | PCC4 | |
 | +------+ +------+ |
 | |
 \ /
 ___/

 +----------+
 | PCC1 | LSP : PCC1->PCC2
 +----------+
 /
 D=1 /
 +---------+ +---------+ +---------+
 | PCE1 |----| PCE2 |----| PCE3 |
 +---------+ +---------+ +---------+
 / D=1
 /
 +----------+
 | PCC3 | LSP : PCC3->PCC4
 +----------+

 PCE1 computation priority 100
 PCE2 computation priority 200
 PCE2 computation priority 300

 With this PCEP session topology, we still want to have link disjoint
 LSPs PCC1->PCC2 and PCC3->PCC4.

 We first configure PCC1->PCC2, PCC1 delegates the LSP to PCE1, but as
 PCE1 does not have the highest computation priority, it will sub-
 delegate the LSP to PCE2 (as it cannot reach PCE3 through a state-
 sync session). PCE2 cannot compute a path for PCC1->PCC2 as it does
 not have the highest priority and cannot sub-delegate the LSP again
 towards PCE3.

Litkowski, et al. Expires September 1, 2017 [Page 22]

Internet-Draft state-sync February 2017

 When PCC3->PCC4 is configured, PCC3 delegates the LSP to PCE2 that
 performs sub-delegation to PCE3. As PCE3 will have knowledge of only
 one LSP in the group, it cannot compute disjointness and can decide
 to fallback to a less constrained computation to provide a path for
 PCC3->PCC4. In this case, it will send a PCUpdate to PCE2 that will
 be forwarded to PCC3.

 Disjointness cannot be achieved in this scenario because of lack of
 state-sync session between PCE1 and PCE3, but no computation loop
 happens. Thus it is advised for all PCEs that support state-sync to
 have a full mesh sessions between each other.

5. Using Master/Slave computation and state-sync sessions to increase
 scaling

 The Primary/Backup computation and state-sync sessions architecture
 can be used to increase the scaling of the PCE architecture. If the
 number of PCCs is really high, it may be too resource consuming for a
 single PCE to maintain all the PCEP sessions while at the same time
 performing all path computations. Using master/slave computation and
 state-sync sessions may allow to create groups of PCEs that manage a
 subset of the PCCs and perform some or no path computations.
 Decoupling PCEP session maintenance and computation will allow to
 increase scaling of the PCE architecture.

Litkowski, et al. Expires September 1, 2017 [Page 23]

Internet-Draft state-sync February 2017

 +----------+
 | PCC500 |
 +----------+-+
 | PCC1 |
 +----------+
 / \
 / \
 +---------+ +---------+
 | PCE1 |---| PCE2 |
 +---------+ +---------+
 | \ / |
 | \/ |
 | /\ |
 | / \ |
 +---------+ +---------+
 | PCE3 |---| PCE4 |
 +---------+ +---------+
 \ /
 \ /
 +----------+
 | PCC501 |
 +----------+-+
 | PCC1000 |
 +----------+

 In the figure above, two groups of PCEs are created: PCE1/2 maintain
 PCEP sessions with PCC1 up to PCC500, while PCE3/4 maintain PCEP
 sessions with PCC501 up to PCC1000. A granular master/slave policy
 is setup as follows to loadshare computation between PCEs:

 o PCE1 has priority 200 for association ID 1 up to 300, association
 source 0.0.0.0. All other PCEs have a decreasing priority for
 those associations.

 o PCE3 has priority 200 for association ID 301 up to 500,
 association source 0.0.0.0. All other PCEs have a decreasing
 priority for those associations.

 If some PCCs delegate LSPs with association ID 1 up to 300 and
 association source 0.0.0.0, the receiving PCE (if not PCE1) will sub-
 delegate the LSPs to PCE1. PCE1 becomes responsible for the
 computation of these LSP associations while PCE3 is responsible for
 the computation of another set of associations.

Litkowski, et al. Expires September 1, 2017 [Page 24]

Internet-Draft state-sync February 2017

6. PCEP-PATH-VECTOR-TLV

 This document allows PCEP messages to be propagated among PCEP
 speaker. It may be useful to track informations about the
 propagation of the messages. One of the use case is a message loop
 detection mechanism, but other use cases like hop by hop information
 recording may also be implemented.

 This document introduces the PCEP-PATH-VECTOR-TLV (type TBD2) with
 the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type=TBD2 | Length (variable) |
 +-+
 | PCEP-SPEAKER-INFORMATION#1 |
 +-+
 | ... |
 +-+
 | PCEP-SPEAKER-INFORMATION#2 |
 +-+
 | ... |
 +-+

 The TLV format and padding rules are as per [RFC5440].

 The PCEP-SPEAKER-INFORMATION field has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (variable) | ID Length (variable) |
 +-+
 | Speaker Entity identity (variable) |
 +-+
 | SubTLVs (optional) |
 +-+

 Length: defines the total length of the PCEP-SPEAKER-INFORMATION
 field.

 ID Length: defines the length of the Speaker identity actual field
 (non-padded).

 Speaker Entity identity: same possible values as the SPEAKER-
 IDENTIFIER-TLV. Padded with trailing zeroes to a 4-byte boundary.

https://datatracker.ietf.org/doc/html/rfc5440

Litkowski, et al. Expires September 1, 2017 [Page 25]

Internet-Draft state-sync February 2017

 The PCEP-SPEAKER-INFORMATION may also carry some optional subTLVs
 so each PCEP speaker can add local informations that could be
 recorded. This document does not define any subTLV.

 The PCEP-PATH-VECTOR-TLV MAY be added in the LSP-Object. Its usage
 is purely optional.

 The list of speakers within the PCEP-PATH-VECTOR-TLV MUST be ordered.
 When sending a PCEP message (PCReport, PCUpdate or PCInitiate), a
 PCEP Speaker MAY add the PCEP-PATH-VECTOR-TLV with a PCEP-SPEAKER-
 INFORMATION containing its own informations. If the PCEP message
 sent is the result of a previously received PCEP message, and if the
 PCEP-PATH-VECTOR-TLV was already present in the initial message, the
 PCEP speaker MAY append a new PCEP-SPEAKER-INFORMATION containing its
 own informations.

7. Security Considerations

 TBD.

8. Acknowledgements

 TBD.

9. IANA Considerations

 This document requests IANA actions to allocate code points for the
 protocol elements defined in this document.

9.1. PCEP-Error Object

 IANA is requested to allocate a new Error Value for the Error Type 9.

 Error-Type Meaning Reference
 6 Mandatory Object Missing [RFC5440]
 Error-value=TBD1: SPEAKER-IDENTITY-TLV This document
 missing

9.2. PCEP TLV Type Indicators

 IANA is requested to allocate new TLV Type Indicator values within
 the "PCEP TLV Type Indicators" sub-registry of the PCEP Numbers
 registry, as follows:

 Value Meaning Reference
 TBD2 PCEP-PATH-VECTOR-TLV This document

https://datatracker.ietf.org/doc/html/rfc5440

Litkowski, et al. Expires September 1, 2017 [Page 26]

Internet-Draft state-sync February 2017

9.3. STATEFUL-PCE-CAPABILITY TLV

 IANA is requested to allocate a new bit value in the STATEFUL-PCE-
 CAPABILITY TLV Flag Field sub-registry.

 Bit Description Reference
 TBD INTER-PCE-CAPABILITY This document

10. References

10.1. Normative References

 [I-D.ietf-pce-stateful-pce]
 Crabbe, E., Minei, I., Medved, J., and R. Varga, "PCEP
 Extensions for Stateful PCE", draft-ietf-pce-stateful-

pce-18 (work in progress), December 2016.

 [I-D.ietf-pce-stateful-sync-optimizations]
 Crabbe, E., Minei, I., Medved, J., Varga, R., Zhang, X.,
 and D. Dhody, "Optimizations of Label Switched Path State
 Synchronization Procedures for a Stateful PCE", draft-

ietf-pce-stateful-sync-optimizations-08 (work in
 progress), January 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 DOI 10.17487/RFC5440, March 2009,
 <http://www.rfc-editor.org/info/rfc5440>.

10.2. Informative References

 [I-D.dhodylee-pce-stateful-hpce]
 Dhody, D., Lee, Y., Ceccarelli, D., Shin, J., King, D.,
 and O. Dios, "Hierarchical Stateful Path Computation
 Element (PCE).", draft-dhodylee-pce-stateful-hpce-02 (work
 in progress), October 2016.

 [I-D.ietf-pce-association-diversity]
 Litkowski, S., Sivabalan, S., and C. Barth, "Path
 Computation Element communication Protocol extension for
 signaling LSP diversity constraint", draft-ietf-pce-

association-diversity-00 (work in progress), January 2017.

https://datatracker.ietf.org/doc/html/draft-ietf-pce-stateful-pce-18
https://datatracker.ietf.org/doc/html/draft-ietf-pce-stateful-pce-18
https://datatracker.ietf.org/doc/html/draft-ietf-pce-stateful-sync-optimizations-08
https://datatracker.ietf.org/doc/html/draft-ietf-pce-stateful-sync-optimizations-08
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5440
http://www.rfc-editor.org/info/rfc5440
https://datatracker.ietf.org/doc/html/draft-dhodylee-pce-stateful-hpce-02
https://datatracker.ietf.org/doc/html/draft-ietf-pce-association-diversity-00
https://datatracker.ietf.org/doc/html/draft-ietf-pce-association-diversity-00

Litkowski, et al. Expires September 1, 2017 [Page 27]

Internet-Draft state-sync February 2017

 [RFC4655] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
 Element (PCE)-Based Architecture", RFC 4655,
 DOI 10.17487/RFC4655, August 2006,
 <http://www.rfc-editor.org/info/rfc4655>.

 [RFC6805] King, D., Ed. and A. Farrel, Ed., "The Application of the
 Path Computation Element Architecture to the Determination
 of a Sequence of Domains in MPLS and GMPLS", RFC 6805,
 DOI 10.17487/RFC6805, November 2012,
 <http://www.rfc-editor.org/info/rfc6805>.

 [RFC7399] Farrel, A. and D. King, "Unanswered Questions in the Path
 Computation Element Architecture", RFC 7399,
 DOI 10.17487/RFC7399, October 2014,
 <http://www.rfc-editor.org/info/rfc7399>.

Authors' Addresses

 Stephane Litkowski
 Orange

 Email: stephane.litkowski@orange.com

 Siva Sivabalan
 Cisco

 Email: msiva@cisco.com

 Dhruv Dhody
 Huawei
 Divyashree Techno Park, Whitefield
 Bangalore, Karnataka 560066
 India

 Email: dhruv.ietf@gmail.com

https://datatracker.ietf.org/doc/html/rfc4655
http://www.rfc-editor.org/info/rfc4655
https://datatracker.ietf.org/doc/html/rfc6805
http://www.rfc-editor.org/info/rfc6805
https://datatracker.ietf.org/doc/html/rfc7399
http://www.rfc-editor.org/info/rfc7399

Litkowski, et al. Expires September 1, 2017 [Page 28]

