
Network Working Group B. Carpenter
Internet-Draft Univ. of Auckland
Intended status: Standards Track B. Liu, Ed.
Expires: January 1, 2018 Huawei Technologies
 W. Wang
 X. Gong
 BUPT University
 June 30, 2017

Generic Autonomic Signaling Protocol Application Program Interface
(GRASP API)

draft-liu-anima-grasp-api-04

Abstract

 This document specifies the application programming interface (API)
 of the Generic Autonomic Signaling Protocol (GRASP). The API is used
 for Autonomic Service Agents (ASA) calling the GRASP protocol module
 to exchange autonomic network messages with other ASAs.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 1, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Carpenter, et al. Expires January 1, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft GRASP API June 2017

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. GRASP API for ASA . 3
2.1. Design Principles . 3
2.2. API definition . 4
2.2.1. Parameters and data structures 4
2.2.2. Registration . 7
2.2.3. Discovery . 10
2.2.4. Negotiation . 10
2.2.5. Synchronization and Flooding 14

3. Non-threaded Implementations 18
4. Example Logic Flows . 19
5. Security Considerations 19
6. IANA Considerations . 19
7. Acknowledgements . 19
8. References . 19
8.1. Normative References 19
8.2. Informative References 19

Appendix A. Error Codes . 20
Appendix B. Change log [RFC Editor: Please remove] 21

 Authors' Addresses . 22

1. Introduction

 As defined in [I-D.ietf-anima-reference-model], the Autonomic Service
 Agent (ASA) is the atomic entity of an autonomic function; and it is
 instantiated on autonomic nodes. When ASAs communicate with each
 other, they should use the Generic Autonomic Signaling Protocol
 (GRASP) [I-D.ietf-anima-grasp].

 As the following figure shows, GRASP could contain two major sub-
 layers. The bottom is the GRASP base protocol module, which is only
 responsible for sending and receiving GRASP messages and maintaining
 shared data structures. The upper layer is some extended functions
 based upon GRASP basic protocol. For example,
 [I-D.liu-anima-grasp-distribution] describes a possible extended
 function.

 It is desirable that ASAs can be designed as portable user-space
 programs using a portable API. In many operating systems, the GRASP
 module will therefore be split into two layers, one being a library
 that provides the API and the other being core code containing common

Carpenter, et al. Expires January 1, 2018 [Page 2]

Internet-Draft GRASP API June 2017

 components such as multicast handling and the discovery cache. The
 details of this are system-dependent.

 +----+ +----+
 |ASAs| |ASAs|
 +----+ +----+
 | |
 | GRASP Function API |
 | |
 +------------------+ |GRASP API
 | GRASP Extended | |
 | Function Modules | |
 +------------------+ |
 +--+
 | GRASP Library |
 | GRASP Module - - - - - - - - - - - - - -|
 | GRASP Core |
 +--+

 Both the GRASP base module and the extended function modules should
 be available to the ASAs. Thus, there needs to be two sub-sets of
 API. However, since the extended functions are expected to be added
 in an incremental manner, it is inappropriate to define the function
 APIs in a single document. This document only defines the base GRASP
 API.

 Note that a very simple autonomic node might contain only a single
 ASA in addition to the autonomic infrastructure components described
 in [I-D.ietf-anima-bootstrapping-keyinfra] and
 [I-D.ietf-anima-autonomic-control-plane]. Such a node might directly
 integrate GRASP in its autonomic code and therefore not require this
 API to be installed.

2. GRASP API for ASA

2.1. Design Principles

 The assumption of this document is that any Autonomic Service Agent
 (ASA) needs to call a GRASP module that handles protocol details
 (security, sending and listening for GRASP messages, waiting, caching
 discovery results, negotiation looping, sending and receiving
 sychronization data, etc.) but understands nothing about individual
 objectives. So this is a high level abstract API for use by ASAs.
 Individual language bindings should be defined in separate documents.

 An assumption of this API is that ASAs may fall into various classes:

 o ASAs that only use GRASP for discovery purposes.

Carpenter, et al. Expires January 1, 2018 [Page 3]

Internet-Draft GRASP API June 2017

 o ASAs that use GRASP negotiation but only as an initiator (client).

 o ASAs that use GRASP negotiation but only as a responder.

 o ASAs that use GRASP negotiation as an initiator or responder.

 o ASAs that use GRASP synchronization but only as an initiator
 (recipient).

 o ASAs that use GRASP synchronization but only as a responder and/or
 flooder.

 o ASAs that use GRASP synchronization as an initiator, responder
 and/or flooder.

 The API also assumes that one ASA may support multiple objectives.
 Nothing prevents an ASA from supporting some objectives for
 synchronization and others for negotiation.

 The API design assumes that the operating system and programming
 language provide a convenient mechanism for multi-threaded code. A
 solution in case this does not apply is described in Section 3.

 This is a preliminary version. Two particular gaps exist:

 o Authorization of ASAs is out of scope.

 o The Rapid mode of GRASP is not supported.

2.2. API definition

2.2.1. Parameters and data structures

 This section describes parameters and data structures uaed in
 multiple API calls.

2.2.1.1. Errorcode

 All functions in the API have an unsigned 'errorcode' integer as
 their return value (the first returned value in languages that allow
 multiple returned parameters). An errorcode of zero indicates
 success. Any other value indicates failure of some kind. The first
 three errorcodes have special importance:

 1. Declined: used to indicate that the other end has sent a GRASP
 Negotiation End message (M_END) with a Decline option
 (O_DECLINE).

Carpenter, et al. Expires January 1, 2018 [Page 4]

Internet-Draft GRASP API June 2017

 2. No reply: used in non-blocking calls to indicate that the other
 end has sent no reply so far (see Section 3).

 3. Unspecified error: used when no more specific error code applies.

Appendix A gives a full list of currently defined error codes.

2.2.1.2. Timeout

 Wherever a 'timeout' parameter appears, it is an integer expressed in
 milliseconds. If it is zero, the GRASP default timeout
 (GRASP_DEF_TIMEOUT, see [I-D.ietf-anima-grasp]) will apply. If no
 response is received before the timeout expires, the call will fail
 unless otherwise noted.

2.2.1.3. Objective

 An 'objective' parameter is a data structure with the following
 components:

 o name (UTF-8 string) - the objective's name

 o neg (Boolean) - True if objective supports negotiation (default
 False)

 o synch (Boolean) - True if objective supports synchronization
 (default False)

 o dry (Boolean) - True if objective also supports dry-run
 synchronization (default False)

 * Note 1: All objectives are assumed to support discovery, so
 there is no Boolean for that.

 * Note 2: Only one of 'synch' or 'neg' may be True.

 * Note 3: 'dry' must not be True unless 'neg' is also True.

 o loop_count (integer) - Limit on negotiation steps etc. (default
 GRASP_DEF_LOOPCT, see [I-D.ietf-anima-grasp])

 o value - a specific data structure expressing the value of the
 objective. The format is language dependent, with the constraint
 that it can be validly represented in CBOR (default integer = 0).

 An essential requirement for all language mappings and all
 implementations is that, regardless of what other options exist
 for a language-specific represenation of the value, there is

Carpenter, et al. Expires January 1, 2018 [Page 5]

Internet-Draft GRASP API June 2017

 always an option to use a CBOR byte string as the value. The API
 will then wrap this byte string in CBOR Tag 24 for transmission
 via GRASP, and unwrap it after reception.

 An example data structure definition for an objective in the C
 language is:

 typedef struct {
 char *name;
 bool neg;
 bool dry;
 bool synch;
 int loop_count;
 int value_size; // size of value
 uint8_t cbor_value[]; // CBOR bytestring of value
 } objective;

 An example data structure definition for an objective in the
 Python language is:

 class objective:
 """A GRASP objective"""
 def __init__(self, name):
 self.name = name #Unique name, string
 self.neg = False #Set True if objective supports negotiation
 self.dry = False #Set True if objective also supports dry-run
negotiation
 self.synch = False #Set True if objective supports synch
 self.loop_count = GRASP_DEF_LOOPCT #Default starting value
 self.value = 0 #Place holder; any valid Python object

2.2.1.4. ASA_locator

 An 'ASA_locator' parameter is a data structure with the following
 contents:

 o locator - The actual locator, either an IP address or an ASCII
 string.

 o ifi (integer) - The interface identifier index via which this was
 discovered - probably no use to a normal ASA

 o expire (system dependent type) - The time on the local system
 clock when this locator will expire from the cache

 o is_ipaddress (Boolean) - True if the locator is an IP address

 o is_fqdn (Boolean) - True if the locator is an FQDN

Carpenter, et al. Expires January 1, 2018 [Page 6]

Internet-Draft GRASP API June 2017

 o is_uri (Boolean) - True if the locator is a URI

 o diverted (Boolean) - True if the locator was discovered via a
 Divert option

 o protocol (integer) - Applicable transport protocol (IPPROTO_TCP or
 IPPROTO_UDP)

 o port (integer) - Applicable port number

2.2.1.5. Tagged_objective

 A 'tagged_objective' parameter is a data structure with the following
 contents:

 o objective - An objective

 o locator - The ASA_locator associated with the objective, or a null
 value.

2.2.1.6. Asa_nonce

 In most calls, an 'asa_nonce' parameter is required. It is generated
 when an ASA registers with GRASP, and any call in which an invalid
 nonce is presented will fail. It is an up to 32-bit opaque value
 (for example represented as a uint32_t, depending on the language).
 It should be unpredictable; a possible implementation is to use the
 same mechanism that GRASP uses to generate Session IDs
 [I-D.ietf-anima-grasp]. Another possible implementation is to hash
 the name of the ASA with a locally defined secret key.

2.2.1.7. Session_nonce

 In some calls, a 'session_nonce' parameter is required. This is an
 opaque data structure as far as the ASA is concerned, used to
 identify calls to the API as belonging to a specific GRASP session.
 In fully threaded implementations this parameter might not be needed,
 but it is included to act as a session handle if necessary. It will
 also allow GRASP to detect and ignore malicious calls or calls from
 timed-out sessions. A possible implementation is to form the nonce
 from the underlying GRASP Session ID and the source address of the
 session.

2.2.2. Registration

 These functions are used to register an ASA and the objectives that
 it supports with the GRASP module. If an authorization model is
 added to GRASP, it would be added here.

Carpenter, et al. Expires January 1, 2018 [Page 7]

Internet-Draft GRASP API June 2017

 o register_asa()

 Input parameter:

 name of the ASA (UTF-8 string)

 Return parameters:

 errorcode (integer)

 asa_nonce (integer) (if successful)

 This initialises state in the GRASP module for the calling
 entity (the ASA). In the case of success, an 'asa_nonce' is
 returned which the ASA must present in all subsequent calls.
 In the case of failure, the ASA has not been authorized and
 cannot operate.

 o deregister_asa()

 Input parameters:

 asa_nonce (integer)

 name of the ASA (UTF-8 string)

 Return parameter:

 errorcode (integer)

 This removes all state in the GRASP module for the calling
 entity (the ASA), and deregisters any objectives it has
 registered. Note that these actions must also happen
 automatically if an ASA crashes.

 Note - the ASA name is strictly speaking redundant in this
 call, but is present for clarity.

 o register_objective()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 ttl (integer - default GRASP_DEF_TIMEOUT)

Carpenter, et al. Expires January 1, 2018 [Page 8]

Internet-Draft GRASP API June 2017

 discoverable (Boolean - default False)

 overlap (Boolean - default False)

 local (Boolean - default False)

 Return parameter:

 errorcode (integer)

 This registers an objective that this ASA supports and may
 modify. The 'objective' becomes a candidate for discovery.
 However, discovery responses should not be enabled until the
 ASA calls listen_negotiate() or listen_synchronize(), showing
 that it is able to act as a responder. The ASA may negotiate
 the objective or send synchronization or flood data.
 Registration is not needed if the ASA only wants to receive
 synchronization or flood data for the objective concerned.

 The 'ttl' parameter is the valid lifetime (time to live) in
 milliseconds of any discovery response for this objective. The
 default value should be the GRASP default timeout
 (GRASP_DEF_TIMEOUT, see [I-D.ietf-anima-grasp]).

 If the optional parameter 'discoverable' is True, the objective
 is immediately discoverable. This is intended for objectives
 that are only defined for GRASP discovery, and which do not
 support negotiation or synchronization.

 If the optional parameter 'overlap' is True, more than one ASA
 may register this objective in the same GRASP instance.

 If the optional parameter 'local' is True, discovery must
 return a link-local address. This feature is for objectives
 that must be restricted to the local link.

 This call may be repeated for multiple objectives.

 o deregister_objective()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 Return parameter:

Carpenter, et al. Expires January 1, 2018 [Page 9]

Internet-Draft GRASP API June 2017

 errorcode (integer)

 The 'objective' must have been registered by the calling ASA;
 if not, this call fails. Otherwise, it removes all state in
 the GRASP module for the given objective.

2.2.3. Discovery

 o discover()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 timeout (integer)

 flush (Boolean - default False)

 Return parameters:

 errorcode (integer)

 locator_list (structure)

 This returns a list of discovered 'ASA_locator's for the given
 objective. If the optional parameter 'flush' is True, any
 locally cached locators for the objective are deleted first.
 Otherwise, they are returned immediately. If not, GRASP
 discovery is performed, and all results obtained before the
 timeout expires are returned. If no results are obtained, an
 empty list is returned after the timeout. That is not an error
 condition.

 This should be called in a separate thread if asynchronous
 operation is required.

2.2.4. Negotiation

 o request_negotiate()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

Carpenter, et al. Expires January 1, 2018 [Page 10]

Internet-Draft GRASP API June 2017

 peer (ASA_locator)

 timeout (integer)

 Return parameters:

 errorcode (integer)

 session_nonce (structure) (if successful)

 proffered_objective (structure) (if successful)

 reason (string) (if negotiation declined)

 This function opens a negotiation session. The 'objective'
 parameter must include the requested value, and its loop count
 should be set to a suitable value by the ASA. If not, the
 GRASP default will apply.

 Note that a given negotiation session may or may not be a dry-
 run negotiation; the two modes must not be mixed in a single
 session.

 The 'peer' parameter is the target node; it must be an
 'ASA_locator' as returned by discover(). If the peer is null,
 GRASP discovery is performed first.

 If the 'errorcode' return parameter is 0, the negotiation has
 successfully started. There are then two cases:

 1. The 'session_nonce' parameter is null. In this case the
 negotiation has succeeded (the peer has accepted the
 request). The returned 'proffered_objective' contains the
 value accepted by the peer.

 2. The 'session_nonce' parameter is not null. In this case
 negotiation must continue. The returned
 'proffered_objective' contains the first value proffered by
 the negotiation peer. Note that this instance of the
 objective must be used in the subsequent negotiation call
 because it also contains the current loop count. The
 'session_nonce' must be presented in all subsequent
 negotiation steps.

 This function must be followed by calls to 'negotiate_step'
 and/or 'negotiate_wait' and/or 'end_negotiate' until the
 negotiation ends. 'request_negotiate' may then be called
 again to start a new negotation.

Carpenter, et al. Expires January 1, 2018 [Page 11]

Internet-Draft GRASP API June 2017

 If the 'errorcode' parameter has the value 1 ('declined'), the
 negotiation has been declined by the peer (M_END and O_DECLINE
 features of GRASP). The 'reason' string is then available for
 information and diagnostic use, but it may be a null string.
 For this and any other error code, an exponential backoff is
 recommended before any retry.

 This should be called in a separate thread if asynchronous
 operation is required.

 Special note for the ACP infrastructure ASA: It is likely that
 this ASA will need to discover and negotiate with its peers in
 each of its on-link neighbors. It will therefore need to know
 not only the link-local IP address but also the physical
 interface and transport port for connecting to each neighbor.
 One implementation approach to this is to include these details
 in the 'session_nonce' data structure, which is opaque to
 normal ASAs.

 o listen_negotiate()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 Return parameters:

 errorcode (integer)

 session_nonce (structure) (if successful)

 requested_objective (structure) (if successful)

 This function instructs GRASP to listen for negotiation
 requests for the given 'objective'. It also enables discovery
 responses for the objective. It will block waiting for an
 incoming request, so should be called in a separate thread if
 asynchronous operation is required. Unless there is an
 unexpected failure, this call only returns after an incoming
 negotiation request. When it does so, 'requested_objective'
 contains the first value requested by the negotiation peer.
 Note that this instance of the objective must be used in the
 subsequent negotiation call because it also contains the
 current loop count. The 'session_nonce' must be presented in
 all subsequent negotiation steps.

Carpenter, et al. Expires January 1, 2018 [Page 12]

Internet-Draft GRASP API June 2017

 This function must be followed by calls to 'negotiate_step'
 and/or 'negotiate_wait' and/or 'end_negotiate' until the
 negotiation ends. 'listen_negotiate' may then be called again
 to await a new negotation.

 If an ASA is capable of handling multiple negotiations
 simultaneously, it may call 'listen_negotiate' simultaneously
 from multiple threads. The API and GRASP implementation must
 support re-entrant use of the listening state and the
 negotiation calls. Simultaneous sessions will be distinguished
 by the threads themselves, the GRASP Session IDs, and the
 underlying unicast transport sockets.

 o stop_listen_negotiate()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 Return parameter:

 errorcode (integer)

 Instructs GRASP to stop listening for negotiation requests for
 the given objective, i.e., cancels 'listen_negotiate'. Of
 course, it must be called from a different thread.

 o negotiate_step()

 Input parameters:

 asa_nonce (integer)

 session_nonce (structure)

 objective (structure)

 timeout (integer)

 Return parameters:

 Exactly as for 'request_negotiate'

 Executes the next negotation step with the peer. The
 'objective' parameter contains the next value being proffered
 by the ASA in this step.

Carpenter, et al. Expires January 1, 2018 [Page 13]

Internet-Draft GRASP API June 2017

 o negotiate_wait()

 Input parameters:

 asa_nonce (integer)

 session_nonce (structure)

 timeout (integer)

 Return parameters:

 errorcode (integer)

 Delay negotiation session by 'timeout' milliseconds.

 o end_negotiate()

 Input parameters:

 asa_nonce (integer)

 session_nonce (structure)

 reply (Boolean)

 reason (UTF-8 string)

 Return parameters:

 errorcode (integer)

 End the negotiation session.

 'reply' = True for accept (successful negotiation), False for
 decline (failed negotiation).

 'reason' = optional string describing reason for decline.

2.2.5. Synchronization and Flooding

 o synchronize()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

Carpenter, et al. Expires January 1, 2018 [Page 14]

Internet-Draft GRASP API June 2017

 peer (ASA_locator)

 timeout (integer)

 Return parameters:

 errorcode (integer)

 objective (structure) (if successful)

 This call requests the synchronized value of the given
 'objective'.

 Since this is essentially a read operation, any ASA can do it.
 Therefore the API checks that the ASA is registered but the
 objective doesn't need to be registered by the calling ASA.

 If the objective was already flooded, the flooded value is
 returned immediately in the 'result' parameter. In this case,
 the 'source' and 'timeout' are ignored.

 Otherwise, synchronization with a discovered ASA is performed.
 The 'peer' parameter is an 'ASA_locator' as returned by
 discover(). If 'peer' is null, GRASP discovery is performed
 first.

 This call should be repeated whenever the latest value is
 needed.

 Call in a separate thread if asynchronous operation is
 required.

 Since this is essentially a read operation, any ASA can use it.
 Therefore GRASP checks that the calling ASA is registered but
 the objective doesn't need to be registered by the calling ASA.

 In the case of failure, an exponential backoff is recommended
 before retrying.

 o listen_synchronize()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 Return parameters:

Carpenter, et al. Expires January 1, 2018 [Page 15]

Internet-Draft GRASP API June 2017

 errorcode (integer)

 This instructs GRASP to listen for synchronization requests for
 the given objective, and to respond with the value given in the
 'objective' parameter. It also enables discovery responses for
 the objective.

 This call is non-blocking and may be repeated whenever the
 value changes.

 o stop_listen_synchronize()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 Return parameters:

 errorcode (integer)

 This call instructs GRASP to stop listening for synchronization
 requests for the given 'objective', i.e. it cancels a previous
 listen_synchronize.

 o flood()

 Input parameters:

 asa_nonce (integer)

 ttl (integer)

 tagged_objective_list (structure)

 Return parameters:

 errorcode (integer)

 This call instructs GRASP to flood the given synchronization
 objective(s) and their value(s) and associated locator(s) to
 all GRASP nodes.

 The 'ttl' parameter is the valid lifetime (time to live) of the
 flooded data in milliseconds (0 = infinity)

Carpenter, et al. Expires January 1, 2018 [Page 16]

Internet-Draft GRASP API June 2017

 The 'tagged_objective_list' parameter is a list of one or more
 'tagged_objective' couplets. The 'locator' parameter that tags
 each objective is normally null but may be a valid
 'ASA_locator'. Infrastructure ASAs needing to flood an
 {address, protocol, port} 3-tuple with an objective create an
 ASA_locator object to do so. If the IP address in that locator
 is the unspecified address ('::') it is replaced by the link-
 local address of the sending node in each copy of the flood
 multicast, which will be forced to have a loop count of 1.
 This feature is for objectives that must be restricted to the
 local link.

 The function checks that the ASA registered each objective.

 This call may be repeated whenever any value changes.

 o get_flood()

 Input parameters:

 asa_nonce (integer)

 objective (structure)

 Return parameters:

 errorcode (integer)

 tagged_objective_list (structure) (if successful)

 This call instructs GRASP to return the given synchronization
 objective if it has been flooded and its lifetime has not
 expired.

 Since this is essentially a read operation, any ASA can do it.
 Therefore the API checks that the ASA is registered but the
 objective doesn't need to be registered by the calling ASA.

 The 'tagged_objective_list' parameter is a list of
 'tagged_objective' couplets, each one being a copy of the
 flooded objective and a coresponding locator. Thus if the same
 objective has been flooded by multiple ASAs, the recipient can
 distinguish the copies.

 Note that this call is for advanced ASAs. In a simple case, an
 ASA can simply call synchronize() in order to get a valid
 flooded objective.

Carpenter, et al. Expires January 1, 2018 [Page 17]

Internet-Draft GRASP API June 2017

 o expire_flood()

 Input parameters:

 asa_nonce (integer)

 tagged_objective (structure)

 Return parameters:

 errorcode (integer)

 This is a call that can only be used after a preceding call to
 get_flood() by an ASA that is capable of deciding that the
 flooded value is stale or invalid. Use with care.

 The 'tagged_objective' parameter is the one to be expired.

3. Non-threaded Implementations

 If an operating system or language does not provide convenient
 support for multi-threading, ASAs may need to be written using a
 polling or 'event loop' structure, whereby a main loop supports
 multiple GRASP sessions in parallel by repeatedly checking each one
 for a change of state. To facilitate this, an API implementation may
 provide alternative versions of all the functions that involve
 blocking and queueing. In the calls, the error code 2 ("noReply")
 will be returned by each call instead of blocking, until such time as
 the event for which it is waiting has been queued. Thus, for
 example, request_negotiate() would return "noReply" instead of
 waiting until an incoming request or timeout arrived, and an
 identical call to request_negotiate() would be repeated in the next
 cycle of the main loop. In the case of negotiations, the
 session_nonce parameter is used to distinguish sessions from each
 other, if necessary.

 The calls to which this mechanism applies are:

 discover()

 request_negotiate()

 negotiate_step()

 listen_negotiate()

 synchronize()

Carpenter, et al. Expires January 1, 2018 [Page 18]

Internet-Draft GRASP API June 2017

4. Example Logic Flows

 TBD

 (Until this section is written, some Python examples can be found at
 <https://www.cs.auckland.ac.nz/~brian/graspy/Briggs.py>,
 <https://www.cs.auckland.ac.nz/~brian/graspy/Gray.py>, and
 <https://www.cs.auckland.ac.nz/~brian/graspy/pfxm3.py/>.)

5. Security Considerations

 Security issues for the GRASP protocol are discussed in
 [I-D.ietf-anima-grasp]. Authorization of ASAs is a subject for
 future study.

 The 'asa_nonce' parameter is used in the API as a first line of
 defence against a malware process attempting to imitate a
 legitimately registered ASA. The 'session_nonce' parameter is used
 in the API as a first line of defence against a malware process
 attempting to hijack a GRASP session.

6. IANA Considerations

 This does not need IANA assignment.

7. Acknowledgements

 This document was produced using the xml2rfc tool [RFC7749].

 Excellent suggestions were made by Michael Richardson.

8. References

8.1. Normative References

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-

grasp-13 (work in progress), June 2017.

8.2. Informative References

 [I-D.ietf-anima-autonomic-control-plane]
 Behringer, M., Eckert, T., and S. Bjarnason, "An Autonomic
 Control Plane", draft-ietf-anima-autonomic-control-

plane-06 (work in progress), March 2017.

https://www.cs.auckland.ac.nz/~brian/graspy/Briggs.py
https://www.cs.auckland.ac.nz/~brian/graspy/Gray.py
https://www.cs.auckland.ac.nz/~brian/graspy/pfxm3.py/
https://datatracker.ietf.org/doc/html/rfc7749
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-13
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-13
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-06
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-06

Carpenter, et al. Expires January 1, 2018 [Page 19]

Internet-Draft GRASP API June 2017

 [I-D.ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-

keyinfra-06 (work in progress), May 2017.

 [I-D.ietf-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Pierre, P., Liu, B., Nobre, J., and J. Strassner, "A
 Reference Model for Autonomic Networking", draft-ietf-

anima-reference-model-03 (work in progress), March 2017.

 [I-D.liu-anima-grasp-distribution]
 Liu, B. and S. Jiang, "Information Distribution over
 GRASP", draft-liu-anima-grasp-distribution-04 (work in
 progress), May 2017.

 [RFC7749] Reschke, J., "The "xml2rfc" Version 2 Vocabulary",
RFC 7749, DOI 10.17487/RFC7749, February 2016,

 <http://www.rfc-editor.org/info/rfc7749>.

Appendix A. Error Codes

 This Appendix lists the error codes defined so far, with suggested
 symbolic names and corresponding descriptive strings in English. It
 is expected that complete API implementations will provide for
 localisation of these descriptive strings.

https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-06
https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-06
https://datatracker.ietf.org/doc/html/draft-ietf-anima-reference-model-03
https://datatracker.ietf.org/doc/html/draft-ietf-anima-reference-model-03
https://datatracker.ietf.org/doc/html/draft-liu-anima-grasp-distribution-04
https://datatracker.ietf.org/doc/html/rfc7749
http://www.rfc-editor.org/info/rfc7749

Carpenter, et al. Expires January 1, 2018 [Page 20]

Internet-Draft GRASP API June 2017

 ok 0 "OK"
 declined 1 "Declined"
 noReply 2 "No reply"
 unspec 3 "Unspecified error"
 ASAfull 4 "ASA registry full"
 dupASA 5 "Duplicate ASA name"
 noASA 6 "ASA not registered"
 notYourASA 7 "ASA registered but not by you"
 notBoth 8 "Objective cannot support both negotiation
 and synchronization"
 notDry 9 "Dry-run allowed only with negotiation"
 notOverlap 10 "Overlap not supported by this implementation"
 objFull 11 "Objective registry full"
 objReg 12 "Objective already registered"
 notYourObj 13 "Objective not registered by this ASA"
 notObj 14 "Objective not found"
 notNeg 15 "Objective not negotiable"
 noSecurity 16 "No security"
 noDiscReply 17 "No reply to discovery"
 sockErrNegRq 18 "Socket error sending negotiation request"
 noSession 19 "No session"
 noSocket 20 "No socket"
 loopExhausted 21 "Loop count exhausted"
 sockErrNegStep 22 "Socket error sending negotiation step"
 noPeer 23 "No negotiation peer"
 CBORfail 24 "CBOR decode failure"
 invalidNeg 25 "Invalid Negotiate message"
 invalidEnd 26 "Invalid end message"
 noNegReply 27 "No reply to negotiation step"
 noValidStep 28 "No valid reply to negotiation step"
 sockErrWait 29 "Socket error sending wait message"
 sockErrEnd 30 "Socket error sending end message"
 IDclash 31 "Incoming request Session ID clash"
 notSynch 32 "Not a synchronization objective"
 notFloodDisc 33 "Not flooded and no reply to discovery"
 sockErrSynRq 34 "Socket error sending synch request"
 noListener 35 "No synch listener"
 noSynchReply 36 "No reply to synchronization request"
 noValidSynch 37 "No valid reply to synchronization request"
 invalidLoc 38 "Invalid locator"

Appendix B. Change log [RFC Editor: Please remove]

draft-liu-anima-grasp-api-04, 2017-06-30:

 Noted that simple nodes might not include the API.

 Minor clarifications.

https://datatracker.ietf.org/doc/html/draft-liu-anima-grasp-api-04

Carpenter, et al. Expires January 1, 2018 [Page 21]

Internet-Draft GRASP API June 2017

draft-liu-anima-grasp-api-03, 2017-02-13:

 Changed error return to integers.

 Required all implementations to accept objective values in CBOR.

 Added non-blocking alternatives.

draft-liu-anima-grasp-api-02, 2016-12-17:

 Updated for draft-ietf-anima-grasp-09

draft-liu-anima-grasp-api-02, 2016-09-30:

 Added items for draft-ietf-anima-grasp-07

 Editorial corrections

draft-liu-anima-grasp-api-01, 2016-06-24:

 Updated for draft-ietf-anima-grasp-05

 Editorial corrections

draft-liu-anima-grasp-api-00, 2016-04-04:

 Initial version

Authors' Addresses

 Brian Carpenter
 Department of Computer Science
 University of Auckland
 PB 92019
 Auckland 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

 Bing Liu (editor)
 Huawei Technologies
 Q22, Huawei Campus
 No.156 Beiqing Road
 Hai-Dian District, Beijing 100095
 P.R. China

 Email: leo.liubing@huawei.com

https://datatracker.ietf.org/doc/html/draft-liu-anima-grasp-api-03
https://datatracker.ietf.org/doc/html/draft-liu-anima-grasp-api-02
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-09
https://datatracker.ietf.org/doc/html/draft-liu-anima-grasp-api-02
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-07
https://datatracker.ietf.org/doc/html/draft-liu-anima-grasp-api-01
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-05
https://datatracker.ietf.org/doc/html/draft-liu-anima-grasp-api-00

Carpenter, et al. Expires January 1, 2018 [Page 22]

Internet-Draft GRASP API June 2017

 Wendong Wang
 BUPT University
 Beijing University of Posts & Telecom.
 No.10 Xitucheng Road
 Hai-Dian District, Beijing 100876
 P.R. China

 Email: wdwang@bupt.edu.cn

 Xiangyang Gong
 BUPT University
 Beijing University of Posts & Telecom.
 No.10 Xitucheng Road
 Hai-Dian District, Beijing 100876
 P.R. China

 Email: xygong@bupt.edu.cn

Carpenter, et al. Expires January 1, 2018 [Page 23]

