
Workgroup: rtgwg

Internet-Draft: draft-liu-dyncast-gap-reqs-00

Published: 7 July 2022

Intended Status: Informational

Expires: 8 January 2023

Authors: P. Liu

China Mobile

T. Jiang

China Mobile

P. Eardley

BT

D. Trossen

Huawei Technologies

C. Li

Huawei Technologies

Dynamic-Anycast (Dyncast) Gap analysis and Requirements

Abstract

This document provides gap analysis and requirements for the

problems and use cases that champion the joint optimization of both

network and computing resources as outlined in[I-D.liu-dyncast-ps-

usecases]. It also identifies the key engineering investigation

areas which require adequate architectures and protocols to achieve

balanced computing and networking resource utilization among

facilities providing the services.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Definition of Terms

3. Gap Analysis of Existing Solutions

3.1. Gap Analysis of DNS and GSLB

3.2. Gap Analysis of Load Balancer

3.3. Gap Analysis of ALTO

3.4. Gap Analysis of Message Broker

3.5. Gap Analysis of Client Based Solution

3.6. Summary of Gap Analysis

3.6.1. Dynamicity of Relations

3.6.2. Efficiency

3.6.3. Complexity and Accuracy

3.6.4. Metric Exposure and Use

3.6.5. Security

4. Requirements

4.1. Support dynamic and effective selection among mutiple

serivce instances

4.2. Support Agreement on Metric Representation

4.3. Support Moderate Metric Signalling

4.4. Support Flexible Use of Metrics

4.5. Support Session and Service Continuity

4.6. Preserve Communication Confidentiality

5. Conclusion

6. Security Considerations

7. IANA Considerations

8. Contributors

9. Informative References

Acknowledgements

Authors' Addresses

1. Introduction

Computing service instances deployed at multiple geographically

distributed edge sites are used to better realize an edge computing

service in Computing-Aware Networking(CAN) use cases, as shown in

[I-D.liu-dyncast-ps-usecases]. A fundamental requirement in this

type of deployment is to optimally deliver a service request to the

most appropriate service instance, which would be dynamically

selected by taking into consideration both the available computing

resources and the quality of various network paths. Moreover, the

potential requirement of the service & session continuity for a

client transaction over its lifetime, possibly consisting of

multiple requests, suggests some mechanism(s) be in place to

¶

maintain the service affinity between the client and the dynamically

chosen service instance.

Overall, traditional techniques to manage the load distribution or

balancing of clients requests include either the choose-the-closest

or the round- robin mode. Solutions derived from these techniques

are relatively static, which may lead to an unbalanced distribution

in terms of network utilization and computational load among

available resources. For example, DNS-based load balancing usually

configures a domain in the Domain Name System (DNS) such that client

requests to that domain name will be statically resolved to one of

several pre-provisioned IP addresses, with each IP corresponding to

one node out of a group of servers. Successively, the client loads

are distributed to the selected server, without further considering

the dynamism of the server environment.

Certainly, there do exist some dynamic solutions to distribute

client requests to servers that best fit somewhat service-specific

metrics, such as the best available resources, the most powerful

GPUs, the minimal platform load, and so on. These solutions usually

involve the Layer 4 - Layer 7 handling of packets, such as through

DNS-based or indirection servers. Unfortunately, this category of

approaches is inefficient for large number of short connections.

Another disadvantage (of the approaches) falls in their lacking of

effective ways to retrieve the desired metrics, such as the runtime

status of network devices, in a real-time way. Therefore, the choice

of the service node is almost entirely determined by the computing

status, rather than the comprehensive considerations of both

computing and network metrics or makes rather long-term decisions

due to the (upper layer) overhead in the decision making itself.

Distributing service requests to specific services that have

multiple service instances residing at multiple edges, while taking

into account both computing and service-specific metrics in the

distribution decision, is seen as a problem of dynamically

dispatching service requests, without prescribing the use of a

routing solution.

At the same time, with new technologies such as serverless computing

and container based virtual functions, a service node at an edge

site can be easily instantiated and terminated in a sub-second

scale, which in turn dynamically changes the availability of

computing resources for services over time. This is further

impacting the possibly "best" decision on where to send a service

request from a client.

This draft provides the requirements to realize the potential

Computing- Aware Network or CAN architecture by addressing the

¶

¶

¶

¶

¶

Computing-Aware Networking(CAN):

CAN Components:

Service:

Service instance:

Service identifier:

Service transaction:

Instance affinity:

Anycast:

challenges as demonstrated by typical use cases in[I-D.liu-dyncast-

ps-usecases]

2. Definition of Terms

Aiming at computing and network

resource optimization by steering traffic to appropriate

computing resources considering not only routing metric but also

computing resource metric and service affiliation.

The network devices and functions that could

realize CAN's demands & objectives.

A monolithic functionality that is provided by an endpoint

according to the specification for said service. A composite

service can be built by orchestrating monolithic services.

Running environment (e.g., a node) that makes the

functionality of a service available. One service can have

several instances running at different network locations.

Used to uniquely identify a service, at the

same time identifying the whole set of service instances that

each represent the same service behaviour, no matter where those

service instances are running.

Has one or more several service request that

has several flows which require the affinity because of the

transaction related state.

To maintain the request of several flows belongs

to the same service transaction to the same service instance.

An addressing and packet sending methodology that assign

an "anycast" identifier for one or more service instances to

which requests to an "anycast" identifier could be routed,

following the definition in [RFC4786] as anycast being "the

practice of making a particular Service Address available in

multiple, discrete, autonomous locations, such that datagrams

sent are routed to one of several available locations".

3. Gap Analysis of Existing Solutions

There are a number of problems that may occur when realizing the use

cases based on existing solutions. This section analyzes the gap of

DNS, load balancer, etc. and suggests a classification for those

problems to aid the possible identification of solution components

for addressing them.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

3.1. Gap Analysis of DNS and GSLB

DNS [RFC1035] uses 'early binding' to explicitly bind from the

service identification to a network address. It uses 'geographical

location' to pick up the closest candidate and applies 'health

check' to preventing the single point failure and also realizing

load balance.

For the Early binding, clients resolve IP address first and then

steer traffic accordingly to the selected edge site. Not

surprisingly, most of the time, a cached copy at the client side

will be used. The consequence is that sometimes stale info obtained

a couple of minutes ago could be used, which makes almost

impractical choose the appropriate edge site. Further, it is fairly

common that a resolver and a Load Balancer (or LB) are separate

entities. The incurred signaling flow between them introduces

additional overhead to the decision making procedure that is

comprised of sequentially resolving first and redirecting to LB

second. What's more, an IP resolution is normally at the Layer 7 and

being a less-efficient app-level decision process, e.g., the

database lookup that is originally intended for control but not data

plane speed!

For the Health check, it is designed based on infrequent periodicity

with the checking interval more than 1 second. This for sure will

lead to slow or not-timely switching over upon failure. On the other

aspect, limited computing resources at edges render it definitely

cost-prohibitive to set up any more frequent health check.

Moreover, a Load Balancer at edge usually focuses on server load to

select the 'optimal' server node first (could be virtual), and then

adopts the lowest-latency (or lowest-cost) routing to reach the

selected server (via IP address). Obviously, this type of standalone

sequential steps lacks the organic way to combine and then jointly

consider both compute/server load & routing latency (and/or cost)

for a better E2E guarantee . And the last but not least, how to

obtain necessary metrics from mattered entities for decision is also

critical .

There is also the DNS-SD[RFC6763] and Multi-cast DNS[RFC6762] that

could be used to dicover the service, which might be extended to

collect the computing information. However, in most cases, they are

used in the LAN environment. They need enhanced work and improvement

should we intend to apply them in a wider network. Moreover, the

instance selection will be pushed back to the client but rely on

decision criteria being multicast to all clients , so there is a

scalability limit. The gap of client based solution could be found

at Section 3.4.

¶

¶

¶

¶

¶

Generally speaking, DNS is not designed for this level of dynamism.

DNS usually takes several minutes to propagate an update while

clients in our targeted scenarios require frequent resolution of

binding. Unfortunately, updates to the mapping between a service

identifier to a service instance address cannot be pushed quickly

enough into the DNS. If DNS is enforced to meet this level of

dynamism, frequent resolving of the same service name would likely

lead to an overload of the system. These issues are also discussed

in Section 5.4 of[I-D.sarathchandra-coin-appcentres]. Some work like

CDNI[RFC7336] is also based on the DNS/HTTP redirection, which has

the similar problems and may not be suitable for CAN.

3.2. Gap Analysis of Load Balancer

A Load balancer could be seen as the external components of a

network, which is designed for and deployed in a computing domain to

support balanced load distribution. It may also be based on DNS

system and require app level query.

For the existing load balancer solutions, there are two common ways.

One way is to deploy a single load balancer at a central location

for all service instances across different sites. It is the common

way and is the easiest to implement. However, it bears the risk of

the single point of failure. Plus, the network path from the

(centrally-located) LB to server instances at (remote) sites might

not always be optimal. The second way is to deploy an individual

load balancer in each site, with its scope of application only to

service instances in the site. It is still relatively easy to

deploy. But, its main deficiency lies in no more inter-site load

balancing that could prevent the achievement of better traffic

steering across sites.

While most load-balancing solutions revolve around the egress-side

load dispatching, there exist other designs, especially in 5G mobile

networks, that conforms to the ingress-side principle by putting

distributed load balancers closer to UPFs, with either 1:1 or 1:N

mapping. Thru some higher-level coordination with a centralized

load-balance controller residing in the mobile system, the

distributed load balancers could help steer the traffic according to

the running status of UPFs. Of course, further enhancement are

needed to collect network status in order to support the joint

optimization. More details will be explored to realize the solution

and verify the feasibility.

Generally, to achieve the joint optimization of network and

computing resources, a load balancer should also learn the network

path status, which would lead to the problem of how to learn and use

them in an efficient way.

¶

¶

¶

¶

¶

3.3. Gap Analysis of ALTO

ALTO [RFC7285]addresses the problem of selecting the 'optimal'

service instance as an off-path solution, which can be seen as an

alternative way of tackling the problem space of CAN at the

Application Layer. So in that respect, even if both ALTO and CAN

target at the common problem, they have reached different

approaches; further, they impose different needs with different

assumptions on how applications and networks may interact.

The critical aspect is the signaling latency and the control plane

load that a service-instance selection process may incur, in both

on- and off-path solutions. This in turn may impact the frequency

with which applications will query ALTO server(s), especially in the

mobile system where UEs may move to different cell sites (gNBs) or

even roam to different mobile networks that would trigger the

switchover to different network paths.

As a result, off-path systems, e.g., ALTO, which are based on

receiving replies for applications/services before traffic could be

delivered, might not keep optimal or even valid after the handover.

So, ALTO need more improvement, including possible extension to

support multi-domain deployment, quick interaction among all

involved entities (like applications, service instances, etc.), and

the integration of more performance metric information into the

system, etc.

3.4. Gap Analysis of Message Broker

Message brokers (MBs) could be used to dispatch the incoming service

requests from clients to a suitable service instance, where such

dispatching could be controlled by service-specific metrics, such as

computing load. However, MBs will face the following adversities:

May lead to 'middleman' adverse effects on efficiency, specifically

when it comes to additional latencies as experienced by clients due

to the extra but necessary communication with the broker. This

introduces the 'path stretch' compared to the possible direct path

between client and service instance.

May use richer computing metrics (such as load) but may lack the

necessary network metrics.

Preventing the DDoS attack would be entirely limited to the cases of

service instances being hidden by the broker.

3.5. Gap Analysis of Client Based Solution

A solution that leaves the dispatching of service requests entirely

to the client itself may be possible to achieve the needed dynamism.

¶

¶

¶

¶

¶

¶

¶

However, it does bear some drawbacks: e.g., the individual

destination, i.e., the network identifier for a service instance,

must be known to the client a priori for direct service dispatching.

While this may be viable for certain applications, it cannot

generally scale to a large number of clients. Furthermore, there

would exist undesirable reasons for clients to learn the identifiers

of all available service instances in a service domain.

It may be undesirable for clients to learn all available service

instance identifiers for reasons of Service Providers' being

reluctant to expose their 'valuable' information to clients.

It may be undesirable for clients to learn all available network

paths that could be obtained either directly from the operators'

exposure or indirectly by clients' self measurement.

For scalability concern if the number of service instances and

network paths are very high.

3.6. Summary of Gap Analysis

3.6.1. Dynamicity of Relations

The mapping from a service identifier to a specific service instance

that may execute the service request for a client usually happens

through resolving the service identification into a specific IP

address at which the service instance is reachable.

Application layer solutions can be foreseen, using an application

server to resolve the binding updates. While the viability of these

solutions will generally subject to the additional latency that is

being introduced by the resolution of the mapping via the said

application server, the potentially higher frequencies of changing

the mapping relation every a few service requests is seen as

difficult to be practical.

Moreover, we can foresee scenarios in which such relationship may

change so frequently that it occurs even at the level of each

service request. One possible factor might be the frequently

changing metrics for a decision making process, e.g., the latency

and load (metrics) as reported from all mattered service instances.

Further, the client mobility creates a natural & physical dynamics

with the consequence that a 'better' service instances may become

available, or, vice versa, the previous assignment of the client to

a service instance may turn less optimal, leading to the reduced

performance that could root in the increased latency.

Existing solutions exhibit limitations in providing the dynamic

'instance affinity'. These limitations are inherently embedded in

the solution design that is used for the mapping between a service

¶

¶

¶

¶

¶

¶

¶

identifier and the address of a candidate service instance. This is

particularly noticeable upon relying on an indirection point in the

form of a resolution or load balancing server. These limitations may

result in the static 'instance stickiness' that would span many

service requests or even last for the lifetime of a client session.

This is normally undesirable from the perspective of a service

provider in terms of achieving the best balanced request handling

across many or all possible service instances.

3.6.2. Efficiency

The use of external resolvers, such as application layer

repositories in general, also affects the efficiency of the overall

service request. Extra signaling process is required between a

client and the resolver, possibly through application layer

solutions that result in not only more message exchanges but also

increased latency thanks to the involvement of additional

resolutions. Further, accommodating the instance affinities for a

large number of short-live client sessions will exacerbate this

additional signaling process and worsen the latencies, thus

impacting the overall efficiency of the service transactions.

Existing solutions may introduce additional latencies and

inefficiencies in packet transmission due to the need for additional

resolution steps or indirection points, and will lead to the

accuracy problems to select the appropriate edge.

3.6.3. Complexity and Accuracy

As we can see from the efficiency discussion in the previous

subsection, at the moment when external resolvers have succeeded in

collecting the necessary information and processing them to select

the edge node, the network and computing resource status may have

changed already. Accordingly, any additional control decision on

which service instance to choose and for which incoming service

request requires careful planning in order to address the potential

inefficiencies that are caused by extra latencies and path

stretching, at a minimum. Additional control plane elements, such as

brokers, are usually neither well nor optimally placed in relation

to the data path that a service request will ultimately traverse.

Existing solutions require careful planning for the placement of

necessary control plane functions in relation to the resulting data

plane traffic to improve the accuracy; a problem often intractable

in scenarios of varying service demands.

3.6.4. Metric Exposure and Use

Some systems may use the geographical location, as deduced from an

IP prefix, to pick up the closest edge. The issue here is that

¶

¶

¶

¶

¶

different edge sites may not be far apart in some field deployments,

which renders it hard to deduce the geo-locations from IP addresses.

Furthermore, the geo-location itself may not be the key

distinguishing metric to be considered, particularly if the

geographic co-location does not necessarily mean the congruency of

various network topologies. Also, "geographically closer" cannot

exclude those closer yet more loaded nodes, consequently leading to

possibly worse performance for the end user.

Some solutions may also perform 'health checks' on an infrequent

base (>1s) to reflect the service node status and switch over in

service- degrading or failing situations. Health checks, however,

inadequately reflect the overall computing status of a service

instance. It may therefore not reflect at all the fundamental yet

meaningful basis a suitable service instance will act upon, e.g.,

insufficiently using the number of ongoing sessions as the indicator

of load. Infrequent checks would for sure lead to too coarse

granularity to support high-accurate applications, e.g.,

applications requiring mobility-induced dynamics such as the

Intelligent transportation scenario of Section 4.2 in[I-D.liu-

dyncast-ps-usecases].

Existing solutions lack the necessary information to make the right

decisions on the selection of the suitable service instance due to

the limited semantic or due to information not being exposed across

boundaries between, e.g., service and network providers.

3.6.5. Security

Resolution systems open up two dimensions of attacks, namely

attacking the mapping system itself, and attacking the service

instance directly after having been resolved. The latter is

particularly critical for a service provider with significantly

deployed service infrastructure. A resolved (global) IP address will

not only enable a (malicious) client to directly attack the

corresponding service instance, but also offer the client the

opportunity to infer (over time) information about available service

instances in the service infrastructure, which might nurture even

wider and coordinated Denial-of-Service (DoS) attacks.

Existing solutions may expose control as well as data plane to the

possibility of a distributed Denial-of-Service attack on the

resolution system as well as service instance. Localizing the attack

to the data plane ingress point would be desirable from the

perspective of securing service request routing, which is not

achieved by existing solutions.

¶

¶

¶

¶

¶

4. Requirements

In the following, we outline the requirements for the CAN system to

overcome the observed problems in the realization of the use cases

described in [I-D.liu-dyncast-ps-usecases]. We divide our

requirements into mandatory one from Section 4.1 to Section 4.5,

followed by optional requirements for the CAN system.

4.1. Support dynamic and effective selection among mutiple serivce

instances

The basic requirement of CAN is to support the dynamic access to

different service instances residing in multiple computing sites,

which is also the fundamental model to enable the traffic steering

and to further optimize the network and computing services. A unique

service identifier is used by all the service instances for a

specific service no matter which edge site an instance may attach

to. The mapping of this service identifier to a network locator

makes sure the data packet can potentially reach any of the service

instances deployed in various edge sites.

Moreover, according to the use case stated in [I-D.liu-dyncast-ps-

usecases], some applications require the E2E low latency, which

warrants a quick mapping of the service identifier to the network

locator. This leads to naturally the in-band methods, involving the

consideration of metrics to make the selection mechanism either

service-specific or category-specific, or both. Therefore, a

desirable system

o MUST provide a discovery and resolving methodology for the mapping

of a service identifier to a specific address.

o MUST provide an mapping methods for quickly selecting the service

instance.

4.2. Support Agreement on Metric Representation

Computing metrics can have many different semantics, particularly

for being service- specific. Even the notion of a "computing load"

metric could be represented in many different ways. What is crucial,

however, is the representation and encoding of metrics when being

conveyed to the CAN system in order for the CAN components to act

upon those metrics. Such representation may entail information on

the semantics of the metric or it may be purely one or more

semantic- free numerals. Agreement of the chosen representation

among all service and network elements participating in the service-

specific instance selection decision is important. Therefore, a

desirable system

¶

¶

¶

¶

¶

¶

o MUST agree on the service-specific metrics and their

representation among service elements in the participating edges for

the CAN components to act upon them.

o MAY include network metrics

4.3. Support Moderate Metric Signalling

CAN aims at dynamic scenarios. Network path costs in the current

routing system usually do not change very frequently. However,

computing load and service-specific metrics in general can be highly

dynamic, e.g., changing rapidly with the number of sessions, the

CPU/GPU utilization and the memory consumption, etc. It has to be

determined at what interval or based on what events such information

needs to be distributed. Overly frequent distribution with more

accurate synchronization may result in unnecessary overhead in terms

of signalling.

Moreover, depending on the service-specific decision logic, one or

more metrics will need to be conveyed in a CAN network domain.

Problems to be addressed here may be the loop avoidance of any

advertisement of metrics as well as the frequency of such

conveyance, thanks to the comprehensive load that a signalling

process may add to the overall network traffic. While existing

routing protocols may serve as a baseline for signalling metrics,

other means to convey the metrics can equally be considered and even

be realized. Specifically, a desirable system

o MUST provide mechanisms to signal the metrics

o MUST realize means for rate control for signalling of metrics

o MUST implement mechanisms for loop avoidance in signalling

metrics, when necessary

4.4. Support Flexible Use of Metrics

Considering computing resources assigned to a service instance on a

server, which might be related to some critical metrics like the

processing delay, is crucial in addition to the network delay in

some cases, as described in[I-D.liu-dyncast-ps-usecases]. Therefore,

the CAN components might use both the network and computing metrics

for service instance selection. For this, a computing semantic model

should be defined for the mapping selection.

We recognize that different network nodes, e.g., routers, switches,

etc., may have diversified capabilities even in the same routing

domain, let alone in different administrative domains. So, the

service-specific metrics that have been adopted by some nodes may

not be supported by others, either due to technical reasons,

¶

¶

¶

¶

¶

¶

¶

¶

administrative reasons, or something else. There exist scenarios in

which a node supporting service-specific metrics might prefer some

type of metrics to others[TR22.874]. Of course, specific metrics

might not be utilized at all in other scenarios. Hence, there must

exist flexibility in term of metrics definition and utilization for

the selection of service instance. Therefore, a desirable system

o MUST set up metric information that can be understood by CAN

components.

o MUST use network and computing metrics in a flexible way that

includes a default action for the interoperation of network nodes

which may or may not support the specific metrics.

4.5. Support Session and Service Continuity

In the CAN system, a service may be provided by one or more service

instances that would be deployed at different locations in the

network. Each instance provides equivalent service functionality to

their respective clients. The decision logic of the instance

selection are subject to the normal packet level communication and

packets are forwarded based on the operating status of both network

and computing resources. This resource status will likely change

over time, leading to individual packets potentially being sent to

different network locations, possibly segmenting individual service

transactions and breaking service-level semantics. Moreover, when a

client moves, the access point might change and successively lead to

the same result of the change of service instance. If execution

changes from one (e.g., virtualized) service instance to another,

state/context needs transfer to another. Such required transfer of

state/context makes it desirable to have session persistence (or

instance affinity) as the default, removing the need for explicit

context transfer, while also supporting an explicit state/context

transfer (e.g., when metrics change significantly). So session as

well as service continuity must be maintained in those situations.

The nature of this continuity is highly dependent on the nature of

the specific service, which could be seen as a 'instance affinity'

to represent the relationship. The minimal affinity of a single

request represents a stateless service, where each service request

may be responded to without any state being held at the service

instance for fulfilling the request.

Providing any necessary information/state in-band as part of the

service request, e.g., in the form of a multi-form body in an HTTP

request or through the URL provided as part of the request, is one

way to achieve such stateless nature.

¶

¶

¶

¶

¶

¶

Alternatively, the affinity to a particular service instance may

span more than one request, as in the AR/VR example in [I-D.liu-

dyncast-ps-usecases], where previous client input is needed to

render subsequent frames.

However, a client, e.g., a mobile UE, may have many applications

running. If all, or majority, of the applications request the CAN-

based services, then the runtime states that need to be created and

accordingly maintained would require high granularity. In the

extreme scenario, this granular requirement could reach the level of

per-UE per-APP per-(sub)flow with regard to a service instance.

Evidently, these fine-granular runtime states can potentially place

a heavy burden on network devices if they have to dynamically create

and maintain them. On the other hand, it is not appropriate either

to place the state-keeping task on clients themselves.

Therefore, a desirable system

o MUST maintain "instance affinity" which MAY span one or more

service requests, i.e., all the packets from the same application-

level flow MUST go to the same service instance.

o MUST avoid keeping fine runtime-state granularity in network nodes

for providing session and service continuity.

o MUST provide mechanisms to minimize client side states in order to

achieve the instance affinity.

4.6. Preserve Communication Confidentiality

Exposing the information of computing resources to the network may

lead to the leakage of computing domain and application privacy. In

order to prevent it, it need to consider the methods to process the

sensitive information related to computing domain. For instance,

using general anonymous methods, including hiding the key

information representing the identification of devices, or using an

index to represent the service level of computing resources, or

using customized information exposure strategies according to

specific application requirements or network scheduling

requirements. At the same time, when anonymity is achieved, it is

also necessary to consider whether the computing information exposed

in the network can help make full use of traffic steering.

Therefore, a CAN system

o MUST preserve the confidentiality of the communication relation

between user and service provider by minimizing the exposure of

user-relevant information according to user needs.

¶

¶

¶

¶

¶

¶

¶

¶

[RFC4786]

[RFC1035]

5. Conclusion

As a consequence, the problem of satisfying service-specific metrics

is challenging to allow for selecting the most suitable service

instance among a pool of instances that are available to the service

throughout the network. There are quite a number of observed

problems in existing solutions. The use cases [I-D.liu-dyncast-ps-

usecases] as well as the categorization of the observed problems may

start the process of determining how they are best explored within

the IETF protocol suite or through suitable extensions to that

protocol suite.

This document analyzes the gap of existing solutions and presents

high-level requirements for CAN, where the architecture should

address how to model, represent, distribute and use the resource

information. How to realize appropriate instance selection and

routing actions and how to assure service continuity in a dynamic

environment, based on the holistic consideration of network and

computing metrics, are discussed.

6. Security Considerations

Section 4.8 discusses some security considerations.

7. IANA Considerations

No IANA action is required so far.

8. Contributors

The following people have substantially contributed to this

document:

9. Informative References

Abley, J. and K. Lindqvist, "Operation of Anycast

Services", BCP 126, RFC 4786, DOI 10.17487/RFC4786,

December 2006, <https://www.rfc-editor.org/info/rfc4786>.

Mockapetris, P., "Domain names - implementation and

specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,

November 1987, <https://www.rfc-editor.org/info/rfc1035>.

¶

¶

¶

¶

¶

 Peter Willis

 BT

 Markus Amend

 Deutsche Telekom

 Markus.Amend@telekom.de

¶

https://www.rfc-editor.org/info/rfc4786
https://www.rfc-editor.org/info/rfc1035

[RFC6762]

[RFC6763]

[RFC7285]

[RFC7336]

[I-D.liu-dyncast-ps-usecases]

[I-D.sarathchandra-coin-appcentres]

[TR22.874]

Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,

DOI 10.17487/RFC6762, February 2013, <https://www.rfc-

editor.org/info/rfc6762>.

Cheshire, S. and M. Krochmal, "DNS-Based Service

Discovery", RFC 6763, DOI 10.17487/RFC6763, February

2013, <https://www.rfc-editor.org/info/rfc6763>.

Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel,

S., Previdi, S., Roome, W., Shalunov, S., and R. Woundy,

"Application-Layer Traffic Optimization (ALTO) Protocol",

RFC 7285, DOI 10.17487/RFC7285, September 2014, <https://

www.rfc-editor.org/info/rfc7285>.

Peterson, L., Davie, B., and R. van Brandenburg, Ed.,

"Framework for Content Distribution Network

Interconnection (CDNI)", RFC 7336, DOI 10.17487/RFC7336,

August 2014, <https://www.rfc-editor.org/info/rfc7336>.

Liu, P., Eardley, P., Trossen, D., Boucadair, M.,

Contreras, L. M., and C. Li, "Dynamic-Anycast (Dyncast)

Use Cases and Problem Statement", Work in Progress,

Internet-Draft, draft-liu-dyncast-ps-usecases-03, 7 March

2022, <https://www.ietf.org/archive/id/draft-liu-dyncast-

ps-usecases-03.txt>.

Trossen, D., Sarathchandra, C.,

and M. Boniface, "In-Network Computing for App-Centric

Micro-Services", Work in Progress, Internet-Draft, draft-

sarathchandra-coin-appcentres-04, 26 January 2021,

<https://www.ietf.org/archive/id/draft-sarathchandra-

coin-appcentres-04.txt>.

3GPP, "Study on traffic characteristics and performance

requirements for AI/ML model transfer in 5GS (Release

18)", 2020.

Acknowledgements

The author would like to thank Yizhou Li, Luigi IANNONE and Geng

Liang for their valuable suggestions to this document.

Authors' Addresses

Peng Liu

China Mobile

Email: liupengyjy@chinamobile.com

¶

https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc6763
https://www.rfc-editor.org/info/rfc7285
https://www.rfc-editor.org/info/rfc7285
https://www.rfc-editor.org/info/rfc7336
https://www.ietf.org/archive/id/draft-liu-dyncast-ps-usecases-03.txt
https://www.ietf.org/archive/id/draft-liu-dyncast-ps-usecases-03.txt
https://www.ietf.org/archive/id/draft-sarathchandra-coin-appcentres-04.txt
https://www.ietf.org/archive/id/draft-sarathchandra-coin-appcentres-04.txt
mailto:liupengyjy@chinamobile.com

Tianji Jiang

China Mobile

Email: jiangtianji@chinamobile.com

Philip Eardley

BT

Email: philip.eardley@bt.com

Dirk Trossen

Huawei Technologies

Email: dirk.trossen@huawei.com

Cheng Li

Huawei Technologies

Email: c.l@huawei.com

mailto:jiangtianji@chinamobile.com
mailto:philip.eardley@bt.com
mailto:dirk.trossen@huawei.com
mailto:c.l@huawei.com

	Dynamic-Anycast (Dyncast) Gap analysis and Requirements
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Definition of Terms
	3. Gap Analysis of Existing Solutions
	3.1. Gap Analysis of DNS and GSLB
	3.2. Gap Analysis of Load Balancer
	3.3. Gap Analysis of ALTO
	3.4. Gap Analysis of Message Broker
	3.5. Gap Analysis of Client Based Solution
	3.6. Summary of Gap Analysis
	3.6.1. Dynamicity of Relations
	3.6.2. Efficiency
	3.6.3. Complexity and Accuracy
	3.6.4. Metric Exposure and Use
	3.6.5. Security

	4. Requirements
	4.1. Support dynamic and effective selection among mutiple serivce instances
	4.2. Support Agreement on Metric Representation
	4.3. Support Moderate Metric Signalling
	4.4. Support Flexible Use of Metrics
	4.5. Support Session and Service Continuity
	4.6. Preserve Communication Confidentiality

	5. Conclusion
	6. Security Considerations
	7. IANA Considerations
	8. Contributors
	9. Informative References
	Acknowledgements
	Authors' Addresses

