
dyncast P. Liu
Internet-Draft China Mobile
Intended status: Informational P. Willis
Expires: August 1, 2021 BT
 D. Trossen
 Huawei
 February 1, 2021

Dynamic-Anycast (Dyncast) Use Cases and Problem Statement
draft-liu-dyncast-ps-usecases-00

Abstract

 Service providers are exploring the edge computing to achieve better
 response time, control over data and carbon energy saving by moving
 the computing services towards the edge of the network in 5G MEC
 (Multi-access Edge Computing) scenarios, virtualized central office,
 and others. Providing services by sharing computing resources from
 multiple edges is an emerging concept that is becoming more useful
 for computationally intensive tasks. Ideally, services should be
 computationally balanced using service-specific metrics instead of
 simply dispatching the service in a static way, e.g., to the
 geographically closest edge since this may cause unbalanced usage of
 computing resources at edges which further degrades user experience
 and system utilization. This draft provides an overview of scenarios
 and problems associated with realizing such scenarios.

 The document identifies several key areas which require more
 investigations in terms of architecture and protocol to achieve
 balanced computing and networking resource utilization among edges
 providing the services.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Liu, et al. Expires August 1, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Dyncast Use Cases and Problem StatementFebruary 01, 2021

 This Internet-Draft will expire on July 22, 2021.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Definition of Terms . 4
3. Use Cases . 4
3.1. Cloud Virtual Reality (VR) or Augmented Reality (AR) . . . 4
3.2. Connected Car . 6
3.3. Digital Twin . 6

4. Shortcomings of Existing Solutions 7
5. Desirable System Characteristics and Requirements 9
5.1. Anycast-based Service Addressing Methodology 9
5.2. Instance Affinity . 10
5.3. Encoding Metrics . 10
5.4. Signaling Metrics . 11
5.5. Using Metrics in Routing Decisions 11
5.6. Supporting Service Dynamism 12

6. Conclusion . 13
7. Security Considerations 13
8. IANA Considerations . 13
9. Informative References . 13

 Acknowledgements . 14
 Authors' Addresses . 14

1. Introduction

 Edge computing aims to provide better response times and transfer
 rate, with respect to Cloud Computing, by moving the computing
 towards the edge of the network. Edge computing can be built on
 industrial PCs, embedded systems, gateways and others, all being

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Liu, et al. Expires August 1, 2021 [Page 2]

Internet-Draft Dyncast Use Cases and Problem StatementFebruary 01, 2021

 located close to the end user. There is an emerging requirement that
 multiple edge sites (called "edges" too in this document) are
 deployed at different locations to provide the service. There are
 millions of home gateways, thousands of base stations and hundreds of
 central offices in a city that can serve as candidate edges for
 hosting service nodes. Depending on the location of the edge and its
 capacity, each edge has different computing resources to be used for
 a service. At peak hour, computing resources attached to a client's
 closest edge site may not be sufficient to handle all the incoming
 service requests. Longer response times or even dropping of requests
 can be experienced by users. Increasing the computing resources
 hosted on each edge site to the potential maximum capacity is neither
 feasible nor economical in many cases.

 Some user devices are purely battery-driven. Offloading computation
 intensive processing to the edge can save battery power. Moreover the
 edge may use a data set (for the computation) that may not exist on
 the user device because of the size of data pool or due to data
 governance reasons.

 At the same time, with new technologies such as serverless computing
 and container based virtual functions, the service node at an edge
 can be easily created and terminated in a sub-second scale, which in
 turn changes the availability of a computing resources for a service
 dramatically over time, therefore impacting the possibly "best"
 decision on where to send a service request from a client.

 DNS-based load balancing usually configures a domain in Domain Name
 System (DNS) such that client requests to the domain are distributed
 across a group of servers. It usually provides several IP addresses
 for a domain name. Traditional techniques to manage the overall load
 balancing process of clients issuing requests include choose-
 the-closest or round-robin. Those solutions are relatively static,
 which may cause an unbalanced distribution in terms of network load
 and computational load.

 There are some dynamic ways which attempt to distribute the request
 to the server that best fits a service-specific metric, such as the
 best available resources and minimal load. They usually require L4-L7
 handling of the packet processing. It is not an efficient approach
 for a large number of short connections. At the same time, such
 approaches can often not retrieve the desired metric, such as the
 network status, in real time. Therefore, the choice of the service
 node is almost entirely determined by the computing status, rather
 than the comprehensive consideration of both computing and network
 metrics.

 Distributing a service request to a specific service having multiple

Liu, et al. Expires August 1, 2021 [Page 3]

Internet-Draft Dyncast Use Cases and Problem StatementFebruary 01, 2021

 instances attached to multiple edge computing sites, while taking
 into account computing as well as service-specific metrics in the
 distribution decision, can be seen as a dynamic anycast (or "dyncast"
 for short) routing problem. This draft describes usage scenarios,
 problem space and key areas of investigation for this dyncast
 problem.

2. Definition of Terms

 Anycast: An addressing and routing methodology that assign an
 "anycast" address for one or more network locations to which requests
 to an "anycast" address could be routed.

 Dyncast: Dynamic Anycast, taking the dynamic nature of computing
 resource metrics into account to steer an anycast routing decision.

 Service: A service represents a defined endpoint of functionality
 encoded according to the specification for said service.

 Service instance: One service can have several instances running on
 different nodes. Service instance is a running environment (e.g., a
 node) that makes the functionality of a service available.

 Service identifier: Used to uniquely identify a service, at the same
 time identifying the whole set of service instances that each
 represent the same service behaviour, no matter where those service
 instances are running.

3. Use Cases

 This section presents several typical scenarios which require
 multiple edge sites to interconnect and to co-ordinate at the network
 layer to meet the service requirements and ensure user experience.
 The scenarios here are exemplary only for the purpose of this
 document and not comprehensive.

3.1. Cloud Virtual Reality (VR) or Augmented Reality (AR)

 Cloud VR/AR introduces the concept and technology of cloud computing
 to the rendering of audiovisual assets in such applications. Here,
 the edge cloud helps encode/decode and render content. The end device
 usually only uploads posture or control information to the edge and
 then VR/AR contents are rendered in the edge cloud. The video and
 audio outputs generated from the edge cloud are encoded, compressed,
 and transmitted back to the end device or further transmitted to
 central data center via high bandwidth networks.

 Edge sites may use CPU or GPU for encode/decode. GPU usually has

Liu, et al. Expires August 1, 2021 [Page 4]

Internet-Draft Dyncast Use Cases and Problem StatementFebruary 01, 2021

 better performance but CPU is simpler and more straightforward to use
 as well as possibly more widespread in deployment. Available
 remaining resources determines if a service instance can be started.
 The instance's CPU, GPU and memory utilization has a high impact on
 the processing delay on encoding, decoding and rendering. At the same
 time, the network path quality to the edge site is a key for user
 experience of quality of audio/ video and input command response
 times.

 A Cloud VR service, such as a mobile gaming service, brings
 challenging requirements to both network and computing so that the
 edge node to serve a service request has to be carefully selected to
 make sure it has sufficient computing resource and good network path.
 For example, for an entry-level Cloud VR (panoramic 8K 2D video) with
 110-degree Field of View (FOV) transmission, the typical network
 requirements are bandwidth 40Mbps, 20ms for motion-to-photon latency,
 packet loss rate is 2.4E-5; the typical computing requirements are 8K
 H.265 real-time decoding, 2K H.264 real-time encoding. We can further
 divide the 20ms latency budget into (i) sensor sampling delay, (ii)
 image/frame rendering delay, (iii) display refresh delay, and (iv)
 network delay. With upcoming high display refresh rate (e.g., 144Hz)
 and GPU resources being used for frame rendering, we can expect an
 upper bound of roughly 5ms for the round trip latency in these
 scenarios.

 Furthermore, techniques may be employed that divide the overall
 rendering into base assets that are common across a number of clients
 participating in the service, while the client-specific input data is
 being utilized to render additional assets. When being delivered to
 the client, those two assets are being combined into the overall
 content being consumed by the client. The requirements for sending
 the client input data as well as the requests for the base assets may
 be different in terms of which service instances may serve the
 request, where base assets may be served from any nearby service
 instance (since those base assets may be served without requiring
 cross-request state being maintained), while the client-specific
 input data is being processed by a stateful service instance that
 changes, if at all, only slowly over time due to the stickiness of
 the service that is being created by the client-specific data. Other
 splits of rendering and input tasks can be found in [TR22.874] for
 further reading.

 When it comes to the service instances themselves, those may be
 instantiated on-demand, e.g., driven by network or client demand
 metrics, while resources may also be released, e.g., after an idle
 timeout, to free up resources for other services. Depending on the
 utilized node technologies, the lifetime of such "function as a
 service" may range from many minutes down to millisecond scale.

Liu, et al. Expires August 1, 2021 [Page 5]

Internet-Draft Dyncast Use Cases and Problem StatementFebruary 01, 2021

 Therefore computing resources across participating edges exhibit a
 distributed (in terms of locations) as well as dynamic (in terms of
 resource availability) nature. In order to achieve a satisfying
 service quality to end users, a service request will need to be sent
 to and served by an edge with sufficient computing resource and a
 good network path.

3.2. Connected Car

 In auxiliary driving scenarios, to help overcome the non-line-of-
 sight problem due to blind spot or obstacles, the edge node can
 collect comprehensive road and traffic information around the vehicle
 location and perform data processing, and then vehicles with high
 security risk can be warned accordingly, improving driving safety in
 complicated road conditions, like at intersections. This scenario is
 also called "Electronic Horizon", as explained in [HORITA].

 For instance, video image information captured by, e.g., an in-car,
 camera is transmitted to the nearest edge node for processing. The
 notion of sending the request to the "nearest" edge node is important
 for being able to collate the video information of "nearby" cars,
 using, for instance, relative location information. Furthermore, data
 privacy may lead to the requirement to process the data as close to
 the source as possible to limit data spread across too many network
 components in the network.

 Nevertheless, load at specific "closest" nodes may greatly vary,
 leading to the possibility for the closest edge node becoming
 overloaded, leading to a higher response time and therefore a delay
 in responding to the auxiliary driving request with the possibility
 of traffic delays or even traffic accidents occurring as a result.
 Hence, in such cases, delay-insensitive services such as in-vehicle
 entertainment should be dispatched to other light loaded nodes
 instead of local edge nodes, so that the delay-sensitive service is
 preferentially processed locally to ensure the service availability
 and user experience.

3.3. Digital Twin

 A number of industry associations, such as the Industrial Digital
 Twin Association or the Digital Twin Consortium
 (https://www.digitaltwinconsortium.org/), have been founded to
 advocate the concept of the Digital Twin (DT) for a number of use
 case areas, such as smart cities, transportation, industrial control,
 among others. The core concept of the DT is the "administrative
 shell" [Industry4.0], which serves as a digital representation of the
 information and technical functionality pertaining to the "assets"
 (such as an industrial machinery, a transportation vehicle, an object

https://www.digitaltwinconsortium.org/

Liu, et al. Expires August 1, 2021 [Page 6]

Internet-Draft Dyncast Use Cases and Problem StatementFebruary 01, 2021

 in a smart city or others) that is intended to be managed,
 controlled, and actuated.

 As an example for industrial control, the programmable logic
 controller (PLC) may be virtualized and the functionality aggregated
 across a number of physical assets into a single administrative shell
 for the purpose of managing those assets. PLCs may be virtualized in
 order to move the PLC capabilities from the physical assets to the
 edge cloud. Several PLC instances may exist to enable load balancing
 and fail-over capabilities, while also enabling physical mobility of
 the asset and the connection to a suitable "nearby" PLC instance.
 With this, traffic dynamicity may be similar to that observed in the
 connected car scenario in the previous sub-section. Crucial here is
 high availability and bounded latency since a failure of the
 (overall) PLC functionality may lead to a production line stop, while
 boundary violations of the latency may lead to loosing
 synchronization with other processes and, ultimately, to production
 faults, tool failures or similar.

 Particular attention in Digital Twin scenarios is given to the
 problem of data storage. Here, decentralization, not only driven by
 the scenario (such as outlined in the connected car scenario for
 cases of localized reasoning over data originating from driving
 vehicles) but also through proposed platform solutions, such as those
 in [GAIA-X], plays an important role. With decentralization, endpoint
 relations between client and (storage) service instances may
 frequently change as a result.

4. Shortcomings of Existing Solutions

 Given that the current state of the art for routing is based on the
 network cost, computing resource and/or load information as well as
 other service-specific metrics are not available nor distributed at
 the network layer. At the same time, computing resource metrics are
 not well defined and understood by the network. Furthermore, although
 we have focused in our examples on computing load and networking
 latency, metrics that decide the selection of the most appropriate
 service instance may not be limited to those. Proximity, even of
 physical nature, as well as capabilities of computing and network
 resources may be other metrics used for the selection of an
 appropriate service instance, while a "computing metric" itself can
 include aspects such as CPU/GPU capacity and load, number of sessions
 currently serving, latency of service process expected, possibly
 applying weights to each metric. Overall, we observe that given the
 service-specific nature of the notion of "best instance", it is hard
 to make the best choice of the edge based on both computing and
 network metrics at the same time, leading to the problems observed in
 the following when realizing the use cases in Section 3.

Liu, et al. Expires August 1, 2021 [Page 7]

Internet-Draft Dyncast Use Cases and Problem StatementFebruary 01, 2021

 As a key takeaway from Section 3, we observe that a service request
 should be dynamically routed to the most suitable service instance in
 real time among the multiple edges in which service instances have
 been deployed. Existing mechanisms use one or more of the following
 ways and each of them has issues associated.

 o Use the least network cost as metric to select the edge. Issue:
 Computing information, among other metrics, is key to be
 considered in edge computing, and it is not included here. In our
 scenarios of Section 3, this may lead to service requests routed
 to closer albeit possibly overloaded edge-based service instances,
 degrading the service quality.

 o Use of geographical location, as deduced from IP prefix, is used
 to pick the closest edge. Issue: Edges are not so far apart in
 edge computing scenario. Either hard to be deduced from IP
 address or the location is not the key distinguishing metric to be
 considered., particularly since geographic co-location does not
 necessarily mean network topology co-location. Furthermore,
 "closer geographically" does not consider the computing load of
 possible closer yet more loaded nodes, similar to the previous
 point.

 o Health check on an infrequent base (>1s) to reflect the service
 node status, and switch when fail-over. Issue: Health check is
 very different from computing status information of service
 instance and may not reflect at all the decision basis for the
 scenarios, e.g., the number of ongoing sessions as an indicator of
 load. It may also be too coarse in granularity, e.g., for
 supporting mobility-induced dynamics such as the connected car
 scenario of Section 3.2.

 o Application layer randomly picks or uses round-robin mechanism to
 pick a service instance. Issue: It may share the load across
 multiple service instances in terms of the computing capacity all
 while assuming equal resource capability for each service
 instance, the network cost variance is barely considered. Edges
 can be deployed in different cities which are not equal cost paths
 to a client. Therefore network status is also a major concern.
 Also, in our scenarios of Section 3, the choice of "nearest" or
 "closer" is required for a better choice.

 o Global resolver and early binding (DNS-based load balancing):
 Client queries a global resolver or load balancer first and gets
 the exact server's address. And then steer traffic using that
 address as binding address. It is called early binding because an
 explicit binding address query has to be performed before sending
 user data. Issue: Firstly, it clashes with the service dynamism

Liu, et al. Expires August 1, 2021 [Page 8]

Internet-Draft Dyncast Use Cases and Problem StatementFebruary 01, 2021

 across all scenarios in Section 3. Also, the resolver does not
 have the capability of such high frequent change of indirection to
 new instance based on the frequent change of each service
 instance. Secondly, edge computing flow can be short. One or two
 round trips would be completed, requiring very frequent bindings
 with accompanying DNS resolutions, while an out-of-band query for
 specific server address has high overhead as it takes one more
 round trip. Lastly, to avoid DNS resolution for every request,
 out-of-band signaling would also be required to the client to
 remove any previous DNS resolution from the client-local DNS cache
 to avoid the use of stale DNS entries. These issues are also
 discussed in section 5.4 of [I-D.sarathchandra-coin-appcentres],
 outlining the significant challenges for the flexible re-routing
 to appropriate service instances out of an available pool when
 utilizing DNS for this purpose.

 o Traditional anycast. Issue: Only works for single request/reply
 communication. No instance affinity (see Section 5.2) guaranteed
 nor is any service-specific metric, such as load and latency,
 being considered. This would cause significant issues in all our
 use cases in Section 3

 o EIGRP [RFC7868]: Although allowing a number of metrics, EIGRP has
 no notion of computing load as a metric, while it also does not
 enforce instance affinity, which may lead to problems in our use
 cases of Section 3 in service requests being sent mid-request to
 other service instances.

5. Desirable System Characteristics and Requirements

 In the following, we outline the desirable characteristics of a
 system to overcome the observed problems in Section 4 for the
 realization of the use cases in Section 3.

5.1. Anycast-based Service Addressing Methodology

 A unique service identifier is used by all the service instances for
 a specific service no matter which edge it attaches to. An anycast
 like addressing and routing methodology among multiple edges makes
 sure the data packet can potentially reach any of the edges with the
 service instance attached. At the same time, each service instance
 has its own unicast address to be used by the attaching edge to
 access the service.Since a client will use the service identifier as
 the destination addressing, mapping of the service identifier to the
 unicast address will need to happen in-band, considering the metrics
 for selection to make this selection service-specific. From an
 addressing perspective, a desirable system

https://datatracker.ietf.org/doc/html/rfc7868

Liu, et al. Expires August 1, 2021 [Page 9]

Internet-Draft Dyncast Use Cases and Problem StatementFebruary 01, 2021

 o MUST provide a discovery and mapping methodology for the in-band
 mapping of the service identifier (an anycast address) to a
 specific unicast address.

5.2. Instance Affinity

 A routing relation between a client and a service exists not at the
 packet but at the service request level in the sense that one or more
 service requests, possibly consisting of one or many more routing-
 level packets, must be ensured to be sent to said service.Each
 service may be provided by one or more service instances, each
 providing equivalent service functionality to their respective
 clients, while those service instances may be deployed at different
 locations in the network. With that, the routing problem becomes one
 between the client and a selected service instance for at least the
 duration of the service-level request, but possibly more than just
 one request.

 This relationship between the client and the chosen service instance
 is described as "instance affinity" in the following, where the
 "affinity" spans across the aforementioned one or more service
 requests. This impacts the routing decision to be taken in that the
 normal packet level communication, i.e., each packet is forwarded
 individually based on the forwarding table at the time, will need
 extending with the notion of instance affinity since otherwise
 individual packets may be sent to different places when the network
 status changes, possibly segmenting individual requests and breaking
 service-level semantics.

 The nature of this affinity is highly dependent on the nature of the
 specific service. The minimal affinity of a single request represents
 a stateless service, where each service request may be responded to
 without any state being held at the service instance for fulfilling
 the request. Providing any necessary information/state in-band as
 part of the service request, e.g., in the form of a multi-form body
 in an HTTP request or through the URL provided as part of the
 request, is one way to achieve such stateless nature. Alternatively,
 the affinity to a particular service instance may span more than one
 request, as in our VR example in Section 3.1, where previous client
 input is needed to render subsequent frames. Therefore, a desirable
 system

 o MUST maintain "instance affinity" which MAY span one or more
 service requests, i.e., all the packets from the same flow MUST go
 to the same service instance.

5.3. Encoding Metrics

Liu, et al. Expires August 1, 2021 [Page 10]

Internet-Draft Dyncast Use Cases and Problem StatementFebruary 01, 2021

 As outlined in our scenarios in Section 3, metrics can have many
 different semantics, particularly if considered to be service-
 specific. Even the notion of a "computing load" metric may be
 computed in many different ways. What is crucial, however, is the
 representation and encoding of that metric when being conveyed to the
 routing fabric in order for the routing elements to act upon those
 metrics. Such representation may entail information on the semantics
 of the metric or it may be purely one or more semantic-free numerals.
 Agreement of the chosen representation among all service and network
 elements participating in the service-specific routing decision is
 important. Specifically, a desirable system

 o MUST agree on the service-specific metrics and their
 representation between service elements in the participating edges
 in the network and network elements acting upon them.

 o MAY obfuscate the specific semantic of the metric to preserve
 privacy of the service provider information towards the network
 provider.

 o MAY include routing protocol metrics

5.4. Signaling Metrics

 The aforementioned representation of metrics needs conveyance to the
 network elements that will need to act upon them. Depending on the
 service-specific decision logic, one or more metrics will need to be
 conveyed. Problems to be addressed here may be that of loop avoidance
 of any advertisement of metrics as well as the frequency of such
 conveyance and therefore the overall load that the signaling may add
 to the overall network traffic. While existing routing protocols may
 serve as a baseline for signaling metrics, other means to convey the
 metrics can equally be realized. Specifically, a desirable system

 o MUST provide mechanisms to signal the metrics for using in routing
 decisions

 o MUST realize means for rate control for signaling of metrics

 o MUST implement mechanisms for loop avoidance in signaling metrics,
 when necessary

5.5. Using Metrics in Routing Decisions

 Metrics being conveyed, as outlined in Section 5.4, in the agreed
 manner, as outlined in Section 5.3, will ultimately need suitable
 action in the routers of the network. Routing decisions can be
 manifold, possibly including (i) min or max over all metrics, (ii)

Liu, et al. Expires August 1, 2021 [Page 11]

Internet-Draft Dyncast Use Cases and Problem StatementFebruary 01, 2021

 extending previous action with a random or first choice when more
 than one min/max entry found, (iii) weighted round robin of all
 entries, among others. It is important for the proper work of the
 service-specific routing decision, that it is understood to both
 network and service provider, which action (out of a possible set of
 supported actions) is to be used for a particular set of metrics.
 Specifically, a desirable system

 o MUST specify a default action to be taken, if more than one action
 possible

 o SHOULD enable other alternative actions to be taken.

 o Any solution MUST provide appropriate signaling of the desired
 action to the router. For this, the action MAY be signaled in
 combination with signaling the metric (see Section 5.4).

 o Any solution SHOULD allow associating the desired action to a
 specific service identifier.

5.6. Supporting Service Dynamism

 Network cost in the current routing system usually does not change
 very frequently. However, computing load and service-specific metrics
 in general can be highly dynamic, e.g., changing rapidly with the
 number of sessions, CPU/GPU utilization and memory space. It has to
 be determined at what interval or events such information needs to be
 distributed among edges. More frequent distribution of more accurate
 synchronization may result in more overhead in terms of signaling.

 Choosing the least path cost is the most common rule in routing.
 However, the logic does not work well when routing should be aware of
 service-specific metrics. Choosing the least computing load may
 result in oscillation. The least loaded edge can quickly be flooded
 by the huge number of new computing demands and soon become
 overloaded with tidal effects possibly following.

 Generally, a single instance may have very dynamic resource
 availability over time in order to serve service requests. This
 availability may be affected by computing resource capability and
 load, network path quality, and others. The balancing mechanisms
 should adapt to the service dynamism quickly and seamlessly. With
 this, the relationship between a single client and the set of
 possible service instances may possibly be very dynamic in that one
 request that is being dispatched to instance A may be followed by a
 request that is being dispatched to instance B and so on, generally
 within the notion of the service-specific service affinity discussed
 before in Section 5.2. With this in mind, a desirable system

Liu, et al. Expires August 1, 2021 [Page 12]

Internet-Draft Dyncast Use Cases and Problem StatementFebruary 01, 2021

 o MUST support the dynamics of metrics changing on, e.g., a per flow
 basis, without violating the metrics defined in the selection of
 the specific service instance, while taking into account the
 requirements for the signaling of metrics and routing decision
 (see Section 5.4 and 5.5).

6. Conclusion

 This document presents use cases in which we observe the demand for
 consideration of the dynamic nature of service requests as well as
 the availability of network resources so as to satisfy service-
 specific metrics to allow for selecting the most suitable service
 instance among the pool of instances available to the service
 throughout the network. These use cases and the observed problems
 with existing solutions motivate the outline for a desirable system
 that may provide a solution for realizing the use cases outlined in
 this document; we call this system Dyncast due to its anycast-based
 addressing methodology.

 We have formulated high-level requirements for solutions to Dyncast,
 where the architecture should address how to distribute the resource
 information at the network layer and how to assure instance affinity
 in an anycast based service addressing environment, while realizing
 appropriate routing actions to satisfy the metrics provided.

7. Security Considerations

 TBD

8. IANA Considerations

 No IANA action is required so far.

9. Informative References

 [RFC7868] D. Davage et al. , "Cisco's Enhanced Interior Gateway
 Routing Protocol (EIGRP)", RFC 7868, May 2016,

https://tools.ietf.org/html/rfc7868

 [I-D.sarathchandra-coin-appcentres] Trossen, D., Sarathchandra, C.,
 and M. Boniface, "In-Network Computing for App-Centric Micro-
 Services", draft-sarathchandra-coin-appcentres-03 (work in
 progress), October 2020.

 [TR22.874] 3GPP, "Study on traffic characteristics and performance
 requirements for AI/ML model transfer in 5GS (Release 18)", TR
 22.874 V0.2.0, November 2020

https://datatracker.ietf.org/doc/html/rfc7868
https://tools.ietf.org/html/rfc7868
https://datatracker.ietf.org/doc/html/draft-sarathchandra-coin-appcentres-03

Liu, et al. Expires August 1, 2021 [Page 13]

Internet-Draft Dyncast Use Cases and Problem StatementFebruary 01, 2021

 [Industry4.0] Industry4.0, "Details of the Asset Administration
 Shell, Part 1 & Part 2", November 2020, https://www.plattform-

i40.de/PI40/Redaktion/EN/Standardartikel/specification-
 administrationshell.html.

 [GAIA-X] Gaia-X, "GAIA-X: A Federated Data Infrastructure for
 Europe", accessed January 2021, https://www.data-

infrastructure.eu/GAIAX/Navigation/EN/Home/home.html

 [HORITA] Y. Horita et al., "Extended electronic horizon for automated
 driving", Proceedings of 14th International Conference on ITS
 Telecommunications (ITST), 2015

Acknowledgements

 The author would like to thank Yizhou Li, Luigi IANNONE and Geng
 Liang for their valuable suggestions to this document.

Authors' Addresses

 Peng Liu
 China Mobile
 Email: liupengyjy@chinamobile.com

 Peter Willis
 BT
 Email: peter.j.willis@bt.com

 Dirk Trossen
 Huawei
 Email: dirk.trossen@huawei.com

https://www.plattform-i40.de/PI40/Redaktion/EN/Standardartikel/specification-
https://www.plattform-i40.de/PI40/Redaktion/EN/Standardartikel/specification-
https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.html
https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.html

Liu, et al. Expires August 1, 2021 [Page 14]

