
dyncast P. Liu
Internet-Draft China Mobile
Intended status: Informational P. Willis
Expires: August 15, 2021 BT
 D. Trossen
 Huawei
 February 15, 2021

Dynamic-Anycast (Dyncast) Use Cases & Problem Statement
draft-liu-dyncast-ps-usecases-01

Abstract

 Service providers are exploring the edge computing to achieve better
 response time, control over data and carbon energy saving by moving
 the computing services towards the edge of the network in 5G MEC
 (Multi-access Edge Computing) scenarios, virtualized central office,
 and others. Providing services by sharing computing resources from
 multiple edges is an emerging concept that is becoming more useful
 for computationally intensive tasks. Ideally, services should be
 computationally balanced using service-specific metrics instead of
 simply dispatching the service in a static way, e.g., to the
 geographically closest edge since this may cause unbalanced usage of
 computing resources at edges which further degrades user experience
 and system utilization. This draft provides an overview of scenarios
 and problems associated with realizing such scenarios.

 The document identifies several key areas which require more
 investigations in terms of architecture and protocol to achieve
 balanced computing and networking resource utilization among edges
 providing the services.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Liu, et al. Expires August 15, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Dyncast Use Cases & Problem Statement February 15, 2021

 This Internet-Draft will expire on July 22, 2021.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Definition of Terms . 4
3. Use Cases . 4
3.1. Cloud Virtual Reality (VR) or Augmented Reality (AR) . . . 5
3.2. Connected Car . 6
3.3. Digital Twin . 7

4. Problems in Existing Solutions 7
4.1. Dynamicity of Relations 7
4.2. Efficiency . 9
4.3. Complexity . 9
4.4. Metric Exposure and Use 10
4.5. Security . 11
4.6. Changes to Infrastructure 11

5. Conclusions . 12
6. Security Considerations 12
7. IANA Considerations . 12
8. Informative References . 12

 Acknowledgements . 13
 Authors' Addresses . 13

1. Introduction

 Edge computing aims to provide better response times and transfer
 rate, with respect to Cloud Computing, by moving the computing
 towards the edge of the network. Edge computing can be built on
 industrial PCs, embedded systems, gateways and others, all being
 located close to the end user. There is an emerging requirement that

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Liu, et al. Expires August 15, 2021 [Page 2]

Internet-Draft Dyncast Use Cases & Problem Statement February 15, 2021

 multiple edge sites (called "edges" too in this document) are
 deployed at different locations to provide the service. There are
 millions of home gateways, thousands of base stations and hundreds of
 central offices in a city that can serve as candidate edges for
 hosting service nodes. Depending on the location of the edge and its
 capacity, each edge has different computing resources to be used for
 a service. At peak hour, computing resources attached to a client's
 closest edge site may not be sufficient to handle all the incoming
 service requests. Longer response times or even dropping of requests
 can be experienced by users. Increasing the computing resources
 hosted on each edge site to the potential maximum capacity is neither
 feasible nor economical in many cases.

 Some user devices are purely battery-driven. Offloading computation
 intensive processing to the edge can save battery power. Moreover the
 edge may use a data set (for the computation) that may not exist on
 the user device because of the size of data pool or due to data
 governance reasons.

 At the same time, with new technologies such as serverless computing
 and container based virtual functions, the service node at an edge
 can be easily created and terminated in a sub-second scale, which in
 turn changes the availability of a computing resources for a service
 dramatically over time, therefore impacting the possibly "best"
 decision on where to send a service request from a client.

 DNS-based load balancing usually configures a domain in Domain Name
 System (DNS) such that client requests to the domain are distributed
 across a group of servers. It usually provides several IP addresses
 for a domain name. Traditional techniques to manage the overall load
 balancing process of clients issuing requests include choose-
 the-closest or round-robin. Those solutions are relatively static,
 which may cause an unbalanced distribution in terms of network load
 and computational load.

 There are some dynamic ways which attempt to distribute the request
 to the server that best fits a service-specific metric, such as the
 best available resources and minimal load. They usually require L4-L7
 handling of the packet processing. It is not an efficient approach
 for a large number of short connections. At the same time, such
 approaches can often not retrieve the desired metric, such as the
 network status, in real time. Therefore, the choice of the service
 node is almost entirely determined by the computing status, rather
 than the comprehensive consideration of both computing and network
 metrics.

 Distributing a service request to a specific service having multiple
 instances attached to multiple edge computing sites, while taking

Liu, et al. Expires August 15, 2021 [Page 3]

Internet-Draft Dyncast Use Cases & Problem Statement February 15, 2021

 into account computing as well as service-specific metrics in the
 distribution decision, can be seen as a dynamic anycast (or "dyncast"
 for short) problem of sending service requests, without prescribing
 the use of a routing solution at this stage of the discussion.

 As a problem statement, this draft describes usage scenarios as well
 as key areas in which current solutions lead to problems that
 ultimately affect the deployment or the performance of the edge
 services. Those key areas target the identification of possible
 solution components, while the overall purpose of this document is to
 stimulate discussions on the emerging needs outlined in our use cases
 and to start the process of determining how they are best satisfied
 within the IETF protocol suite or through suitable extensions to that
 protocol suite.

2. Definition of Terms

 Service: A service represents a defined endpoint of functionality
 encoded according to the specification for said service.

 Service instance: One service can have several instances running on
 different nodes. Service instance is a running environment (e.g.,
 a node) that makes the functionality of a service available.

 Service identifier: Used to uniquely identify a service, at the same
 time identifying the whole set of service instances that each
 represent the same service behaviour, no matter where those
 service instances are running.

 Anycast: An addressing and packet sending methodology that assign an
 "anycast" identifier for one or more service instances to which
 requests to an "anycast" identifier could be routed, following
 the definition in [RFC4786] as anycast being "the practice of
 making a particular Service Address available in multiple,
 discrete, autonomous locations, such that datagrams sent are
 routed to one of several available locations".

 Dyncast: Dynamic Anycast, taking the dynamic nature of computing
 resource metrics into account to steer an anycast-like decision
 in sending an incoming service request.

3. Use Cases

 This section presents several typical scenarios which require
 multiple edge sites to interconnect and to co-ordinate at the network
 layer to meet the service requirements and ensure user experience.
 The scenarios here are exemplary only for the purpose of this
 document and not comprehensive.

https://datatracker.ietf.org/doc/html/rfc4786

Liu, et al. Expires August 15, 2021 [Page 4]

Internet-Draft Dyncast Use Cases & Problem Statement February 15, 2021

3.1. Cloud Virtual Reality (VR) or Augmented Reality (AR)

 Cloud VR/AR introduces the concept and technology of cloud computing
 to the rendering of audiovisual assets in such applications. Here,
 the edge cloud helps encode/decode and render content. The end device
 usually only uploads posture or control information to the edge and
 then VR/AR contents are rendered in the edge cloud. The video and
 audio outputs generated from the edge cloud are encoded, compressed,
 and transmitted back to the end device or further transmitted to
 central data center via high bandwidth networks.

 Edge sites may use CPU or GPU for encode/decode. GPU usually has
 better performance but CPU is simpler and more straightforward to use
 as well as possibly more widespread in deployment. Available
 remaining resources determines if a service instance can be started.
 The instance's CPU, GPU and memory utilization has a high impact on
 the processing delay on encoding, decoding and rendering. At the same
 time, the network path quality to the edge site is a key for user
 experience of quality of audio/ video and input command response
 times.

 A Cloud VR service, such as a mobile gaming service, brings
 challenging requirements to both network and computing so that the
 edge node to serve a service request has to be carefully selected to
 make sure it has sufficient computing resource and good network path.
 For example, for an entry-level Cloud VR (panoramic 8K 2D video) with
 110-degree Field of View (FOV) transmission, the typical network
 requirements are bandwidth 40Mbps, 20ms for motion-to-photon latency,
 packet loss rate is 2.4E-5; the typical computing requirements are 8K
 H.265 real-time decoding, 2K H.264 real-time encoding. We can further
 divide the 20ms latency budget into (i) sensor sampling delay, (ii)
 image/frame rendering delay, (iii) display refresh delay, and (iv)
 network delay. With upcoming high display refresh rate (e.g., 144Hz)
 and GPU resources being used for frame rendering, we can expect an
 upper bound of roughly 5ms for the round trip latency in these
 scenarios.

 Furthermore, techniques may be employed that divide the overall
 rendering into base assets that are common across a number of clients
 participating in the service, while the client-specific input data is
 being utilized to render additional assets. When being delivered to
 the client, those two assets are being combined into the overall
 content being consumed by the client. The requirements for sending
 the client input data as well as the requests for the base assets may
 be different in terms of which service instances may serve the
 request, where base assets may be served from any nearby service
 instance (since those base assets may be served without requiring
 cross-request state being maintained), while the client-specific

Liu, et al. Expires August 15, 2021 [Page 5]

Internet-Draft Dyncast Use Cases & Problem Statement February 15, 2021

 input data is being processed by a stateful service instance that
 changes, if at all, only slowly over time due to the stickiness of
 the service that is being created by the client-specific data. Other
 splits of rendering and input tasks can be found in [TR22.874] for
 further reading.

 When it comes to the service instances themselves, those may be
 instantiated on-demand, e.g., driven by network or client demand
 metrics, while resources may also be released, e.g., after an idle
 timeout, to free up resources for other services. Depending on the
 utilized node technologies, the lifetime of such "function as a
 service" may range from many minutes down to millisecond scale.
 Therefore computing resources across participating edges exhibit a
 distributed (in terms of locations) as well as dynamic (in terms of
 resource availability) nature. In order to achieve a satisfying
 service quality to end users, a service request will need to be sent
 to and served by an edge with sufficient computing resource and a
 good network path.

3.2. Connected Car

 In auxiliary driving scenarios, to help overcome the non-line-of-
 sight problem due to blind spot or obstacles, the edge node can
 collect comprehensive road and traffic information around the vehicle
 location and perform data processing, and then vehicles with high
 security risk can be warned accordingly, improving driving safety in
 complicated road conditions, like at intersections. This scenario is
 also called "Electronic Horizon", as explained in [HORITA].

 For instance, video image information captured by, e.g., an in-car,
 camera is transmitted to the nearest edge node for processing. The
 notion of sending the request to the "nearest" edge node is important
 for being able to collate the video information of "nearby" cars,
 using, for instance, relative location information. Furthermore, data
 privacy may lead to the requirement to process the data as close to
 the source as possible to limit data spread across too many network
 components in the network.

 Nevertheless, load at specific "closest" nodes may greatly vary,
 leading to the possibility for the closest edge node becoming
 overloaded, leading to a higher response time and therefore a delay
 in responding to the auxiliary driving request with the possibility
 of traffic delays or even traffic accidents occurring as a result.
 Hence, in such cases, delay-insensitive services such as in-vehicle
 entertainment should be dispatched to other light loaded nodes
 instead of local edge nodes, so that the delay-sensitive service is
 preferentially processed locally to ensure the service availability
 and user experience.

Liu, et al. Expires August 15, 2021 [Page 6]

Internet-Draft Dyncast Use Cases & Problem Statement February 15, 2021

3.3. Digital Twin

 A number of industry associations, such as the Industrial Digital
 Twin Association or the Digital Twin Consortium
 (https://www.digitaltwinconsortium.org/), have been founded to
 advocate the concept of the Digital Twin (DT) for a number of use
 case areas, such as smart cities, transportation, industrial control,
 among others. The core concept of the DT is the "administrative
 shell" [Industry4.0], which serves as a digital representation of the
 information and technical functionality pertaining to the "assets"
 (such as an industrial machinery, a transportation vehicle, an object
 in a smart city or others) that is intended to be managed,
 controlled, and actuated.

 As an example for industrial control, the programmable logic
 controller (PLC) may be virtualized and the functionality aggregated
 across a number of physical assets into a single administrative shell
 for the purpose of managing those assets. PLCs may be virtualized in
 order to move the PLC capabilities from the physical assets to the
 edge cloud. Several PLC instances may exist to enable load balancing
 and fail-over capabilities, while also enabling physical mobility of
 the asset and the connection to a suitable "nearby" PLC instance.
 With this, traffic dynamicity may be similar to that observed in the
 connected car scenario in the previous sub-section. Crucial here is
 high availability and bounded latency since a failure of the
 (overall) PLC functionality may lead to a production line stop, while
 boundary violations of the latency may lead to loosing
 synchronization with other processes and, ultimately, to production
 faults, tool failures or similar.

 Particular attention in Digital Twin scenarios is given to the
 problem of data storage. Here, decentralization, not only driven by
 the scenario (such as outlined in the connected car scenario for
 cases of localized reasoning over data originating from driving
 vehicles) but also through proposed platform solutions, such as those
 in [GAIA-X], plays an important role. With decentralization, endpoint
 relations between client and (storage) service instances may
 frequently change as a result.

4. Problems in Existing Solutions

 There are a number of problems that may occur when realizing the use
 cases in the previous section. This section suggests a classification
 for those problems to aid the possible identification of solution
 components for addressing them.

4.1. Dynamicity of Relations

https://www.digitaltwinconsortium.org/

Liu, et al. Expires August 15, 2021 [Page 7]

Internet-Draft Dyncast Use Cases & Problem Statement February 15, 2021

 The mapping from a service identifier to a specific service instance
 that may execute the service for a client usually happens through
 resolving the service identification into a specific IP address at
 which the service instance is reachable. This is the case, for
 instance, when utilizing DNS [RFC1035] for this step, as utilized in
 most content delivery networks or in DNS-based load balancing
 solutions. This is called 'early binding' because an explicit
 binding from the service identification to the network address has to
 be performed before sending user data. Through this resolution, the
 client creates an 'instance affinity' for the service identifier that
 binds the client to the resolved service instance address.

 We can foresee scenarios in which such 'instance affinity' may change
 very frequently, possibly even at the level of each service request.
 Systems such as the DNS are not designed for this level of
 dynamicity. Firstly, updates to the mapping between service
 identifier to service instance address cannot be pushed quickly
 enough into the DNS to be available fast enough since it usually
 takes several minutes for DNS updates to propagate. Secondly, clients
 would need to frequently resolve the original binding, while also
 actively flushing the local DNS cache since most client
 implementations would provide cached results of previously resolved
 requests. Regardless of those aspects, frequent resolving of the same
 service name would likely lead to an overload of the DNS,
 particularly when scaling the number of clients and service instance
 relations. These issues are also discussed in section 5.4 of [I-
 D.sarathchandra-coin-appcentres], outlining the significant
 challenges for the flexible re-routing to appropriate service
 instances out of an available pool when utilizing DNS for this
 purpose.

 Application layer solutions can also be foreseen, which do not rely
 on the DNS but instead use an application server to resolve binding
 updates. While the viability of these solutions will generally depend
 on the additional latency that is being introduced by the resolution
 via said application server, frequencies down to changing relations
 every few (or indeed EVERY) service requests is seen as difficult to
 be viable.

 Message brokers, however, could be used, dispatching incoming service
 requests from clients to a suitable service instance, where such
 dispatching could be controlled by service-specific metrics, such as
 computing load. The introduction of such brokers, however, may lead
 to adverse effects on efficiency, specifically when it comes to
 additional latencies due to the necessary communication with the
 broker; we discuss this problem separately in the next subsection.

 A solution that leaves the dispatching of service requests entirely

https://datatracker.ietf.org/doc/html/rfc1035

Liu, et al. Expires August 15, 2021 [Page 8]

Internet-Draft Dyncast Use Cases & Problem Statement February 15, 2021

 to the client may be possible to achieve the needed dynamicity, but
 with the drawback that the individual destinations, i.e., the network
 identifiers for each service instance, must be known to the client
 for doing so. While this may be viable for certain applications, it
 cannot generally scale with a large number of clients. Furthermore,
 it may be undesirable for every client to know all available service
 instance identifiers, e.g., for reasons of not wanting to expose this
 information to clients from the perspective of the service provider
 but also, again, for scalability reasons if the number of service
 instances is very high.

 Existing solutions exhibit limitations in providing dynamic
 'instance affinity', those limitations being inherently linked to
 the design used for the mapping between the service identifier and
 the address of the service instance. These limitations may lead to
 'instance affinity' to last many requests or even for the entire
 session between the client and the service, which may be
 undesirable from the service provider perspective in terms of best
 balance requests across many service instances.

4.2. Efficiency

 The use of external resolvers, such as the DNS or application layer
 repositories in general, also affects the efficiency of the overall
 service request. Additional signaling is required between client and
 resolver, either through the DNS or some application layer solution,
 which not only leads to more messaging but also to increased latency
 for the additional resolution. Accommodating smaller instance
 affinities increases this additional signaling but also the latencies
 experienced, overall impacting the efficiency of the overall service
 transaction.

 As mentioned in the previous subsection, broker systems could be used
 to allow for dispatching service requests to different service
 instances at high dynamicity. However, the usage of such broker
 inevitably introduces 'path stretch' compared to the possible direct
 path between client and service instance, increasing the overall flow
 completion time.

 Existing solutions may introduce additional latencies and
 inefficiencies in packet transmission due to the need for
 additional resolution steps or indirection points.

4.3. Complexity

 As we can see from the discussion on efficiency in the previous
 subsection, any additional control decision on which service instance
 to choose for which incoming service request requires careful

Liu, et al. Expires August 15, 2021 [Page 9]

Internet-Draft Dyncast Use Cases & Problem Statement February 15, 2021

 planning to keep potential inefficiencies, caused by additional
 latencies and path stretch, at a minimum. Additional control plane
 elements, such as DNS resolvers or brokers, are usually neither well
 nor optimally placed in relation to the data path that the service
 request will ultimately traverse. Solutions like EIGRP [RFC7868] are
 realized at the data plane and therefore remove those inefficiencies
 but suffer (as discussed in Section 4.4) from other limitations.

 Existing solutions require careful planning for the placement of
 necessary control plane functions in relation to the resulting
 data plane traffic; a problem often intractable in scenarios of
 varying service demand.

4.4. Metric Exposure and Use

 Solutions such as EIGRP [RFC7868] do allow for a number of metrics
 being used for a routing decision although EIGRP has no notion of
 computing load as a metric since computing information is not being
 exposed to the routing layer realized by the network provider. In
 addition, EIGRP does not enforce instance affinity, which may lead to
 problems in our use cases of Section 3 in service requests may be
 sent mid-request to other service instances.

 Other systems may use the geographical location, as deduced from IP
 prefix, to pick the closest edge. The issue here may be that edges
 may not be far apart in edge computing deployments, while it may also
 be hard to deduce geo-location from IP addresses. Furthermore, the
 geo-location may not be the key distinguishing metric to be
 considered, particularly if geographic co-location does not
 necessarily mean network topology co-location. Also, "closer
 geographically" does not consider the computing load of possible
 closer yet more loaded nodes, consequently leading to possibly worse
 performance for the end user.

 Solutions may also perform 'health checks' on an infrequent base
 (>1s) to reflect the service node status and switch in fail-over
 situations. Health checks, however, inadequately reflect an overall
 computing status of a service instance. It may therefore not reflect
 at all the decision basis a suitable service instance, e.g., based on
 the number of ongoing sessions as an indicator of load. Infrequent
 checks may also be too coarse in granularity, e.g., for supporting
 mobility-induced dynamics such as the connected car scenario of

Section 3.2.

 Resolution systems such as the DNS do often not allow for
 constraining requests to resolve a service name at all, while service
 brokers may use richer computing metrics (such as load) but may lack
 the necessary network metrics.

https://datatracker.ietf.org/doc/html/rfc7868
https://datatracker.ietf.org/doc/html/rfc7868

Liu, et al. Expires August 15, 2021 [Page 10]

Internet-Draft Dyncast Use Cases & Problem Statement February 15, 2021

 Existing solutions lack the necessary information to make the
 right decision on the selection of the suitable service instance
 due to the limited semantic or due to information not being
 exposed across boundaries between, e.g., service and network
 provider.

4.5. Security

 Resolution systems, such as the DNS, open up two vectors of attack,
 namely attacking the mapping system itself, i.e., the DNS, as well as
 attacking the service instance directly after having been resolved.
 The latter is particularly an issue for a service provider who may
 deploy significant service infrastructure since the resolved IP
 addresses will enable the client to directly attack the service
 instance but also infer (over time) information about available
 service instances in the service infrastructure with the possibility
 of even wider and coordinated Denial-of-Service (DoS) attacks.

 Broker systems may prevent this ability by relying on a pure service
 identifier only for the client to broker communication, thereby
 hiding the direct communication to the service instance albeit at the
 expense of the additional latency and inefficiencies discussed in

Section 4.1 and 4.2. DoS attacks here would be entirely limited to
 the broker system only since the service instance is hidden by the
 broker.

 Existing solutions may expose control as well as data plane to the
 possibility of a distributed Denial-of-Service attack on the
 resolution system as well as service instance. Localizing the
 attack to the data plane ingress point would be desirable from the
 perspective of securing service request routing, which is not
 achieved by existing solutions.

4.6. Changes to Infrastructure

 Dedicated resolution systems, such as the DNS or broker-based
 systems, require appropriate investments into their deployment. While
 the DNS is an inherent part of the Internet infrastructure, its
 inability to deal with the dynamicity in service instance relations,
 as discussed in Section 4.1, may either require significant changes
 to the DNS or the establishment of a separate infrastructure to
 support the needed dynamicity. In a manner, the efforts on Multi-
 Access Edge Computing [MEC], are proposing such additional
 infrastructure albeit not solely for solving the problem of suitably
 dispatching service requests to service instances (or application
 servers, as called in [MEC]).

 The support for network layer solutions such as EIGRP [RFC7868]

https://datatracker.ietf.org/doc/html/rfc7868

Liu, et al. Expires August 15, 2021 [Page 11]

Internet-Draft Dyncast Use Cases & Problem Statement February 15, 2021

 requires suitable router upgrades, while still lacking a number of
 aspects important for the realization of the use cases in Section 3,
 including the support for instance affinity in the routing decision.

 Existing solutions require changes to either service and/or
 network infrastructure, with no solution limiting the necessary
 changes to the very ingress point of the network where the demand
 for more flexible service request routing initiates from in the
 form of the client initiating the service request.

5. Conclusions

 This document presents use cases in which we observe the demand for
 considering the dynamic nature of service requests in terms of
 requirements on the resources fulfilling them in the form of service
 instances. In addition, those very service instances may themselves
 be dynamic in availability and status, e.g., in terms of load or
 experienced latency.

 As a consequence, the problem of satisfying service-specific metrics
 to allow for selecting the most suitable service instance among the
 pool of instances available to the service throughout the network is
 a challenge, with a number of observed problems in existing
 solutions. The use cases as well as the categorization of the
 observed problems may start the process of determining how they are
 best satisfied within the IETF protocol suite or through suitable
 extensions to that protocol suite.

6. Security Considerations

 TBD

7. IANA Considerations

 No IANA action is required so far.

8. Informative References

 [RFC7868] D. Davage et al. , "Cisco's Enhanced Interior Gateway
 Routing Protocol (EIGRP)", RFC 7868, May 2016,

https://tools.ietf.org/html/rfc7868

 [RFC4786] J. Abley, K. Lingqvist, "Operation of Anycast Services",
RFC4786, December 2006, https://tools.ietf.org/html/rfc4786

 [RFC1035] P. Mockapetris, "DOMAIN NAMES - IMPLEMENTATION AND
 SPECIFICATION", RFC1035, November 1987,

https://tools.ietf.org/html/rfc1035

https://datatracker.ietf.org/doc/html/rfc7868
https://tools.ietf.org/html/rfc7868
https://datatracker.ietf.org/doc/html/rfc4786
https://tools.ietf.org/html/rfc4786
https://datatracker.ietf.org/doc/html/rfc1035
https://tools.ietf.org/html/rfc1035

Liu, et al. Expires August 15, 2021 [Page 12]

Internet-Draft Dyncast Use Cases & Problem Statement February 15, 2021

 [I-D.sarathchandra-coin-appcentres] Trossen, D., Sarathchandra, C.,
 and M. Boniface, "In-Network Computing for App-Centric Micro-
 Services", draft-sarathchandra-coin-appcentres-03 (work in
 progress), October 2020.

 [TR22.874] 3GPP, "Study on traffic characteristics and performance
 requirements for AI/ML model transfer in 5GS (Release 18)", TR
 22.874 V0.2.0, November 2020

 [Industry4.0] Industry4.0, "Details of the Asset Administration
 Shell, Part 1 & Part 2", November 2020, https://www.plattform-

i40.de/PI40/Redaktion/EN/Standardartikel/specification-
 administrationshell.html.

 [GAIA-X] Gaia-X, "GAIA-X: A Federated Data Infrastructure for
 Europe", accessed January 2021, https://www.data-

infrastructure.eu/GAIAX/Navigation/EN/Home/home.html

 [HORITA] Y. Horita et al., "Extended electronic horizon for automated
 driving", Proceedings of 14th International Conference on ITS
 Telecommunications (ITST), 2015

 [MEC] ETSI, "Multi-Access Edge Computing (MEC)", accessed January
 2021, https://www.etsi.org/technologies/multi-access-edge-

computing

Acknowledgements

 The author would like to thank Yizhou Li, Luigi IANNONE and Geng
 Liang for their valuable suggestions to this document.

Authors' Addresses

 Peng Liu
 China Mobile
 Email: liupengyjy@chinamobile.com

 Peter Willis
 BT
 Email: peter.j.willis@bt.com

 Dirk Trossen
 Huawei
 Email: dirk.trossen@huawei.com

https://datatracker.ietf.org/doc/html/draft-sarathchandra-coin-appcentres-03
https://www.plattform-i40.de/PI40/Redaktion/EN/Standardartikel/specification-
https://www.plattform-i40.de/PI40/Redaktion/EN/Standardartikel/specification-
https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.html
https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.html
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing

Liu, et al. Expires August 15, 2021 [Page 13]

