
Workgroup: rtgwg

Internet-Draft:

draft-liu-dyncast-ps-usecases-03

Published: 7 March 2022

Intended Status: Informational

Expires: 8 September 2022

Authors: P. Liu

China Mobile

P. Eardley

British Telecom

D. Trossen

Huawei Technologies

M. Boucadair

Orange

LM. Contreras

Telefonica

C. Li

Huawei Technologies

Dynamic-Anycast (Dyncast) Use Cases and Problem Statement

Abstract

Many service providers have been exploring distributed computing

techniques to achieve better service response time and optimized

energy consumption. Such techniques rely upon the distribution of

computing services and capabilities over many locations in the

network, such as its edge, the metro region, virtualized central

office, and other locations. In such a distributed computing

environment, providing services by utilizing computing resources

hosted in various computing facilities (e.g., edges) is being

considered, e.g., for computationally intensive and delay sensitive

services. Ideally, services should be computationally balanced using

service-specific metrics instead of simply dispatching the service

requests in a static way or optimizing solely connectivity metrics.

For example, systematically directing end user-originated service

requests to the geographically closest edge or some small computing

units may lead to an unbalanced usage of computing resources, which

may then degrade both the user experience and the overall service

performance.

This document provides an overview of scenarios and problems

associated with realizing such scenarios, identifying key

engineering investigation areas which require adequate architectures

and protocols to achieve balanced computing and networking resource

utilization among facilities providing the services.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Definition of Terms

3. Sample Use Cases

3.1. Cloud Virtual Reality (VR) or Augmented Reality (AR)

3.2. Intelligent Transportation

3.3. Digital Twin

4. Problems in Existing Solutions

4.1. Dynamicity of Relations

4.2. Efficiency

4.3. Complexity and Accuracy

4.4. Metric Exposure and Use

4.5. Security

4.6. Changes to Infrastructure

5. Conclusion

6. Security Considerations

7. IANA Considerations

8. Contributors

9. Informative References

Acknowledgements

Authors' Addresses

1. Introduction

Edge computing aims to provide better response times and transfer

rates compared to Cloud Computing, by moving the computing towards

the edge of a network. Edge computing can be built on embedded

¶

¶

¶

¶

https://trustee.ietf.org/license-info

systems, gateways, and others, all being located close to end users'

premises. There is an emerging requirement that multiple edge sites

(called "edges", for for short) are deployed at different locations

to provide a service. There are millions of home gateways, thousands

of base stations, and hundreds of central offices in a city that can

serve as candidate edges for behaving as service nodes. Depending on

the location of an edge and its capacity, different computing

resources can be contributed by each edge to deliver a service. At

peak hours, computing resources attached to a client's closest edge

may not be sufficient to handle all the incoming service requests.

Longer response times or even dropping of requests can be

experienced by users. Increasing the computing resources hosted on

each edge to the potential maximum capacity is neither feasible nor

economically viable in many cases.

Some user devices are battery-dependent. Offloading computation

intensive processing to the edge can save battery power. Moreover,

the edge may use a data set (for the computation) that may not exist

on the user device because of the size of data pool or due to data

governance reasons.

At the same time, with new technologies such as serverless computing

and container based virtual functions, the service node at an edge

can be easily created and terminated in a sub-second scale, which in

turn changes the availability of a computing resources for a service

dramatically over time, therefore impacting the possibly "best"

decision on where to send a service request from a client.

Traditional techniques to manage the overall load balancing process

of clients issuing requests include choose-the-closest or round-

robin. Those solutions are relatively static, which may cause an

unbalanced distribution in terms of network load and computational

load among available sources. For example, DNS-based load balancing

usually configures a domain in the Domain Name System (DNS) such

that client requests to that domain name are distributed across a

group of servers. It usually provides several IP addresses for a

domain name.

There are some dynamic solutions to distribute the requests to the

server that best fits a service-specific metric, such as the best

available resources and minimal load. They usually require Layer 4 -

Layer 7 handling of the packet processing, such as through DNS-based

or indirection servers. Such an approach is inefficient for large

number of short connections. At the same time, such approaches can

often not retrieve the desired metric, such as the network status,

in real time. Therefore, the choice of the service node is almost

entirely determined by the computing status, rather than the

comprehensive considerations of both computing and network metrics

¶

¶

¶

¶

Service:

Service instance:

Service identifier:

Anycast:

Dyncast:

or makes rather long-term decisions due to the (upper layer)

overhead in the decision making itself.

Distributing service requests to a specific service having multiple

instances attached to multiple edges, while taking into account

computing as well as service-specific metrics in the distribution

decision, is seen as a dynamic anycast (or "dyncast", for short)

problem of sending service requests, without prescribing the use of

a routing solution.

As a problem statement, this document describes sample usage

scenarios as well as key areas in which current solutions lead to

problems that ultimately affect the deployment (including the

performance) of edge services. Those key areas target the

identification of candidate solution components.

2. Definition of Terms

This document makes use of the following terms:

A monolithic functionality that is provided by an endpoint

according to the specification for said service. A composite

service can be built by orchestrating monolithic services.

Running environment (e.g., a node) that makes the

functionality of a service available. One service can have

several instances running at different network locations.

Used to uniquely identify a service, at the

same time identifying the whole set of service instances that

each represent the same service behavior, no matter where those

service instances are running.

An addressing and packet forwarding approach that assigns

an "anycast" identifier for one or more service instances to

which requests to an "anycast" identifier could be routed/

forwarded, following the definition in[RFC4786] as anycast being

"the practice of making a particular Service Address available in

multiple, discrete, autonomous locations, such that datagrams

sent are routed to one of several available locations".

Dynamic Anycast, taking the dynamic nature of computing

resource metrics into account to steer an anycast-like decision

in sending an incoming service request.

3. Sample Use Cases

This section presents a non-exhaustive list of scenarios which

require multiple edge sites to interconnect and to coordinate at the

¶

¶

¶

¶

¶

¶

¶

¶

¶

network layer to meet the service requirements and ensure better

user experience.

Before outlining the use cases, however, let us describe a basic

model that we assume through which those use cases are being

realized. This model justifies the choice of the terminology

introduced in Section 2.

We assume that clients access one or more services with an objective

to meet a desired user experience. Each participating service may be

realized at one or more places in the network (called, service

instances). Such service instances are instantiated and deployed as

part of the overall service deployment process, e.g., using existing

orchestration frameworks, within so-called edge sites, which in turn

are reachable through a network infrastructure via an egress router.

When a client issues a service request to a required service, the

request is being steered by its ingress router to one of the

available service instances that realize the requested service. Each

service instance may act as a client towards another service,

thereby seeing its own outbound traffic steered to a suitable

service instance of the request service and so on, achieving service

composition and chaining as a result.

The aforementioned selection of one of candidate service instances

is done using traffic steering methods , where the steering decision

may take into account pre-planned policies (assignment of certain

clients to certain service instances), realize shortest-path to the

'closest' service instance, or utilize more complex and possibly

dynamic metric information, such as load of service instances,

latencies experienced or similar, for a more dynamic selection of a

suitable service instance.

It is important to note that clients may move throughout the

execution of a service, which may, as a result, position other

service instance 'better' in terms of latency, load, or other

metrics. This creates a (physical) dynamicity that will need to be

catered for.

Apart from the input into the traffic steering decision, under the

aforementioned constraint of possible client mobility, its

realization may differ in terms of the layer of the protocol stack

at which the needed operations for the decision are implemented.

Possible layers are application, transport, or network layers.

Section 4 discusses some choice realization issues.

As a summary, Figure 1 outlines the main aspects of the assumed

system model for realizing the use cases that follow next.

¶

¶

¶

¶

¶

¶

¶

¶

Figure 1: Dyncast Use Case Model

3.1. Cloud Virtual Reality (VR) or Augmented Reality (AR)

Cloud VR/AR services are used in some exhibitions, scenic spots, and

celebration ceremonies. In the future, they might be used in more

applications, such as industrial internet, medical industry, and

meta verse.

Cloud VR/AR introduces the concept of cloud computing to the

rendering of audiovisual assets in such applications. Here, the edge

cloud helps encode/decode and render content. The end device usually

only uploads posture or control information to the edge and then VR/

AR contents are rendered in the edge cloud. The video and audio

outputs generated from the edge cloud are encoded, compressed, and

transmitted back to the end device or further transmitted to central

data center via high bandwidth networks.

Edge sites may use CPU or GPU for encode/decode. GPU usually has

better performance but CPU is simpler and more straightforward to

use as well as possibly more widespread in deployment. Available

remaining resources determines if a service instance can be started.

The instance's CPU, GPU and memory utilization has a high impact on

 +------------+ +------------+ +------------+

 +------------+ | +------------+ | +------------+ |

 | edge | | | edge | | | edge | |

 | site 1 |-+ | site 2 |-+ | site 3 |-+

 +-----+------+ +------+-----+ +------+-----+

 | | |

 +----+-----+ +-----+----+ +-----+----+

 | Router 1 | | Router 2 | | Router 3 |

 +----+-----+ +-----+----+ +-----+----+

 | | |

 | +--------+--------+ |

 | | | |

 +-----------| Infrastructure |-----------+

 | |

 +--------+--------+

 |

 +----+----+

 | Ingress |

 +---------------| Router |--------------+

 | +----+----+ |

 | | |

 +--+--+ +--+---+ +---+--+

 +------+| +------+ | +------+ |

 |client|+ |client|-+ |client|-+

 +------+ +------+ +------+

¶

¶

the processing delay on encoding, decoding and rendering. At the

same time, the network path quality to the edge site is a key for

user experience of quality of audio/ video and input command

response times.

A Cloud VR service, such as a mobile gaming service, brings

challenging requirements to both network and computing so that the

edge node to serve a service request has to be carefully selected to

make sure it has sufficient computing resource and good network

path. For example, for an entry-level Cloud VR (panoramic 8K 2D

video) with 110-degree Field of View (FOV) transmission, the typical

network requirements are bandwidth 40Mbps, 20ms for motion-to-photon

latency, packet loss rate is 2.4E-5; the typical computing

requirements are 8K H.265 real-time decoding, 2K H.264 real-time

encoding. We can further divide the 20ms latency budget into (i)

sensor sampling delay, (ii) image/frame rendering delay, (iii)

display refresh delay, and (iv) network delay. With upcoming high

display refresh rate (e.g., 144Hz) and GPU resources being used for

frame rendering, we can expect an upper bound of roughly 5ms for the

round-trip latency in these scenarios, which is close to the frame

rendering computing delay.

Furthermore, specific techniques may be employed to divide the

overall rendering into base assets that are common across a number

of clients participating in the service, while the client-specific

input data is being utilized to render additional assets. When being

delivered to the client, those two assets are being combined into

the overall content being consumed by the client. The requirements

for sending the client input data as well as the requests for the

base assets may be different in terms of which service instances may

serve the request, where base assets may be served from any nearby

service instance (since those base assets may be served without

requiring cross-request state being maintained), while the client-

specific input data is being processed by a stateful service

instance that changes, if at all, only slowly over time due to the

stickiness of the service that is being created by the client-

specific data. Other splits of rendering and input tasks can be

found in[TR22.874] for further reading.

When it comes to the service instances themselves, those may be

instantiated on-demand, e.g., driven by network or client demand

metrics, while resources may also be released, e.g., after an idle

timeout, to free up resources for other services. Depending on the

utilized node technologies, the lifetime of such "function as a

service" may range from many minutes down to millisecond scale.

Therefore computing resources across participating edges exhibit a

distributed (in terms of locations) as well as dynamic (in terms of

resource availability) nature. In order to achieve a satisfying

service quality to end users, a service request will need to be sent

¶

¶

¶

to and served by an edge with sufficient computing resource and a

good network path.

3.2. Intelligent Transportation

For the convenience of transportation, more video capture devices

are required to be deployed as urban infrastructure, and the better

video quality is also required to facilitate the content analysis.

So, the transmission capacity of the network will need to be further

increased, and the collected video data needs to be further

processed, such as for pedestrian face recognition, vehicle moving

track recognition, and prediction. This, in turn, also impacts the

requirements for the video processing capacity of computing nodes.

In auxiliary driving scenarios, to help overcome the non-line-of-

sight problem due to blind spot or obstacles, the edge node can

collect comprehensive road and traffic information around the

vehicle location and perform data processing, and then vehicles with

high security risk can be warned accordingly, improving driving

safety in complicated road conditions, like at intersections. This

scenario is also called "Electronic Horizon", as explained

in[HORITA]. For instance, video image information captured by, e.g.,

an in-car, camera is transmitted to the nearest edge node for

processing. The notion of sending the request to the "nearest" edge

node is important for being able to collate the video information of

"nearby" cars, using, for instance, relative location information.

Furthermore, data privacy may lead to the requirement to process the

data as close to the source as possible to limit data spread across

too many network components in the network.

Nevertheless, load at specific "closest" nodes may greatly vary,

leading to the possibility for the closest edge node becoming

overloaded, leading to a higher response time and therefore a delay

in responding to the auxiliary driving request with the possibility

of traffic delays or even traffic accidents occurring as a result.

Hence, in such cases, delay-insensitive services such as in-vehicle

entertainment should be dispatched to other light loaded nodes

instead of local edge nodes, so that the delay-sensitive service is

preferentially processed locally to ensure the service availability

and user experience.

In video recognition scenarios, when the number of waiting people

and vehicles increases, more computing resources are needed to

process the video content. For rush hour traffic congestion and

weekend personnel flow from the edge of a city to the city center,

efficient network and computing capacity scheduling is also

required. Those would cause the overload of the nearest edge sites

if there is no extra method used, and some of the service request

flow might be steered to others edge site except the nearest one.

¶

¶

¶

¶

¶

3.3. Digital Twin

A number of industry associations, such as the Industrial Digital

Twin Association or the Digital Twin Consortium (https://

www.digitaltwinconsortium.org/), have been founded to promote the

concept of the Digital Twin (DT) for a number of use case areas,

such as smart cities, transportation, industrial control, among

others. The core concept of the DT is the "administrative shell"

[Industry4.0], which serves as a digital representation of the

information and technical functionality pertaining to the "assets"

(such as an industrial machinery, a transportation vehicle, an

object in a smart city or others) that is intended to be managed,

controlled, and actuated.

As an example for industrial control, the programmable logic

controller (PLC) may be virtualized and the functionality aggregated

across a number of physical assets into a single administrative

shell for the purpose of managing those assets. PLCs may be

virtualized in order to move the PLC capabilities from the physical

assets to the edge cloud. Several PLC instances may exist to enable

load balancing and fail-over capabilities, while also enabling

physical mobility of the asset and the connection to a suitable

"nearby" PLC instance. With this, traffic dynamicity may be similar

to that observed in the connected car scenario in the previous sub-

section. Crucial here is high availability and bounded latency since

a failure of the (overall) PLC functionality may lead to a

production line stop, while boundary violations of the latency may

lead to loosing synchronization with other processes and,

ultimately, to production faults, tool failures or similar.

Particular attention in Digital Twin scenarios is given to the

problem of data storage. Here, decentralization, not only driven by

the scenario (such as outlined in the connected car scenario for

cases of localized reasoning over data originating from driving

vehicles) but also through proposed platform solutions, such as

those in [GAIA-X], plays an important role. With decentralization,

endpoint relations between client and (storage) service instances

may frequently change as a result.

Digital twin for networks[I-D.zhou-nmrg-digitaltwin-network-

concepts] has also been proposed recently. It is to introduce

digital twin technology into the network to build a network system

with physical network entities and virtual twins, which can be

mapped in real time. The goal of digital twin network will be

applied not only to industrial Internet, but also to operator

network. When the network is large, it needs real-time scheduling

ability, more efficient and accurate data collection and modeling,

and promote the automation, intelligent operation and maintenance

and upgrading of the network.

¶

¶

¶

¶

4. Problems in Existing Solutions

There are a number of problems that may occur when realizing the use

cases listed in the previous section. This section suggests a

classification for those problems to aid the possible identification

of solution components for addressing them.

4.1. Dynamicity of Relations

The mapping from a service identifier to a specific service instance

that may execute the service for a client usually happens through

resolving the service identification into a specific IP address at

which the service instance is reachable.

Application layer solutions can be foreseen, using an application

server to resolve binding updates. While the viability of these

solutions will generally depend on the additional latency that is

being introduced by the resolution via said application server,

frequencies down to changing relations every few (or indeed EVERY)

service requests is seen as difficult to be viable.

Message brokers, however, could be used, dispatching incoming

service requests from clients to a suitable service instance, where

such dispatching could be controlled by service-specific metrics,

such as computing load. The introduction of such brokers, however,

may lead to adverse effects on efficiency, specifically when it

comes to additional latencies due to the necessary communication

with the broker; we discuss this problem separately in the next

subsection.

DNS[RFC1035] realizes an 'early binding' to explicitly bind from the

service identification to the network address before sending user

data, so the client creates an 'instance affinity' for the service

identifier that binds the client to the resolved service instance

address, which could also realize the load balancing.

However, we can foresee scenarios in which such 'instance affinity'

may change very frequently, possibly even at the level of each

service request. One such driver may be frequently changing metrics

for the decision making, such as latency and load of the involved

service instance. Also client mobility creates a natural/physical

dynamicity with the result that 'better' service instances may

become available and, vice versa, previous assignments of the client

to a service instance may be less optimal, leading to reduced

performance, such as through increased latency.

DNS is not designed for this level of dynamicity. Updates to the

mapping between service identifier to service instance address

cannot be pushed quickly enough into the DNS that takes several

minutes updates to propagate, and clients would need to frequently

¶

¶

¶

¶

¶

¶

resolve the original binding. If try to DNS to meet this level of

dynamicity, frequent resolving of the same service name would likely

lead to an overload of the it. These issues are also discussed in

Section 5.4 of [I-D.sarathchandra-coin-appcentres].

A solution that leaves the dispatching of service requests entirely

to the client may be possible to achieve the needed dynamicity, but

with the drawback that the individual destinations, i.e., the

network identifiers for each service instance, must be known to the

client for doing so. While this may be viable for certain

applications, it cannot generally scale with a large number of

clients. Furthermore, it may be undesirable for every client to know

all available service instance identifiers, e.g., for reasons of not

wanting to expose this information to clients from the perspective

of the service provider but also, again, for scalability reasons if

the number of service instances is very high.

Existing solutions exhibit limitations in providing dynamic

'instance affinity', those limitations being inherently linked to

the design used for the mapping between the service identifier and

the address of the service instance, particularly when relying on an

indirection point in the form of a resolution or load balancing

server. These limitations may lead to 'instance affinity' to last

many requests or even for the entire session between the client and

the service, which may be undesirable from the service provider

perspective in terms of best balance requests across many service

instances.

4.2. Efficiency

The use of external resolvers, such as application layer

repositories in general, also affects the efficiency of the overall

service request. Additional signaling is required between client and

resolver, either through the application layer solution, which not

only leads to more messaging but also to increased latency for the

additional resolution. Accommodating smaller instance affinities

increases this additional signaling but also the latencies

experienced, overall impacting the efficiency of the overall service

transaction.

As mentioned in the previous subsection, broker systems could be

used to allow for dispatching service requests to different service

instances at high dynamicity. However, the usage of such broker

inevitably introduces 'path stretch' compared to the possible direct

path between client and service instance, increasing the overall

flow completion time.

Existing solutions may introduce additional latencies and

inefficiencies in packet transmission due to the need for additional

¶

¶

¶

¶

¶

resolution steps or indirection points， and will lead to the

accuracy problems to select the appropriate edge.

4.3. Complexity and Accuracy

As we can see from the discussion on efficiency in the previous

subsection, the time when external resolvers collect the necessary

information and deal with it to select the edge nodes, the network

and computing resource status may change already. So any additional

control decision on which service instance to choose for which

incoming service request requires careful planning to keep potential

inefficiencies, caused by additional latencies and path stretch, at

a minimum. Additional control plane elements, such as brokers, are

usually neither well nor optimally placed in relation to the data

path that the service request will ultimately traverse.

Existing solutions require careful planning for the placement of

necessary control plane functions in relation to the resulting data

plane traffic to improve the accuracy; a problem often intractable

in scenarios of varying service demand.

4.4. Metric Exposure and Use

Some systems may use the geographical location, as deduced from IP

prefix, to pick the closest edge. The issue here may be that edges

may not be far apart in edge computing deployments, while it may

also be hard to deduce geo-location from IP addresses. Furthermore,

the geo-location may not be the key distinguishing metric to be

considered, particularly if geographic co-location does not

necessarily mean network topology co-location. Also, "closer

geographically" does not consider the computing load of possible

closer yet more loaded nodes, consequently leading to possibly worse

performance for the end user.

Solutions may also perform 'health checks' on an infrequent base

(>1s) to reflect the service node status and switch in fail-over

situations. Health checks, however, inadequately reflect an overall

computing status of a service instance. It may therefore not reflect

at all the decision basis a suitable service instance, e.g., based

on the number of ongoing sessions as an indicator of load.

Infrequent checks may also be too coarse in granularity, e.g., for

supporting mobility-induced dynamics such as the connected car

scenario of Section 3.2.

Service brokers may use richer computing metrics (such as load) but

may lack the necessary network metrics.

Existing solutions lack the necessary information to make the right

decision on the selection of the suitable service instance due to

¶

¶

¶

¶

¶

¶

the limited semantic or due to information not being exposed across

boundaries between, e.g., service and network provider.

4.5. Security

Resolution systems opens up two vectors of attack, namely attacking

the mapping system itself, as well as attacking the service instance

directly after having been resolved. The latter is particularly an

issue for a service provider who may deploy significant service

infrastructure since the resolved IP addresses will enable the

client to directly attack the service instance but also infer (over

time) information about available service instances in the service

infrastructure with the possibility of even wider and coordinated

Denial-of-Service (DoS) attacks.

Broker systems may prevent this ability by relying on a pure service

identifier only for the client to broker communication, thereby

hiding the direct communication to the service instance albeit at

the expense of the additional latency and inefficiencies discussed

in Section 4.1 and 4.2. DoS attacks here would be entirely limited

to the broker system only since the service instance is hidden by

the broker.

Existing solutions may expose control as well as data plane to the

possibility of a distributed Denial-of-Service attack on the

resolution system as well as service instance. Localizing the attack

to the data plane ingress point would be desirable from the

perspective of securing service request routing, which is not

achieved by existing solutions.

4.6. Changes to Infrastructure

Dedicated resolution systems, such as the DNS or broker-based

systems, require appropriate investments into their deployment.

While the DNS is an inherent part of the Internet infrastructure,

its inability to deal with the dynamicity in service instance

relations, as discussed in Section 4.1, may either require

significant changes to the DNS or the establishment of a separate

infrastructure to support the needed dynamicity. In a manner, the

efforts on Multi- Access Edge Computing [MEC], are proposing such

additional infrastructure albeit not solely for solving the problem

of suitably dispatching service requests to service instances (or

application servers, as called in [MEC]).

Existing solutions may expose control as well as data plane to the

possibility of a distributed Denial-of-Service attack on the

resolution system as well as service instance. Localizing the attack

to the data plane ingress point would be desirable from the

¶

¶

¶

¶

¶

perspective of securing service request routing, which is not

achieved by existing solutions.

5. Conclusion

This document presents use cases in which we observe the demand for

considering the dynamic nature of service requests in terms of

requirements on the resources fulfilling them in the form of service

instances. In addition, those very service instances may themselves

be dynamic in availability and status, e.g., in terms of load or

experienced latency.

As a consequence, the problem of satisfying service-specific metrics

to allow for selecting the most suitable service instance among the

pool of instances available to the service throughout the network is

a challenge, with a number of observed problems in existing

solutions. The use cases as well as the categorization of the

observed problems may start the process of determining how they are

best satisfied within the IETF protocol suite or through suitable

extensions to that protocol suite.

6. Security Considerations

Section 4.5 discusses some security considerations.

7. IANA Considerations

This document does not make any IANA request.

8. Contributors

The following people have substantially contributed to this

document:

¶

¶

¶

¶

¶

¶

 Peter Willis

 BT

¶

[RFC4786]

[RFC1035]

[I-D.zhou-nmrg-digitaltwin-network-concepts]

[I-D.sarathchandra-coin-appcentres]

[TR22.874]

[TR-466]

[HORITA]

[Industry4.0]

[GAIA-X]

[MEC]

9. Informative References

Abley, J. and K. Lindqvist, "Operation of Anycast

Services", BCP 126, RFC 4786, DOI 10.17487/RFC4786,

December 2006, <https://www.rfc-editor.org/info/rfc4786>.

Mockapetris, P., "Domain names - implementation and

specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,

November 1987, <https://www.rfc-editor.org/info/rfc1035>.

Zhou, C., Yang, H., Duan, X., Lopez, D., Pastor, A., Wu,

Q., Boucadair, M., and C. Jacquenet, "Digital Twin

Network: Concepts and Reference Architecture", Work in

Progress, Internet-Draft, draft-zhou-nmrg-digitaltwin-

network-concepts-07, 5 March 2022, <https://www.ietf.org/

archive/id/draft-zhou-nmrg-digitaltwin-network-

concepts-07.txt>.

Trossen, D., Sarathchandra, C.,

and M. Boniface, "In-Network Computing for App-Centric

Micro-Services", Work in Progress, Internet-Draft, draft-

sarathchandra-coin-appcentres-04, 26 January 2021,

<https://www.ietf.org/archive/id/draft-sarathchandra-

coin-appcentres-04.txt>.

3GPP, "Study on traffic characteristics and performance

requirements for AI/ML model transfer in 5GS (Release

18)", 2021.

BBF, "TR-466 Metro Compute Networking: Use Cases and High

Level Requirements", 2021.

Horita, Y., "Extended electronic horizon for automated

driving", Proceedings of 14th International Conference on

ITS Telecommunications (ITST)", 2015.

Industry4.0, "Details of the Asset Administration

Shell, Part 1 & Part 2", 2020.

Gaia-X, ""GAIA-X: A Federated Data Infrastructure for

Europe"", 2021.

ETSI, ""Multi-Access Edge Computing (MEC)"", 2021.

Acknowledgements

The author would like to thank Yizhou Li, Luigi IANNONE, Christian

Jacquenet, Kehan Yao and Yuexia Fu for their valuable suggestions to

this document.¶

https://www.rfc-editor.org/info/rfc4786
https://www.rfc-editor.org/info/rfc1035
https://www.ietf.org/archive/id/draft-zhou-nmrg-digitaltwin-network-concepts-07.txt
https://www.ietf.org/archive/id/draft-zhou-nmrg-digitaltwin-network-concepts-07.txt
https://www.ietf.org/archive/id/draft-zhou-nmrg-digitaltwin-network-concepts-07.txt
https://www.ietf.org/archive/id/draft-sarathchandra-coin-appcentres-04.txt
https://www.ietf.org/archive/id/draft-sarathchandra-coin-appcentres-04.txt

Authors' Addresses

Peng Liu

China Mobile

Email: liupengyjy@chinamobile.com

Philip Eardley

British Telecom

Email: philip.eardley@bt.com

Dirk Trossen

Huawei Technologies

Email: dirk.trossen@huawei.com

Mohamed Boucadair

Orange

Email: mohamed.boucadair@orange.com

Luis M. Contreras

Telefonica

Email: luismiguel.contrerasmurillo@telefonica.com

Cheng Li

Huawei Technologies

Email: c.l@huawei.com

mailto:liupengyjy@chinamobile.com
mailto:philip.eardley@bt.com
mailto:dirk.trossen@huawei.com
mailto:mohamed.boucadair@orange.com
mailto:luismiguel.contrerasmurillo@telefonica.com
mailto:c.l@huawei.com

	Dynamic-Anycast (Dyncast) Use Cases and Problem Statement
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Definition of Terms
	3. Sample Use Cases
	3.1. Cloud Virtual Reality (VR) or Augmented Reality (AR)
	3.2. Intelligent Transportation
	3.3. Digital Twin

	4. Problems in Existing Solutions
	4.1. Dynamicity of Relations
	4.2. Efficiency
	4.3. Complexity and Accuracy
	4.4. Metric Exposure and Use
	4.5. Security
	4.6. Changes to Infrastructure

	5. Conclusion
	6. Security Considerations
	7. IANA Considerations
	8. Contributors
	9. Informative References
	Acknowledgements
	Authors' Addresses

