
Workgroup: Internet Engineering Task Force

Internet-Draft: draft-liu-iot-arch-01

Published: 7 November 2022

Intended Status: Experimental

Expires: 11 May 2023

Authors: Y. Liu

Guangzhou Genlian

Y. Song

Guangzhou Genlian

H. Yu

Guangzhou Genlian

The Architecture for Internet of Things Network

Abstract

In this document, it identifies gateways for field-bus networks,

data storages for archiving and developing data sharing platform,

and application units to be important system components for

developing digital communities: i.e., building-scale and city-wide

ubiquitous facility networking infrastructure. The standard defines

a data exchange protocol that generalizes and interconnects these

components (gateways, storages, application units) over the IPv6-

based networks. This enables integration of multiple facilities,

data storages, application services such as central management,

energy saving, environmental monitoring and alarm notification

systems.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 May 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology and Conventions

3. System Architecture

3.1. Gateway

3.2. Storage

3.3. Application

3.4. Registry

3.5. Concerns of the network design

4. System Model

5. Point

5.1. Introduction

5.2. Definition

5.3. URI-based identification

5.4. PointSet

6. Common communication protocol

6.1. General

6.2. Component-to-component communication protocol

6.2.1. Types of component-to-component communication protocol

6.2.2. FETCH protocol

6.2.3. WRITE protocol

6.2.4. TRAP protocol

6.3. Component-to-registry communication protocol

6.3.1. Type of component-to-registry communication protocol

6.3.2. REGISTRATION protocol

6.3.3. LOOKUP protocol

7. Security Considerations

8. IANA Considerations

9. Acknowledgements

10. Normative References

Authors' Addresses

1. Introduction

This document identifies gateways for field-bus networks, data

storages for archiving and developing data sharing platform, and

application units such as for providing user interfaces of analysis

and knowing the environmental information to be important system

components for developing digital communities: i.e., building-scale

and city-wide ubiquitous facility networking infrastructure. The

¶

https://trustee.ietf.org/license-info

standard defines a data exchange protocol that generalizes and

interconnects these components (gateways, storages, application

units) over the IPv6-based networks. This opens the application

interface to handle the statuses of multi-vendor facilities on a

generalized digital infrastructure. The standard assumes distributed

operation of the infrastructure by multiple service providers and

integrators, and defines a component management protocol that

autonomously interoperates such distributed infrastructure. Security

requirements are taken into consideration in this standard to ensure

the integrity and confidentiality of data.

2. Terminology and Conventions

access control: The means to allow authorized entry and usage of

resources.

actuator: A transducer that accepts a data sample or samples and

converts them into physical action.

eXtensible Markup Language (XML) namespace: A method for

distinguishing XML elements and attributes that may have the same

name but different meanings. A URL is used as a prefix to a "local

name." This combination ensures the uniqueness of the element or

attribute name. The URL is used only as a way to create a unique

prefix and does not have to resolve to a real page on the Internet.

A transducer that converts a physical, biological, or chemical

parameter into a digital signal.

universally unique identifier (UUID): An identifier that has a

unique value within some defined universe. In this standard, the

query-expression and lookup-expression of transport data structure

has a UUID unless otherwise stated.

3. System Architecture

This protocol specification applies to a TCP/IP-based facility

networking architecture. One of the main goals of this specification

is to enable interoperability among facility networking components.

Thus, GW, Storage and APP, what we call "Component" in this

document, have the same generalized communication interface.

Registry has different communication interface with these

components. A Component works as a part of data- plane, and a

Registry works as a part of control- plane.

In the networking environment, Registry works as a broker of

Components. It manages meta information e.g., the role of each

component and the semantics of Point ID, in order to bind components

appropriately and autonomously. We here describe them in more detail

and show how they collaborate with each other.

¶

¶

¶

¶

¶

¶

¶

¶

3.1. Gateway

Gateway component has physical sensors and actuators. It generalizes

the data model and the access method for those devices,

encapsulating each physical (field-bus) data model and access

method. It acts on its actuator according to the written value from

a component (e.g., APP), and it provides physical sensor readings

for other components (e.g., Storage and APP).

3.2. Storage

Storage component archives the history of data sequences. The

written values from other components should be permanently stored in

the backend disks. It provides the archived values to the components

that have requested them.

3.3. Application

APP component provides some particular works on sensor readings and

actuator commands. It can have user interface to display the latest

environmental state. It can also allow a user to input some

schedules of actuator settings, and it can as well analyze some

sensor data in realtime and provide the result as a virtual device.

3.4. Registry

The Registry works as a broker of GW, Storage, and APPs. The main

role of registry is to bind those components appropriately and

autonomously. It is separated from the data-plane. It does not work

on sensor readings or actuator settings directly. It should allow

system operation without Registry.

3.5. Concerns of the network design

All components can behave both as the TCP (IETF RFC 793) initiator

and receiver at once. It implies the components should be put on a

flat network. A flat network means there are no middle boxes which

could disturb bi-directional communications such as NAT routers and

firewalls.

To avoid the issue, we strongly recommend building IPv6 (IETF RFC

2460) network. There could be other solutions than IPv6 such as http

proxy based or NAT traversal solutions. However, they would depend

on the requirements of the network configuration. This specification

does not reject such solutions, but they are required to make

interoperable with other systems and not to disturb the

specification.

¶

¶

¶

¶

¶

¶

4. System Model

Component is the basic unit for all the GWs, Storages, and APPs. The

interface of Component provides data and query method. GW, Storage,

and APP are the inherited classes of Component. Thus, they have the

same interface (i.e., data and query method), and they communicate

with each other using the same protocol. Here, Query is a method for

retrieving data (including event-based data transfer) from

Component; Data is a method for pushing data into Component.

Registry works as a broker of Components with another type of

interface (i.e., registration and lookup method). The interface of

Registry provides registration and lookup method. Here,

o Registration is a method for registering the role of components

and semantics of Points.

o Lookup is a method for finding appropriate components and Points.

Typical implementations for GWs, Storages, APPs and Registry would

be:

GW implementations encapsulate field-buses and provide INPUT/OUTPUT

access for physical devices (by query and data method).

Storage implementations archive the history of data posted by data

method, and provide the historical data by query method.

APP implementations provide other functionalities. For example, they

can have user interface. Data processing component must be also

categorized to an APP implementation.

Registry implementations manage the relationships between Point ID

and components, provide registration of the role of components and

semantic of Points by registration method, and provide inquiry of

appropriate components and Points by lookup method.

This generalization enables open development of facility networking

components (i.e., GWs, Storages and APPs) by any vendors. And we

would deploy facility networking systems for customer buildings

without customized programming, by binding these developed

components.

The role of Registry is to increase the autonomousness of component-

to-component collaboration. It allows autonomous collaboration of

components, by sharing the information of component roles in an

operational domain (in fact, not only in an operational domain but

also with other external domains).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

5. Point

5.1. Introduction

This section introduces the concept of Point. A Point shall have an

URI-based globally unique identifier. It identifies a dataflow that

exchanges data (i.e., sensor readings, actuator commands and meta-

control signals) among components.

5.2. Definition

A Point is an elemental message channel for a specific data sequence

among Components. A sequence of sensor readings, actuator commands

and others (e.g., virtualized sensor readings, meta-control signals)

shall be bound to a Point. We denote a message in a Point (whether

it is coming from a sensor or it is outgoing to an actuator) by

value. Any object type is allowed for values in a Point.

Delivery of values among components shall be made by invoking other

components' interface. The provided methods are:

Query: to read objects from specified Points

Data: to write objects into specified Points

By using these methods, a component can get data of the specified

Points from another component, and it can also transfer data to

another component with specification of the Points.

5.3. URI-based identification

A Point is associated to a globally unique data sequence. The data

shall have been generated from a specific sensor or to a specific

actuator in the world. Thus, in order to identify the data sequence

globally, each Point should have a globally unique identifier. Note

that for private operation, it does not necessarily need to be

globally unique. However, it is not recommended.

In the network, every Point shall have a URI for its identifier.

Practically, we will first assign IDs for physical sensors and

actuators, and then we will use the IDs for the Point IDs. This

operation goes well with the traditional facility networking

operation.

Taking URI for identifiers enables global access (if the Point is

public) to the Point. Let X(=http://gw.foo.org/sensor1) be a Point

ID.

If components do not know the registry server that manages the Point

ID (X), they should try to access X directly. Then, the URI can

¶

¶

¶

¶

¶

¶

¶

¶

¶

redirect to the registry server. If components already know the

registry server for X, Point ID may not need to be reachable.

However, in order to obtain operational consistency, the host of the

URI should be the host name of the GW (because physical sensors and

actuators are attached to the GW). Thus, typical URI format should

be:

point ID = "http://(GW host name)/(any format to identify the Point

in the GW)"

5.4. PointSet

This specification also defines PointSet to enable hierarchical

management of Points. A PointSet aggregates multiple Points and

multiple PointSets. This definition allows the conventional

operation of grouping of Points hierarchically. However, PointSet

feature is optional. All the components should allow operation

without pointSet.

6. Common communication protocol

6.1. General

This specification defines two types of communication protocols for

components and registry, including the component-to-component

communication protocol and component-to-registry communication

protocol. The protocol message for component-to-component and

component-to-registry communication is intended to use Simple Object

Access Protocol (SOAP Version 1.2 Part 1: Messaging Framework").

6.2. Component-to-component communication protocol

6.2.1. Types of component-to-component communication protocol

This section specifies and describes the following three types of

sub-protocols for component-to-component communication. Note that

instances of components are GWs, Storages, and APPs. As for the

accessing methods to a registry.

FETCH protocol -- for data retrieval from a remote component.

WRITE protocol -- for data transfer to a remote component.

TRAP protocol -- for event query registration and event data

transfer.

6.2.2. FETCH protocol

FETCH is a protocol for data retrieval from a remote component. We

here denote the component that inquires data from the remote

¶

¶

¶

¶

¶

¶

¶

¶

component by 'Requester', and the component that replies with the

data by 'Provider'.

6.2.3. WRITE protocol

WRITE is a protocol for data transfer to a remote component. We

denote the component that submits data to the remote component by

Requester, and the component that receives the data by Target.

6.2.4. TRAP protocol

TRAP is a protocol for event query registration and event data

transfer. We here give names for components in the following manner.

Requester -- the component that sets event-based query to Provider.

Provider -- the component that transmits data when it has received

query-matching updates.

Callback (Data) -- the components that receives data from the

Provider.

Callback (Control) -- the components that receives control signals

from the Provider.

This subsection provides the definition of collaboration among these

components. Though the roles are explicitly categorized in general,

in most of the practical systems, Callback (Data), Callback

(Control) and Requester will be the same component.

6.3. Component-to-registry communication protocol

6.3.1. Type of component-to-registry communication protocol

This section specifies the following two types of sub-protocols for

component-to-registry communication.

REGISTRATION Protocol -- for registration of the role of components

and semantics of Points.

LOOKUP Protocol -- for searching appropriate components and Points.

6.3.2. REGISTRATION protocol

REGISTRATION is a protocol which enables a component to register the

role of components and semantics of Points. We denote the component

that submits registration request to its Registry by "Registrant".

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

6.3.3. LOOKUP protocol

LOOKUP is a protocol for a component to search appropriate access

components (for component-to-component communication), and to search

Points by semantic-query. We here denote the component that searches

appropriate components and Points from its Registry by 'Requester'.

7. Security Considerations

This protocol is basically open. It assumes multi-domain operation

and public access from other domain's system components. In this

context, security requirements to the system would be listed as

follows:

o To avoid unintended data disclosure to the public.

o To avoid unauthorized access to writable resources.

o Availability and confidentiality of remote communication host.

o Integrity and confidentiality of data.

o To avoid unintended access or operational conflicts.

To get confidentiality of remote communication host, we would be

able to take VPN, SSL, SSH and other related technologies. HTTPS, or

SIP and its security extension would help in getting integrity and

confidentiality of data.

Access control and access confliction management shall be other

important but different types of security issues that should be

discussed independently. Generally, access control is used to allow

only specific users to access both readable and writable resources,

which would certainly help to avoid unauthorized access from or

unintended data disclosure to the public (sometimes anonymous)

users. In order to manage this, the system would need to introduce

the concept of users to identify who is accessing the resources. We

assume URI-based identification for user authentication just as

Point ID takes URI for its identifier. Authentication of these users

and components (probably by taking advantage of the existing

authentication platforms) would certainly need to be considered.

8. IANA Considerations

This document does not include an IANA request.

9. Acknowledgements

Funding for the RFC Editor function is currently provided by

PetroChina Huabei Oilfield Company and BII Group.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

10. Normative References

Authors' Addresses

Yan Liu

Guangzhou Genlian

Xiangjiang International Technology Innovation Center, 41 Jinlong

Road, Nansha District, Guangzhou

Guangzhou

China

Email: yliu@cfiec.net

Yang Song

Guangzhou Genlian

Xiangjiang International Technology Innovation Center, 41 Jinlong

Road, Nansha District, Guangzhou

Guangzhou

China

Email: ysong@biigroup.cn

Haisheng Yu

Guangzhou Genlian

Xiangjiang International Technology Innovation Center, 41 Jinlong

Road, Nansha District, Guangzhou

Guangzhou

China

Email: hsyu@cfiec.net

mailto:yliu@cfiec.net
mailto:ysong@biigroup.cn
mailto:hsyu@cfiec.net

	The Architecture for Internet of Things Network
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology and Conventions
	3. System Architecture
	3.1. Gateway
	3.2. Storage
	3.3. Application
	3.4. Registry
	3.5. Concerns of the network design

	4. System Model
	5. Point
	5.1. Introduction
	5.2. Definition
	5.3. URI-based identification
	5.4. PointSet

	6. Common communication protocol
	6.1. General
	6.2. Component-to-component communication protocol
	6.2.1. Types of component-to-component communication protocol
	6.2.2. FETCH protocol
	6.2.3. WRITE protocol
	6.2.4. TRAP protocol

	6.3. Component-to-registry communication protocol
	6.3.1. Type of component-to-registry communication protocol
	6.3.2. REGISTRATION protocol
	6.3.3. LOOKUP protocol

	7. Security Considerations
	8. IANA Considerations
	9. Acknowledgements
	10. Normative References
	Authors' Addresses

