
QUIC Y. Liu
Internet-Draft Y. Ma
Intended status: Standards Track Alibaba Inc.
Expires: 9 September 2021 C. Huitema
 Private Octopus Inc.
 Q. An
 Alibaba Inc.
 Z. Li
 ICT-CAS
 8 March 2021

Multipath Extension for QUIC
draft-liu-multipath-quic-03

Abstract

 This document specifies multipath extension for the QUIC protocol to
 enable the simultaneous usage of multiple paths for a single
 connection. The extension is compliant with the single-path QUIC
 design. The design principle is to support multipath by adding
 limited extension to [QUIC-TRANSPORT].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 9 September 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Conventions and Definitions
 3. Enable Multipath QUIC - Handshake
 4. Path Management
 4.1. Path Identifier and Connection ID
 4.2. Path Packet Number Spaces
 4.3. Path Initiation
 4.4. Path State Management
 4.5. Path Close
 4.5.1. Use PATH_STATUS frame to close a path
 4.5.2. Effect of RETIRE_CONNECTION_ID frame
 4.5.3. Idle timeout
 5. Using TLS to Secure QUIC Multipath
 5.1. Packet protection for QUIC Multipath
 5.2. Key Update for QUIC Multipath
 6. Using Multipath QUIC with load balancers
 7. Packet scheduling
 7.1. Basic Scheduling
 7.2. Scheduling with QoE Feedback
 7.3. Per-stream Policy
 8. Congestion control and loss detection
 8.1. Congestion control
 8.2. Packet number space and acknowledgements
 8.3. Flow control
 9. New frames
 9.1. PATH_STATUS frame
 9.2. ACK_MP frame
 9.3. QOE_CONTROL_SIGNALS frame
 10. Implementation Considerations
 10.1. Handling of 0-RTT packets
 11. Security Considerations
 12. IANA Considerations
 13. Changelog
 14. Appendix.A Scenarios related to migration
 15. Appendix.B Considerations on RTT estimate and loss detection
 16. Appendix.C Difference from past proposals
 17. References
 17.1. Normative References
 17.2. Informative References
 Authors' Addresses

1. Introduction

 In this document, we propose an extension to the current QUIC design
 to enable the simultaneous usage of multiple paths for a single
 connection.

 This proposal is based on several basic design points:

 * Re-use as much as possible mechanisms of QUIC-v1, which has
 supported connection migration and path validation.

 * To avoid the risk of packets being dropped by middleboxes (which
 may only support QUIC-v1), use the same packet header formats as
 QUIC V1.

 * Endpoints need a Path Identifier for each different path which is
 used to track states of packets. As we want to keep the packet
 header formats unchanged [QUIC-TRANSPORT], Connection IDs (and the
 sequence number of Connection IDs) would be a good choice of Path
 Identifier.

 * For the convenience of packet loss detection and recovery,
 endpoints use a different packet number space for each Path
 Identifier.

 * Congestion Control, RTT measurements and PMTU discovery should be
 per-path (following [QUIC-TRANSPORT])

 This document is organized as follows. It first provides definitions
 of multipath quic in Section 2. It then specifies how to enable
 multipath quic during handshake in Section 3, and path management in

Section 4. It discusses packet scheduling in Section 7, and
 congestion control in Section 8. The new frames are defined in

Section 9.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 We assume that the reader is familiar with the terminology used in
 [QUIC-TRANSPORT]. In addition, we define the following terms:

 * Path Identifier: An identifier that is used to identify a path in
 a QUIC connection at an endpoint. It is defined as the sequence
 number of the destination Connection ID used for sending packets
 on that particular path.

 * Each node maintains a list of "Received Packets" for each of the
 CID that it provided to the peer, which is used for acknowledging
 packets received with that CID.

3. Enable Multipath QUIC - Handshake

 This extension defines a new transport parameter, used to negotiate

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

 the use of the multipath extension during the connection handshake,
 as specified in [QUIC-TRANSPORT]. The new transport parameter is
 defined as follow:

 * name: enable_multipath (TBD - experiments use 0xbaba)

 * value: 0 (default) for disabled, 1 for enabled

 If the peer does not carry the enable_multipath(TBD - experiments use
 0xbaba) transport parameter, which means the peer does NOT support
 multipath, endpoint MUST fallback to [QUIC-TRANSPORT] with single
 path and MUST NOT send any MP frames in the following packets, also
 MUST NOT use the multipath specific AEAD algorithm defined in

Section 5.1.

 Notice that transport parameter "active_connection_id_limit"
 [QUIC-TRANSPORT] limits the number of usable Connection IDs, and also
 limits the number of concurrent paths.

4. Path Management

 After endpoints have negotiated in handshake flow that both endpoints
 enable multipath feature, endpoints can start using multiple paths.

 This proposal add one frame for path management:

 * PATH_STATUS frame for the receiver side to claim the path state
 and preference

 All the new MP frames are sent in 1-RTT packets [QUIC-TRANSPORT].

4.1. Path Identifier and Connection ID

 Endpoints need a Path Identifier for each different path which is
 used to track states of packets. Endpoints use Connection IDs in
 1-RTT packet header as Path Identifier in each directions, and use
 the sequence number of Connection IDs in MP frames to identify the
 path referred.

 Following [QUIC-TRANSPORT], Each endpoint uses NEW_CONNECTION_ID
 frames to claim usable connections IDs for itself. Before an
 endpoint add a new path, it SHOULD check whether there is at least
 one unused available Connection ID for each side.

 Endpoints can find which path a received packet belongs to according
 to the Destination Connection ID of the 1-RTT packet. Endpoints can
 find the context of a path by its' Connection ID or the Sequence
 number of Connection ID.

4.2. Path Packet Number Spaces

 For the convenience of packet loss detection and recovery, endpoints

 use a different packet number space for each Path Identifier
 (Connection ID). ACK_MP frame includes the sequence number of the
 Destination Connection ID of the acknowledged packets as the Path
 Identifier.

4.3. Path Initiation

 Figure 1 illustrates an example of new path establishment.

 Client Server

 (Exchanges start on default path)
 1-RTT[]: NEW_CONNECTION_ID[C1, Seq=1] -->
 <-- 1-RTT[]: NEW_CONNECTION_ID[S1, Seq=1]
 <-- 1-RTT[]: NEW_CONNECTION_ID[S2, Seq=2]
 ...
 (starts new path)
 1-RTT[0]: DCID=S2, PATH_CHALLENGE[X] -->
 Checks AEAD using nonce(CID sequence 2, PN 0)
 <-- 1-RTT[0]: DCID=C1, PATH_RESPONSE[X], PATH_CHALLENGE[Y],
 ACK_MP[Seq=2,PN=0]
 Checks AEAD using nonce(CID sequence 1, PN 0)
 1-RTT[1]: DCID=S2, PATH_RESPONSE[Y],
 ACK_MP[Seq=1, PN=0], ... -->

 Figure 1: Example of new path establishment

 As shown in Figure 1, client provides one unused available Connection
 ID (C1 with sequence number 1), and server provides two available
 Connection IDs (S1 with sequence number 1, and S2 with sequence
 number 2). When client wants to start a new path, it checks whether
 there is unused available Connection IDs for each side, and choose an
 available Connection ID S2 as the Destination Connection ID in the
 new path.

 Endpoints need to exchange unused available Connection IDs with the
 NEW_CONNECTION_ID frame before an endpoint starts a new path. For
 example, if the goal is to maintain 2 paths, each endpoint should
 provide at least 3 CID to its peer: 2 in use, and one spare. If the
 client has used all the allocated CID, it is supposed to retire those
 that are not used anymore, and the server is supposed to provide
 replacements, as specified in [QUIC-TRANSPORT].

 If the transport parameter "active_connection_id_limit" is negotiated
 as N, and the server has provided N Connection IDs and the client has
 started N paths, the limit is reached. If the client wants to start
 a new path, it has to retire one of the established paths.

 Path validation uses the PATH_CHALLENGE and PATH_RESPONSE frame
 defined in QUIC-Transport [QUIC-TRANSPORT].

4.4. Path State Management

 An endpoint uses PATH_STATUS frames to inform that the peer should
 send packets in the preference expressed by these frames. An
 endpoint uses the sequence number of the CID used by the peer for
 PATH_STATUS frames (describing the sender's path identifier).

 In the example Figure 1, if the client wants to send a PATH_STATUS
 frame to tell the server that it prefers the path with CID sequence
 number 1 (of the server's side), the client should use the identifier
 of the server (sequence 1) in PATH_STATUS frame.

 PATH_STATUS frame describes 4 kinds of path states:

 * Abandon a path, and release the corresponding resource.

 * Mark a path as "available", i.e., allow the peer to use its own
 logic to split traffic among available paths.

 * Mark a path as "standby", i.e., suggest that no traffic should be
 sent on that path if another path is available.

 * Mark the priority of a path, i.e, path 1 is weight 8, path 2 is
 weight 2, suggest that path 1 has higher priority than path 2, and
 peer should try to send more data in path 1.

 PATH_STATUS frame can be sent via a different path, instead of the
 path identified by the Path Identifier field.

4.5. Path Close

 An endpoint that want to delete a path SHOULD NOT rely on implicit
 signals like idle time or packet losses, but instead SHOULD use
 explicit ask to abandon path by sending the PATH_STATUS frame.

4.5.1. Use PATH_STATUS frame to close a path

 Both client and server can close a path, by sending PATH_STATUS frame
 which abandons the path with a corresponding Path Identifier. Once a
 path is marked as "abandon", it means that the resources related to
 the path can be released.

 Figure 2 illustrates an example of path closing. In this case, we
 are going to close the first path. For the first path, the server's
 1-RTT packets use DCID C1, which has a sequence number of 1; the
 client's 1-RTT packets use DCID S2, which has a sequence number of 2.
 For the second path, the server's 1-RTT packets use DCID C2, which
 has a sequence number of 2; the client's 1-RTT packets use CID S3,
 which has a sequence number of 3. Note that two paths use different
 packet number space. (For the convience of distinguishing the CID
 sequence number and PATH_STATUS sequence number, we call the
 "PATH_STATUS sequence number" as "PSSN".)

 Client Server

 (client tells server to abandon a path)
 1-RTT[X]: DCID=S2 PATH_STATUS[id=1, PSSN1, status=abandon, pri.=0] ->
 (server tells client to abandon a path)
 <- 1-RTT[Y]: DCID=C1 PATH_STATUS[id=2, PSSN2, status=abandon, pri.=0],
 ACK_MP[Seq=2, PN=X]
 (client abandons the path that it is using)
 1-RTT[U]: DCID=S3 RETIRE_CONNECTION_ID[2], ACK_MP[Seq=1, PN=Y] ->
 (server abandons the path that it is using)
 <- 1-RTT[V]: DCID=C2 RETIRE_CONNECTION_ID[1], ACK_MP[Seq=3, PN=U]

 Figure 2: Example of closing a path

 In scenarios such as client detects the network environment change
 (client's 4G/Wi-Fi is turned off, Wi-Fi signal is fading to a
 threshold), or endpoints detect that the quality of RTT or loss rate
 is becoming worse, client or server can terminate a path immediately.

4.5.2. Effect of RETIRE_CONNECTION_ID frame

 Receiving a RETIRE_CONNECTION_ID frame causes the endpoint to discard
 the resources associated with that connection ID. If the connection
 ID was used by the peer to identify a path from the peer to this
 endpoint, the resources include the list of received packets used to
 send acknowledgements. The peer MAY decide to keep sending data
 using the same IP addresses and UDP ports previously associated with
 the connection ID, but MUST use a different connection ID when doing
 so.

4.5.3. Idle timeout

 [QUIC-TRANSPORT] allows for closing of connections if they stay idle
 for too long. The connection idle timeout in multipath QUIC is
 defined as "no packet received on any path for the duration of the
 idle timeout". It means that if all paths remain idle for the idle
 timeout, the connection is implicitly closed.

5. Using TLS to Secure QUIC Multipath

 In order to facilitate loss detection and recovery when sending data
 over multiple paths, this specification defines how packets sent over
 multiple paths use different packet number spaces. This requires
 changes in the way AEAD is applied for packet protection, as
 explained in Section 5.1, and tighter constrainst for key updates, as
 explained in Section 5.2.

5.1. Packet protection for QUIC Multipath

 Packet protection for QUIC V1 is specified is section 5 of
 [QUIC-TLS]. The general principles of packet protection are not
 changed for QUIC Multipath. No changes are needed for setting packet

 protection keys, initial secrets, header protection, use of 0-RTT
 keys, receiving out-of-order protected packets, receiving protected
 packets, or retry packet integrity. However, the use of multiple
 number spaces for 1-RTT packets requires changes in AEAD usage.

 Section 5.3 of [QUIC-TLS] specifies AEAD usage, and in particular the
 use of a nonce, N, formed by combining the packet protection IV with
 the packet number. QUIC multipath uses multiple packet number
 spaces, and thus the packet number alone would not guarantee the
 uniqueness of the nonce. In order to guarantee this uniqueness, we
 construct the nonce N by combining the packet protection IV with the
 packet number and with the identifier of the path, which for 1-RTT
 packets is the Sequence Number of the Destination Connection ID
 present in the packet header, as defined in Section 5.1.1 of
 [QUIC-TRANSPORT], or zero if the Connection ID is zero-length.
 Section 19 of [QUIC-TRANSPORT] encode this Connection ID Sequence
 Number as a A variable-length integer, allowing values up to 2^62-1;
 for QUIC multipath, we require that a range of no more than 2^32-1
 values be used without updating the packet protection key.

 For QUIC multipath, the construction of the nonce starts with the
 construction of a 96 bit path-and-packet-number, composed of the 32
 bit Connection ID Sequence Number in byte order, two zero bits, and
 the 62 bits of the reconstructed QUIC packet number in network byte
 order. If the IV is larger than 96 bits, path-and-packet-number is
 left-padded with zeros to the size of the IV. The exclusive OR of
 the padded packet number and the IV forms the AEAD nonce.

 For example, assuming the IV value is "6b26114b9cba2b63a9e8dd4f", the
 connection ID sequence number is "3", and the packet number is
 "aead", the nonce will be set to "6b2611489cba2b63a9a873e2".

5.2. Key Update for QUIC Multipath

 The Key Phase bit update process for QUIC V1 is specified in
 Section 6 of [QUIC-TLS]. The general principles of key update are
 not changed for Multipath QUIC. Following QUIC V1, the Key Phase bit
 is used to indicate which packet protection keys are used to protect
 the packet. The Key Phase bit is toggled to signal each subsequent
 key update. Because of network delays, packets protected with the
 older key might arrive later than the packets protected with the new
 key. Therefore, the endpoint needs to retain old packet keys to
 allow these delayed packets to be processed and it must distinguish
 between the new key and the old key. In QUIC V1, this is done using
 packet numbers so that the rule is made simple: Use the older key if
 packet number is lower than any packet number frome the current key
 phase.

 In QUIC multipath, some care is needed in the initiating Key Update
 process. Because different paths use different packet number spaces
 but share a single key, when a key update is initiated on one path,

 packets sent to the other path needs to know when transition is
 complete. Otherwise, it is possible that the other paths send
 packets with the old keys, but skip sending any packets in the
 current key phase and directly jump to sending packet in the next key
 phase. When that happens, as the endpoint can only retain two sets
 of packet protection keys with the 1-bit Key Phase bit, the other
 paths cannot distinguish which key should be used to decode received
 packets, which results in a key rotation synchronization problem.

 To address such a synchronization issue, in QUIC multipath, if key
 update is initilized on one path, the sender should send at least one
 packet with the new key on all active paths. Regarding the
 responding to Key Update process, the endpoint MUST NOT initiate a
 subsequent key update until a packet with the current key has been
 acknowledged on each path.

 Following the Section 5.4. of [QUIC-TLS], the Key Phase bit is
 protected, so sending multiple packets with Key Phase bit flipping at
 the same time should not cause linkability issue.

6. Using Multipath QUIC with load balancers

 This specification follows the Connection ID negotiation defined in
 [QUIC-TRANSPORT]. For stateless or low-state load balancers
 supporting Multipath QUIC, implementations SHOULD use the
 specification of Connection ID generation and Load balancer routing
 defined in [QUIC-LB], guarantee that packets with Connection IDs
 belonging to the same connection, can be routed to same server.

7. Packet scheduling

7.1. Basic Scheduling

 For an outgoing packet, the packet scheduler decides which path the
 packet shall be transmitted. A basic static scheduling strategy
 consists of four major components:

 1. Path state: A scheduler may want to decide which path shall be
 activated to transmit data. For instance, a scheduler can choose
 to use only one of the two paths and completely ignore the other
 one. A scheduler marks the selected paths to be in the
 "available" state and the un-selected ones in the "standby"
 state.

 2. Path priority: Due to the fact that costs of transmitting data
 over different paths are not always equal. For example, the
 energy (battery) cost over a 5G path and a wifi path are very
 different. In another example, transmissions over a wifi path
 and a cellular path may incur different charges per packet. Note
 that a user's preference may change over time. For instance,
 certain mobile carriers offer unlimited free data for a

 particular streaming app. Therefore, the path priority should be
 made available in the scheduler.

 3. Path selection algorithm: A selection algorithm splits packets
 across different paths and determines the order of paths to be
 selected. The selection algorithm takes congestion controller
 states as inputs, such as smoothed RTTs (sRTTs), estimated
 bandwidths (eBWs) and congestion window sizes (CWNDs) as well as
 application-defined information such as path priorities and path
 states. The outputs of the algorithm is an ordered list of paths
 to put a packet on. To name a few, some of the commonly used
 algorithms are: - Round-Robin: There is no priority. it selects
 paths one by one in order to transmit data. - Lowest-RTT: It
 first chooses the path with the lowest RTT and feeds packets to
 it until that path's congestion window is full. Then it chooses
 the path with the second lowest RTT. - Highest-Sending-Rate: It
 first chooses the path with the highest bandwidth and feeds
 packets to it until that path's congestion window is full. Then
 it chooses path with the second largest bandwidth.

 4. Packet redundancy: One major challenge in multi-path transmission
 is that a packet loss on the slow path might block the overall
 transmission when packets are split across fast-changing paths.
 As the path selection algorithm takes inputs from congestion
 controllers on predictions of the network which may not be
 accurate enough for fast-changing wireless channels, such an
 imprecise estimation could lead to network overuse/underuse. A
 solution to this problem is to implement packet redundancy
 strategy. A redundancy strategy can be applied to only ACK
 packets(partial redundancy) or all data packets (full
 redundancy). It is up to the application to determine whether,
 when, and on which packets to activate redundancy.

 The path state and path priority are managed by PATH_STATUS frame.
 The path selection algorithm and packet redundancy are application
 related and should be controlled by the applicaiton.

7.2. Scheduling with QoE Feedback

 Applications may have completely different QoE requirements---the
 interactive applications are delay sensitive, while the video
 streaming applications are more throughput sensitive. There is thus
 a trend of cross-layer design that takes applications' demands into
 account when managing paths or scheduling packets. The QoE feedback
 is used to fully support application-awareness in multipath
 scheduling and is carried in the QOE_CONTROL_SIGNALS frames Figure 6.
 The QOE_CONTROL_SIGNALS frames can include general application-level
 information that is needed by the schedulers. The frequency of such
 feedback should be controlled to limit the amount of extra packets.
 The QoE control signal allows a synchronization of viewpoints between
 two endhosts. It is up to the application to determine the

 interpretation of QoE control signals.

7.3. Per-stream Policy

 As QUIC supports stream multiplexing, streams are allowed to
 associate stream priorities to express applications intent. For
 instance, objects in a web page may be dependent on others and thus
 have different priorities multipath quic scheduler. A stream
 priority-aware packet scheduling algorithm will improve the
 performance notably.

 High priority /\ +---------+
 || | |
 || +---------+
 || +---------+
 || | |
 || +---------+
 || ... User-defined stream priority
 || +---------+
 Low priority || | |
 || +---------+

 High priority /\ +---------+
 || | |
 || +---------+
 || +---------+
 || | |
 || +---------+
 || ... Default stream priority
 || +---------+
 Low priority || | |
 || +---------+

 Figure 3: Stream priority

 The priority management scheme composes two separated priority
 ranges. The user-defined priority range includes those streams that
 the applications explicitly designate priorities, while the default
 priority range includes the streams with no priorities set by the
 applications. Only when the streams in the user-defined ranges have
 no data to send, the streams in the default priority range can send.
 In the same range, one can use the weighted-round robin for
 scheduling---the higher-priority streams get more quota for data to
 send in each round. One can also dynamically set/change the
 priorities of the streams in the default priority ranges to enable
 short stream first if needed.

8. Congestion control and loss detection

8.1. Congestion control

 Implementations MAY support coupled congestion controllers such as
 LIA [MPTCP-LIA], OLIA [MPTCP-OLIA], and etc., or support decoupled
 congestion controllers in environments using disjoint network paths.

 In decoupled congestion control, each path runs its own congestion
 controller without interacting with the congestion controllers of
 other paths. That is to say, in the aspect of congestion control, a
 path behaves exactly the same as a normal QUIC connection over the
 same network path.

 Each path MAY choose congestion control algorithm independently.

8.2. Packet number space and acknowledgements

 Each path has it's own packet number space for transmitting 1-RTT
 packets.

 Acknowledgements of Initial and Handshake packets MUST be carried
 using ACK frames, as specified in [QUIC-TRANSPORT]. The ACK frames,
 as defined in [QUIC-TRANSPORT], do not carry path identifiers. If
 for some reason ACK frames are received in 1RTT packets while the
 state of multipath negotiation is ambiguous, they MUST be interpreted
 as acknowledging packets sent on path number 0. After endpoints
 successfully negotiate multipath support, they SHOULD use ACK_MP
 frames instead of ACK frames to signal acknowledgement of 1-RTT
 packets, and also 0-RTT packets as specified in Section 10.1.

 ACK_MP frame Section 9.2 can be returned via either a different path,
 or the same path identified by the Path Identifier, based on
 different strategies of sending ACK_MP frames.

8.3. Flow control

 TBD.

9. New frames

 All the new frames MUST be sent in 1-RTT packet, and MUST NOT use
 other encryption levels.

 If an endpoint receives MP frames from packets of other encryption
 levels, it MUST return MP_PROTOCOL_VIOLATION as a connection error
 and close the connection.

9.1. PATH_STATUS frame

 PATH_STATUS Frame are used by endpoints to inform the peer of the
 current status of one path, and the peer should send packets
 according to the preference expressed in these frames. Endpoint use
 the sequence number of the CID used by the peer for PATH_STATUS
 frames (describing the sender's path identifier). PATH_STATUS frames
 are formatted as shown in Figure 4.

 PATH_STATUS Frame {
 Type (i) = TBD-03 (experiments use 0xbaba03),
 Path Identifier (i),
 Path Status sequence number (i),
 Path Status (i),
 Path Priority (i),
 }

 Figure 4: PATH_STATUS Frame Format

 PATH_STATUS Frames contain the following fields:

 Path Identifier: A variable-length integer specifying the path
 identifier.

 Path Status sequence number: A variable-length integer specifying the
 sequence number assigned for this PATH_STATUS frame. There is a
 different path status sequence number space for each path.

 Available values of Path Status field are:

 * 0: Abandon

 * 1: Standby

 * 2: Available

 If the value of Path Status field is 2-available, the receiver side
 can use the Path Priority field to express the priority weight of a
 path for the peer.

 Frames may be received out of order. A peer MUST ignore an incoming
 PATH_STATUS frame if it previously received another PATH_STATUS frame
 for the same Path Identifier with a sequence number equal to or
 higher than the sequence number of the incoming frame.

 PATH_STATUS frames SHOULD be acknowledged. If a packet containing a
 PATH_STATUS frame is considered lost, the peer should only repeat it
 if it was the last status sent for that path -- as indicated by the
 sequence number.

9.2. ACK_MP frame

 ACK_MP frame allows for acknowledgements on different paths. ACK_MP
 frame is formatted by adding a Path Identifier field to
 [QUIC-TRANSPORT] ACK frame. ACK_MP frame is formatted as shown in
 Figure 5.

 ACK_MP Frame {
 Type (i) = TBD-00..TBD-01 (experiments use 0xbaba00..0xbaba01),
 Path Identifier (i),

 Largest Acknowledged (i),
 ACK Delay (i),
 ACK Range Count (i),
 First ACK Range (i),
 ACK Range (..) ...,
 [ECN Counts (..)],
 }

 Figure 5: ACK_MP Frame Format

 Type(i) = TBD-00 (experiments use 0xbaba00) , with no ECN Counts
 Type(i) = TBD-01 (experiments use 0xbaba01) , with ECN Counts

9.3. QOE_CONTROL_SIGNALS frame

 QOE_CONTROL_SIGNALS frame is used to carry quality of experience
 (QoE) information. A typical use of such information is to provide
 feedback to help application-aware scheduling. Note that different
 applications may have very different needs, the interpretation of the
 QoE control signal can be up to the users. QOE_CONTROL_SIGNALS
 frames are formatted as shown in Figure 6.

 QOE_CONTROL_SIGNALS Frame {
 Type (i) = TBD-02 (experiments use 0xbaba02),
 Path Identifier (i),
 QoE Control Signals Length(8),
 QoE Control Signals (..)
 }

 Figure 6: QOE_CONTROL_SIGNALS Frame Format

 QOE_CONTROL_SIGNALS frames may be received out of order, peers SHOULD
 pass them to the application as they arrive. Although
 QOE_CONTROL_SIGNALS frames are not retransmitted upon loss detection,
 they are ack-eliciting [QUIC-RECOVERY].

10. Implementation Considerations

 ## Management of acknowledgements delay If implementation uses
 ACK_FREQUENCY Frame in [QUIC-DELAYED-ACK] to let senders control the
 frequency of acknowledgements, the same mechanism can be used in
 multi-path QUIC. There are two parameters in the ACK_FREQUENCY
 Frame, "Packet Tolerance" and "Update Max Ack Delay".

 Those two parameters are typically computed in real time based on
 observed performance:

 * "Packet Tolerance" is set to a fraction of the congestion window

 * "Update Max Ack Delay" is set to a fraction of the RTT -- but not
 smaller than the specified min delay

 In multi-path QUIC, there are multiple paths with different RTT and
 different congestion windows. In this draft, it is suggested that
 implementations can use the smallest RTT of the available paths to
 compute the delay, and use the sum of congestion windows of all
 available(not including standby/abandon state) paths.

10.1. Handling of 0-RTT packets

 The draft specifies a packet number space for each path. Because
 multi-path is enabled after the handshake negotiation complete, there
 will be a separate context for each Connection ID after multi-path is
 negotiated. 0-RTT packets are sent before these per path contexts are
 established. To avoid confusion, this draft provides a way for
 implementations to deal with 0-RTT packets that is both easy to
 implement and compatible with [QUIC-TRANSPORT]:

 * All 0-RTT packet are initially tracked in the "global" application
 context.

 * On the client side, 0-RTT packets are initially sent in the
 "global" application context. The handshake concludes before any
 1-RTT packet can be sent or received. When the handshake
 completes, if multipath is negotiated, the tracking of 0-RTT
 packets moves from the "global" application context to the "path
 0" application context. That means the sequence number of the
 first 1-RTT packets sent by the client will follow the sequence
 number of the last 0-RTT packet.

 * On the server side, the negotiation completes after the client
 first flight is received and the the server first flight is sent.
 0-RTT packets are received after that. If multipath is
 negotiated, they are considered received on "path 0".

 In conclusion, 0-RTT packets are tracked and processed with path
 identifier 0.

11. Security Considerations

 TBD.

12. IANA Considerations

 This document defines a new transport parameter for the negotiation
 of enable multiple paths for QUIC, and three new frame types. The
 draft defines provisional values for experiments, but we expect IANA
 to allocate short values if the draft is approved.

 The following entry in Table 1 should be added to the "QUIC Transport
 Parameters" registry under the "QUIC Protocol" heading.

 +==============================+==================+===============+
 | Value | Parameter Name. | Specification |

 +==============================+==================+===============+
 | TBD (experiments use 0xbaba) | enable_multipath | Section 3 |
 +------------------------------+------------------+---------------+

 Table 1: Addition to QUIC Transport Parameters Entries

 The following frame types defined in Table 2 should be added to the
 "QUIC Frame Types" registry under the "QUIC Protocol" heading.

 +====================+=====================+===============+
 | Value | Frame Name | Specification |
 +====================+=====================+===============+
 | TBD-00 - TBD-01 | ACK_MP | Section 9.2 |
 | (experiments use | | |
 | 0xbaba00-0xbaba01) | | |
 +--------------------+---------------------+---------------+
 | TBD-02 | QOE_CONTROL_SIGNALS | Section 9.3 |
 | (experiments use | | |
 | 0xbaba02) | | |
 +--------------------+---------------------+---------------+
 | TBD-03 | PATH_STATUS | Section 9.1 |
 | (experiments use | | |
 | 0xbaba03) | | |
 +--------------------+---------------------+---------------+

 Table 2: Addition to QUIC Frame Types Entries

13. Changelog

14. Appendix.A Scenarios related to migration

 In QUIC V1, there are four scenarios related to migration: CID
 renewal, NAT Rebinding, controlled migration, and migration to server
 preferred address. It would be useful to explain exactly how these
 four scenarios are supported or changed with Multipath QUIC. For V1,
 these scenarios are described as follow:

 * CID Renewal happens when the client starts using a new CID for
 1-RTT packet, while still using the same four-tuple. This is
 typically done for privacy, for example after a long period of
 silence. The expected result is that the server will also use a
 new CID for its next packets. In that scenario, RTT and
 congestion control parameters remain the same before and after
 migration.

 * NAT Rebinding happens when a NAT on the path changes its mappings.
 The server receives packets that bear the same CID as previously,
 but arrive on a different four tuple. The complication is that
 this could be an attack in which the attacker captures a packet
 from the client and resends it from a different address. The
 server is expected to perform continuity tests for both the old

 and the new path, typically using a different CID for the new
 path. If the continuity test on the new path succeeds before the
 old path, the server migrates to the new path, otherwise it
 continues using the old path and ignores the new path.

 * Controlled migration happens when a client tests a new path. The
 server receives packets that bear a new CID and arrive on a new
 four tuple. The server responds to the path challenge, perform
 its own continuity test on the new path. If the client sends non-
 path-validation packets on the new path, the server switches to
 sending on the new path and discards the old path.

 * Preferred address migration happens when the server sends the
 preferred address TP during the exchange. The client performs a
 controlled migration to the new path, and if that is successful
 discards the old path.

 We could sum up these scenarios in the following table:

 +=====+=========+===================+====================+
 | CID | 4-tuple | preferred address | result |
 +=====+=========+===================+====================+
 | Old | Old | - | Not a migration. |
 +-----+---------+-------------------+--------------------+
 | Old | New | - | NAT Rebinding. |
 +-----+---------+-------------------+--------------------+
 | New | Old | - | CID Renewal. |
 +-----+---------+-------------------+--------------------+
 | New | New | matches PFA | Migration to |
 | | | | Preferred Address. |
 +-----+---------+-------------------+--------------------+
 | New | New | other | Controlled |
 | | | | Migration. |
 +-----+---------+-------------------+--------------------+

 Table 3: Scenarios related to migration

 The expectation in those scenarios is:

 +==============+==+
 | Scenario | Expectation |
 +==============+==+
 | Not a | Continue using existing path |
 | migration | |
 +--------------+--+
 | NAT | After validation, use new path and discard |
 | Rebinding | previous path. |
 +--------------+--+
 | CID Renewal | Create new path with new CIDs, discard old |
 | | path. Reuse RTT and CC parameter. |
 +--------------+--+

 | Controlled | Create new path with new CIDs. Server |
 | Migration | creates a new path,ready to use both |
 | | paths. Client may later discard old path. |
 +--------------+--+
 | Migration to | Same as Controlled Migration, but the |
 | Preferred | client is expected to abandon the old path |
 | Address | |
 +--------------+--+

 Table 4: Expectation in scenarios related to migration

 In multipath quic, client / server create a new path and abandon the
 old path to do exactly the same thing as connection migration in the
 previous scenarios.

15. Appendix.B Considerations on RTT estimate and loss detection

 QUIC implementations use RTT estimates in many ways:

 * For loss detection, RTT estimates are used to evaluate how long to
 wait for an acknowledgement before a packet is declared lost.

 * Several congestion control algorithm (e.g. LEDBAT, VEGAS,
 HYSTART) use variations of the RTT above the minimum value to
 detect the beginning of congestion.

 * BBR uses the minimal RTT to compute the minimal size of the
 congestion window for a target data rate.

 * ACK delays are often set as a fraction of the RTT.

 In a multipath environment, the RTT can be estimated each time a new
 packet is acknolwedged. However, the observed RTT will vary not only
 based on the state of the send path, but also based on the choice of
 the return path used for acknowledgements. Each RTT measurement will
 the sum of the one-way delay on the send path and the one-way delay
 on the return path. This has a number of implications for the
 different ways of using the RTT presented above:

 * If the goal is to detect possible losses, it is probably
 sufficient to consider all RTT measurements for a given path.
 Classic formulas like adding smoothed RTT and a number of
 deviations aim at estimating a reasonable upper bound of the
 acknowledgement delays. Statistics on observed acknowledgement
 delays will provide a valid estimate, regardless of the selection
 of the return path by the peer.

 * If the goal is to detect the onset of collision and tune a
 congestion algorithm, the variations of delays due to the choices
 of return paths will be a source of errors. Implementations will
 need to pick a strategy, such as for example only considering
 acknowledgements received through the "fastest" return path, or

 maybe those received through the matching four tuple for the
 sending path. An alternative would be to use time stamps to
 directly estimate variations of the one way delays.
 [QUIC-Timestamp] provides good support for such one-way-delay
 compuation.

 * If BBR is in use and ACKs are returned on different paths, it may
 cause an ambiguity issue with the computation of bandwidth and
 delay product (BDP). In BBR, BDP is used to limit the number of
 inflight packets. One may choose to use the smallest RTT measured
 to compute BDP. However, if the majority of ACKs are returned
 from a high-latency path, the cwnd = cwnd_gain * bandwidth *
 min_rtt may be lower than what is needed to achieve good
 performance. One possible solution is to transmit a new packet
 and its ACK on the same path. Other possible solutions may
 include transmitting ACKs on the shortest path with relative
 increase of cwnd_gain. For the time being, we think there is a
 research problem and it is up to the implementers to pick the best
 solution.

16. Appendix.C Difference from past proposals

 This proposal differs from past proposals
 [I-D.deconinck-quic-multipath] in two fundamental perspectives:

 * The multi-path QUIC is built on top of the concept of the
 bidirectional paths, which readily fits into the nature of both
 cellular and wifi links that cover the majority of multi-path
 applications in QUIC while keeping the design simple and easy to
 implement. In doing so, we are able to re-use most of the current
 QUIC transport design with the sole addition of three new frames.

 * The multi-path QUIC design enables feedback-based dynamic
 scheduling strategy. As the major goal of multi-path QUIC is to
 enhance performance in mobile applications, where the sender and
 receiver may have different viewpoints about the fast-changing
 wireless connectivity, especially in high-mobility scenarios, the
 proposed design allows the sender and receiver to synchronize
 their viewpoints via message exchange in ACK packet in order to
 maximize performance.

17. References

17.1. Normative References

 [QUIC-DELAYED-ACK]
 Iyengar, J., Ed. and I. Swett, Ed., "Sender Control of
 Acknowledgement Delays in QUIC", Work in Progress,
 Internet-Draft, draft-iyengar-quic-delayed-ack-02,
 <https://tools.ietf.org/html/draft-iyengar-quic-delayed-

ack-02>.

https://datatracker.ietf.org/doc/html/draft-iyengar-quic-delayed-ack-02
https://tools.ietf.org/html/draft-iyengar-quic-delayed-ack-02
https://tools.ietf.org/html/draft-iyengar-quic-delayed-ack-02

 [QUIC-LB] Duke, M., Ed. and N. Banks, Ed., "QUIC-LB: Generating
 Routable QUIC Connection IDs", Work in Progress, Internet-
 Draft, draft-ietf-quic-load-balancers,
 <https://tools.ietf.org/html/draft-ietf-quic-load-

balancers>.

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", Work in Progress, Internet-Draft,

draft-ietf-quic-recovery,
 <https://tools.ietf.org/html/draft-ietf-quic-recovery>.

 [QUIC-TLS] Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
 QUIC", Work in Progress, Internet-Draft, draft-ietf-quic-

tls, <https://tools.ietf.org/html/draft-ietf-quic-tls>.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", Work in Progress,
 Internet-Draft, draft-ietf-quic-transport,
 <https://tools.ietf.org/html/draft-ietf-quic-transport>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

17.2. Informative References

 [I-D.deconinck-quic-multipath]
 Coninck, Q. and O. Bonaventure, "Multipath Extensions for
 QUIC (MP-QUIC)", Work in Progress, Internet-Draft, draft-

deconinck-quic-multipath-06, 2 November 2020,
 <http://www.ietf.org/internet-drafts/draft-deconinck-quic-

multipath-06.txt>.

 [MPTCP-LIA]
 Raiciu, C., Handly, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols",
 October 2011, <https://tools.ietf.org/html/rfc6356>.

 [MPTCP-OLIA]
 Khalili, R., Gast, N., and J. Boudec, "Opportunistic
 Linked-Increases Congestion Control Algorithm for MPTCP",
 July 2014, <https://datatracker.ietf.org/doc/html/draft-

khalili-mptcp-congestion-control-05>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-load-balancers
https://tools.ietf.org/html/draft-ietf-quic-load-balancers
https://tools.ietf.org/html/draft-ietf-quic-load-balancers
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery
https://tools.ietf.org/html/draft-ietf-quic-recovery
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls
https://tools.ietf.org/html/draft-ietf-quic-tls
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport
https://tools.ietf.org/html/draft-ietf-quic-transport
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-06
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-06
http://www.ietf.org/internet-drafts/draft-deconinck-quic-multipath-06.txt
http://www.ietf.org/internet-drafts/draft-deconinck-quic-multipath-06.txt
https://tools.ietf.org/html/rfc6356
https://datatracker.ietf.org/doc/html/draft-khalili-mptcp-congestion-control-05
https://datatracker.ietf.org/doc/html/draft-khalili-mptcp-congestion-control-05

 [QUIC-Timestamp]
 Huitema, C., "Quic Timestamps For Measuring One-Way
 Delays", August 2020,
 <https://datatracker.ietf.org/doc/draft-huitema-quic-ts/>.

Authors' Addresses

 Yanmei Liu
 Alibaba Inc.

 Email: miaoji.lym@alibaba-inc.com

 Yunfei Ma
 Alibaba Inc.

 Email: yunfei.ma@alibaba-inc.com

 Christian Huitema
 Private Octopus Inc.

 Email: huitema@huitema.net

 Qing An
 Alibaba Inc.

 Email: anqing.aq@alibaba-inc.com

 Zhenyu Li
 ICT-CAS

 Email: zyli@ict.ac.cn

https://datatracker.ietf.org/doc/draft-huitema-quic-ts/

