
Web Authorization Protocol T. Lodderstedt
Internet-Draft yes.com
Intended status: Standards Track J. Richer
Expires: May 6, 2020 Bespoke Engineering
 B. Campbell
 Ping Identity
 November 3, 2019

OAuth 2.0 Rich Authorization Requests
draft-lodderstedt-oauth-rar-03

Abstract

 This document specifies a new parameter "authorization_details" that
 is used to carry fine grained authorization data in the OAuth
 authorization request.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 6, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Lodderstedt, et al. Expires May 6, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft oauth-rar November 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Conventions and Terminology 4

2. Request parameter "authorization_details" 4
2.1. Authorization data elements types 5
2.2. Relationship to "scope" parameter 8
2.2.1. Scope value "openid" and "claims" parameter 8

2.3. Relationship to "resource" parameter 9
3. Using "authorization_details" 11
3.1. Authorization Request 11
3.2. Authorization Request Processing 14
3.3. Token Request . 15
3.4. Token Response . 15
3.4.1. Token Content . 16

3.5. Token Introspection Request 18
3.6. Token Introspection Response 18

4. Metadata . 19
5. Implementation Considerations 20
6. Security Considerations 20
7. Privacy Considerations 20
8. Acknowledgements . 21
9. IANA Considerations . 21
10. References . 21
10.1. Normative References 21
10.2. Informative References 22

Appendix A. Additional Examples 23
A.1. OpenID Connect . 23
A.2. Remote Electronic Signing 25
A.3. Access to Tax Data 26
A.4. eHealth . 27

Appendix B. Document History 29
 Authors' Addresses . 30

1. Introduction

 The OAuth 2.0 authorization framework [RFC6749] defines the parameter
 "scope" that allows OAuth clients to specify the requested scope,
 i.e., the permission, of an access token. This mechanism is
 sufficient to implement static scenarios and coarse-grained
 authorization requests, such as "give me read access to the resource
 owner's profile" but it is not sufficient to specify fine-grained
 authorization requirements, such as "please let me make a payment
 with the amount of 45 Euros" or "please give me read access to folder
 A and write access to file X".

https://datatracker.ietf.org/doc/html/rfc6749

Lodderstedt, et al. Expires May 6, 2020 [Page 2]

Internet-Draft oauth-rar November 2019

 This draft introduces a new parameter "authorization_details" that
 allows clients to specify their fine-grained authorization
 requirements using the expressiveness of JSON data structures.

 For example, a request for payment authorization can be represented
 using a JSON object like this:

 {
 "type": "payment_initiation",
 "locations": [
 "https://example.com/payments"
],
 "instructedAmount": {
 "currency": "EUR",
 "amount": "123.50"
 },
 "creditorName": "Merchant123",
 "creditorAccount": {
 "iban": "DE02100100109307118603"
 },
 "remittanceInformationUnstructured": "Ref Number Merchant"
 }

 This object contains detailed information about the intended payment,
 such as amount, currency, and creditor, that are required to inform
 the user and obtain her consent. The AS and the respective RS
 (providing the payment initation API) will together enforce this
 consent.

 For a comprehensive discussion of the challenges arising from new use
 cases in the open banking and electronic signing spaces see
 [transaction-authorization].

 In addition to facilitating custom authorization requests, this draft
 also introduces a set of common data type fields for use across
 different APIs.

 Most notably, the field "locations" allows a client to specify where
 it intends to use a certain authorization, i.e., it is now possible
 to unambiguously assign permissions to resource servers. In
 situations with multiple resource servers, this prevents unintended
 client authorizations (e.g. a "read" scope value potentially
 applicable for an email as well as a cloud service). In combination
 with the "resource" token request parameter as specified in
 [I-D.ietf-oauth-resource-indicators] it enables the AS to mint RS-
 specific structured access tokens that only contain the permissions
 applicable to the respective RS.

Lodderstedt, et al. Expires May 6, 2020 [Page 3]

Internet-Draft oauth-rar November 2019

1.1. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This specification uses the terms "access token", "refresh token",
 "authorization server", "resource server", "authorization endpoint",
 "authorization request", "authorization response", "token endpoint",
 "grant type", "access token request", "access token response", and
 "client" defined by The OAuth 2.0 Authorization Framework [RFC6749].

2. Request parameter "authorization_details"

 The request parameter "authorization_details" contains, in JSON
 notation, an array of objects. Each JSON object contains the data to
 specify the authorization requirements for a certain type of
 resource. The type of resource or access requirement is determined
 by the "type" field.

 This example shows the specification of authorization details using
 the payment authorization object shown above:

 [
 {
 "type": "payment_initiation",
 "actions": [
 "initiate",
 "status",
 "cancel"
],
 "locations": [
 "https://example.com/payments"
],
 "instructedAmount": {
 "currency": "EUR",
 "amount": "123.50"
 },
 "creditorName": "Merchant123",
 "creditorAccount": {
 "iban": "DE02100100109307118603"
 },
 "remittanceInformationUnstructured": "Ref Number Merchant"
 }
]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc6749

Lodderstedt, et al. Expires May 6, 2020 [Page 4]

Internet-Draft oauth-rar November 2019

 This example shows a combined request asking for access to account
 information and permission to initiate a payment:

 [
 {
 "type": "account_information",
 "actions": [
 "list_accounts",
 "read_balances",
 "read_transactions"
],
 "locations": [
 "https://example.com/accounts"
]
 },
 {
 "type": "payment_initiation",
 "actions": [
 "initiate",
 "status",
 "cancel"
],
 "locations": [
 "https://example.com/payments"
],
 "instructedAmount": {
 "currency": "EUR",
 "amount": "123.50"
 },
 "creditorName": "Merchant123",
 "creditorAccount": {
 "iban": "DE02100100109307118603"
 },
 "remittanceInformationUnstructured": "Ref Number Merchant"
 }
]

 The JSON objects with "type" fields of "account_information" and
 "payment_initiation" represent the different authorization data to be
 used by the AS to ask for consent and MUST subsequently also be made
 available to the respective resource servers. The array MAY contain
 several elements of the same "type".

2.1. Authorization data elements types

 This draft defines a set of common data elements that are designed to
 be usable across different types of APIs. These data elements MAY be

Lodderstedt, et al. Expires May 6, 2020 [Page 5]

Internet-Draft oauth-rar November 2019

 combined in different ways depending on the needs of the API. Unless
 otherwise noted, all data elements are OPTIONAL.

 type:
 The type of resource request as a string. This field MAY define
 which other elements are allowed in the request. This element is
 REQUIRED.

 locations:
 An array of strings representing the location of the resource or
 resource server. This is typically composed of URIs.

 actions:
 An array of strings representing the kinds of actions to be taken
 at the resource. The values of the strings are determined by the
 API being protected.

 datatypes:
 An array of strings representing the kinds of data being requested
 from the resource.

 identifier:
 A string identifier indicating a specific resource available at
 the API.

 When different element types are used in combination, the permissions
 the client requests is the cartesian product of the values. In the
 following example

 [
 {
 "type": "customer_information",
 "locations": [
 "https://example.com/customers",
]
 "actions": [
 "read",
 "write"
],
 "datatypes": [
 "contacts",
 "photos"
]
 }
]

Lodderstedt, et al. Expires May 6, 2020 [Page 6]

Internet-Draft oauth-rar November 2019

 the client is requesting read and write access to both the contacts
 and photos belonging to customers in a customer information API. If
 the client wishes to have finer control over its access, it can send
 multiple objects. For example:

 [
 {
 "type": "customer_information",
 "locations": [
 "https://example.com/customers"
],
 "actions": [
 "read"
],
 "datatypes": [
 "contacts"
]
 },
 {
 "type": "customer_information",
 "locations": [
 "https://example.com/customers"
],
 "actions": [
 "write"
],
 "datatypes": [
 "photos"
]
 }
]

 The client is asking for read access to the contacts and write access
 to the photos in the same API endpoint.

 An API MAY define its own extensions, subject to the "type" of the
 respective authorization object. It is assumed that the full
 structure of each of the authorization objects is tailored to the
 needs of a certain application, API, or resource type. The example
 structures shown above are based on certain kinds of APIs that can be
 found in the Open Banking space.

 Note: Applications MUST ensure that their authorization data types do
 not collide. This is either achieved by using a namespace under the
 control of the entity defining the type name or by registering the
 type with the new "OAuth Authorization Data Type Registry" (see

Section 9).

Lodderstedt, et al. Expires May 6, 2020 [Page 7]

Internet-Draft oauth-rar November 2019

 The following example shows how an implementation could utilize the
 namespace "https://scheme.example.org/" to ensure collision resistant
 element names.

 {
 "type": "https://scheme.example.org/files",
 "locations": [
 "https://example.com/files"
],
 "permissions": [
 {
 "path": "/myfiles/A",
 "access": [
 "read"
]
 },
 {
 "path": "/myfiles/A/X",
 "access": [
 "read",
 "write"
]
 }
]
 }

2.2. Relationship to "scope" parameter

 "authorization_details" and "scope" can be used in the same
 authorization request for carrying independent authorization
 requirements.

 The AS MUST consider both sets of requirements in combination with
 each other for the given authorization request. The details of how
 the AS combines these parameters are specific to the APIs being
 protected and outside the scope of this specification.

 It is RECOMMENDED that a given API use only one form of requirement
 specification.

 When gathering user consent, the AS MUST present the merged set of
 requirements represented by the authorization request.

2.2.1. Scope value "openid" and "claims" parameter

 OpenID Connect [OIDC] specifies the JSON-based "claims" request
 parameter that can be used to specify the claims a client (acting as
 OpenID Connect Relying Party) wishes to receive in a fine-grained and

Lodderstedt, et al. Expires May 6, 2020 [Page 8]

Internet-Draft oauth-rar November 2019

 privacy preserving way as well as assign those claims to a certain
 delivery mechanisms, i.e. ID Token or userinfo response.

 The combination of the scope value "openid" and the additional
 parameter "claims" can be used beside "authorization_details" in the
 same way as every non-OIDC scope value.

 Alternatively, there could be an authorization data type for OpenID
 Connect. Appendix A.1 gives an example of how such an authorization
 data type could look like.

2.3. Relationship to "resource" parameter

 The request parameter "resource" as defined in
 [I-D.ietf-oauth-resource-indicators] indicates to the AS the
 resource(s) where the client intends to use the access tokens issued
 based on a certain grant. This mechanism is a way to audience-
 restrict access tokens and to allow the AS to create resource server
 specific access tokens.

 If a client uses "authorization_details" with "locations" elements
 and the "resource" parameter in the same authorization request, the
 "locations" data take precedence over the data conveyed in the
 "resource" parameter for that particular authorization details
 object.

 If such a client uses the "resource" parameter in a subsequent token
 requests, the AS MUST utilize the data provided in the "locations"
 elements to filter the authorization data objects applicable to the
 respective resource server. The AS will select all authorization
 details object where the "resource" string matches as prefix of one
 of the URLs provided in the respective "locations" element.

 This shall be illustrated using an example.

 The client has sent an authorization request using the following
 example authorization details.

Lodderstedt, et al. Expires May 6, 2020 [Page 9]

Internet-Draft oauth-rar November 2019

 [
 {
 "type": "account_information",
 "actions": [
 "list_accounts",
 "read_balances",
 "read_transactions"
],
 "locations": [
 "https://example.com/accounts"
]
 },
 {
 "type": "payment_initiation",
 "actions": [
 "initiate",
 "status",
 "cancel"
],
 "locations": [
 "https://example.com/payments"
],
 "instructedAmount": {
 "currency": "EUR",
 "amount": "123.50"
 },
 "creditorName": "Merchant123",
 "creditorAccount": {
 "iban": "DE02100100109307118603"
 },
 "remittanceInformationUnstructured": "Ref Number Merchant"
 }
]

 If this client then sends the following token request to the AS,

 POST /token HTTP/1.1
 Host: as.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &resource=https%3A%2F%2Fexample%2Ecom%2Fpayments

 that contains a resource parameter with the value of
 "https://example.com/payments", this value will be matched against
 the locations elements ("https://example.com/accounts" and

Lodderstedt, et al. Expires May 6, 2020 [Page 10]

Internet-Draft oauth-rar November 2019

 "https://example.com/payments") and will select the element of type
 "payment_initiation" for inclusion in the access token as illustrated
 by the following example JWT content.

 {
 "iss": "https://as.example.com",
 "sub": "24400320",
 "aud": "a7AfcPcsl2",
 "exp": 1311281970,
 ...
 "authorization_details": [
 {
 "type": "https://www.someorg.com/payment_initiation",
 "actions": [
 "initiate",
 "status",
 "cancel"
],
 "locations": [
 "https://example.com/payments"
],
 "instructedAmount": {
 "currency": "EUR",
 "amount": "123.50"
 },
 "creditorName": "Merchant123",
 "creditorAccount": {
 "iban": "DE02100100109307118603"
 },
 "remittanceInformationUnstructured": "Ref Number Merchant"
 }
],
 ...
 }

3. Using "authorization_details"

3.1. Authorization Request

 The request parameter can be used to specify authorization
 requirements in all places where the "scope" parameter is used for
 the same purpose, examples include:

 o Authorization requests as specified in [RFC6749],

 o Access token requests as specified in [RFC6749], if also used as
 authorization requests, e.g. in the case of assertion grant types
 [RFC7521],

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7521

Lodderstedt, et al. Expires May 6, 2020 [Page 11]

Internet-Draft oauth-rar November 2019

 o Request objects as specified in [I-D.ietf-oauth-jwsreq],

 o Device Authorization Request as specified in [RFC8628],

 o Backchannel Authentication Requests as defined in [OpenID.CIBA].

 Parameter encoding is determined by the respective context.

 In the context of an authorization request according to [RFC6749],
 the parameter is encoded using the "application/x-www-form-
 urlencoded" format of the serialized JSON as shown in the following
 example:

 GET /authorize?response_type=code
 &client_id=s6BhdRkqt3
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
 &code_challenge_method=S256
 &code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U
 &authorization_details=%5B%7B%22type%22%3A%22account%5Finformati
 on%22%2C%22actions%22%3A%5B%22list%5Faccounts%22%2C%22read%5Fbal
 ances%22%2C%22read%5Ftransactions%22%5D%2C%22locations%22%3A%5B%
 22https%3A%2F%2Fexample%2Ecom%2Faccounts%22%5D%7D%5D HTTP/1.1
 Host: server.example.com

 Implementors MUST ensure to protect personal identifiable information
 in transit. One way is to utilize encrypted request objects as
 defined in [I-D.ietf-oauth-jwsreq]. In the context of a request
 object, "authorization_details" is added as another top level JSON
 element.

https://datatracker.ietf.org/doc/html/rfc8628
https://datatracker.ietf.org/doc/html/rfc6749

Lodderstedt, et al. Expires May 6, 2020 [Page 12]

Internet-Draft oauth-rar November 2019

 {
 "iss": "s6BhdRkqt3",
 "aud": "https://server.example.com",
 "response_type": "code",
 "client_id": "s6BhdRkqt3",
 "redirect_uri": "https://client.example.com/cb",
 "state": "af0ifjsldkj",
 "code_challenge_method": "S256",
 "code_challenge": "K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U",
 "authorization_details": [
 {
 "type": "account_information",
 "actions": [
 "list_accounts",
 "read_balances",
 "read_transactions"
],
 "locations": [
 "https://example.com/accounts"
]
 },
 {
 "type": "payment_initiation",
 "actions": [
 "initiate",
 "status",
 "cancel"
],
 "locations": [
 "https://example.com/payments"
],
 "instructedAmount": {
 "currency": "EUR",
 "amount": "123.50"
 },
 "creditorName": "Merchant123",
 "creditorAccount": {
 "iban": "DE02100100109307118603"
 },
 "remittanceInformationUnstructured": "Ref Number Merchant"
 }
]
 }

 Authorization request URIs containing authorization details in a
 request parameter or a request object can become very long.
 Implementers SHOULD therefore consider using the "request_uri"
 parameter as defined in [I-D.ietf-oauth-jwsreq] in combination with

Lodderstedt, et al. Expires May 6, 2020 [Page 13]

Internet-Draft oauth-rar November 2019

 the pushed request object mechanism as defined in
 [I-D.lodderstedt-oauth-par] to pass authorization details in a
 reliable and secure manner. Here is an example of such a pushed
 authorization request that sends the authorization request data
 directly to the AS via a HTTPS-protected connection:

 POST /as/par HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded
 Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

 response_type=code&
 client_id=s6BhdRkqt3
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
 &code_challenge_method=S256
 &code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U
 &authorization_details=%7B%22iss%22%3A%22s6BhdRkqt3%22%2C%22aud%22%
 3A%22https%3A%2F%2Fserver%2Eexample%2Ecom%22%2C%22response%5Ftype%2
 2%3A%22code%22%2C%22client%5Fid%22%3A%22s6BhdRkqt3%22%2C%22redirect
 %5Furi%22%3A%22https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb%22%2C%22st
 ate%22%3A%22af0ifjsldkj%22%2C%22code%5Fchallenge%5Fmethod%22%3A%22S
 256%22%2C%22code%5Fchallenge%22%3A%22K2%2Dltc83acc4h0c9w6ESC%5FrEMT
 J3bww%2DuCHaoeK1t8U%22%2C%22authorization%5Fdetails%22%3A%5B%7B%22t
 ype%22%3A%22account%5Finformation%22%2C%22actions%22%3A%5B%22list%5
 Faccounts%22%2C%22read%5Fbalances%22%2C%22read%5Ftransactions%22%5D
 %2C%22locations%22%3A%5B%22https%3A%2F%2Fexample%2Ecom%2Faccounts%2
 2%5D%7D%2C%7B%22type%22%3A%22payment%5Finitiation%22%2C%22actions%2
 2%3A%5B%22initiate%22%2C%22status%22%2C%22cancel%22%5D%2C%22locatio
 ns%22%3A%5B%22https%3A%2F%2Fexample%2Ecom%2Fpayments%22%5D%2C%22ins
 tructedAmount%22%3A%7B%22currency%22%3A%22EUR%22%2C%22amount%22%3A%
 22123%2E50%22%7D%2C%22creditorName%22%3A%22Merchant123%22%2C%22cred
 itorAccount%22%3A%7B%22iban%22%3A%22DE02100100109307118603%22%7D%2C
 %22remittanceInformationUnstructured%22%3A%22Ref%20Number%20Merchan
 t%22%7D%5D%7D

3.2. Authorization Request Processing

 Based on the data provided in the "authorization_details" parameter
 the AS will ask the user for consent to the requested access
 permissions.

 The AS MUST refuse to process any unknown authorization data type.
 If the "authorization_details" contain any unknown authorization data
 type, the AS MUST abort processing and respond with an error
 "invalid_authorization_details" to the client.

Lodderstedt, et al. Expires May 6, 2020 [Page 14]

Internet-Draft oauth-rar November 2019

 Note: If the authorization request also contained the "scope"
 parameter, the AS MUST present the merged set of requirements
 represented by the authorization request in the user consent.

 If the resource owner grants the client the requested access, the AS
 will issue tokens to the client that are associated with the
 respective "authorization_details" (and scope values, if applicable).

 Note: The AS MUST make the "authorization_details" available to the
 respective resource servers. The AS MAY add the
 "authorization_details" element to access tokens in JWT format and to
 Token Introspection responses (see below).

3.3. Token Request

 Clients utilizing authorization details are RECOMMENDED to use the
 "resource" token request parameter to allow the AS to issue audience
 restricted access tokens as recommended in
 [I-D.ietf-oauth-security-topics].

 For example the following token request selects authorization details
 applicable for the resource server represented by the URI
 "https://example.com/payments".

 POST /token HTTP/1.1
 Host: as.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
 &resource=https%3A%2F%2Fexample%2Ecom%2Fpayments

3.4. Token Response

 In addition to the token response parameters as defined in [RFC6749],
 the authorization server MUST also return the authorization details
 as granted by the resource owner and assigned to the respective
 access token.

 This is shown in the following example:

https://datatracker.ietf.org/doc/html/rfc6749

Lodderstedt, et al. Expires May 6, 2020 [Page 15]

Internet-Draft oauth-rar November 2019

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token": "2YotnFZFEjr1zCsicMWpAA",
 "token_type": "example",
 "expires_in": 3600,
 "refresh_token": "tGzv3JOkF0XG5Qx2TlKWIA",
 "authorization_details": [
 {
 "type": "https://www.someorg.com/payment_initiation",
 "actions": [
 "initiate",
 "status",
 "cancel"
],
 "locations": [
 "https://example.com/payments"
],
 "instructedAmount": {
 "currency": "EUR",
 "amount": "123.50"
 },
 "creditorName": "Merchant123",
 "creditorAccount": {
 "iban": "DE02100100109307118603"
 },
 "remittanceInformationUnstructured": "Ref Number Merchant"
 }
]
 }

3.4.1. Token Content

 In order to enable the RS to enforce the authorization details as
 approved in the authorization process, the AS MUST make this data
 available to the RS.

 If the access token is a JWT [RFC7519], the AS is RECOMMENDED to add
 the "authorization_details" object, filtered to the specific
 audience, as top-level claim.

 The AS will typically also add further claims to the JWT the RS
 requires for request processing, e.g., user id, roles, and
 transaction specific data. What claims the particular RS requires is
 defined by the RS-specific policy with the AS.

https://datatracker.ietf.org/doc/html/rfc7519

Lodderstedt, et al. Expires May 6, 2020 [Page 16]

Internet-Draft oauth-rar November 2019

 The following shows the contents of an example JWT for the payment
 initation example above:

 {
 "iss": "https://as.example.com",
 "sub": "24400320",
 "aud": "a7AfcPcsl2",
 "exp": 1311281970,
 "acr": "psd2_sca",
 "txn": "8b4729cc-32e4-4370-8cf0-5796154d1296",
 "authorization_details": [
 {
 "type": "https://www.someorg.com/payment_initiation",
 "actions": [
 "initiate",
 "status",
 "cancel"
],
 "locations": [
 "https://example.com/payments"
],
 "instructedAmount": {
 "currency": "EUR",
 "amount": "123.50"
 },
 "creditorName": "Merchant123",
 "creditorAccount": {
 "iban": "DE02100100109307118603"
 },
 "remittanceInformationUnstructured": "Ref Number Merchant"
 }
],
 "debtorAccount": {
 "iban": "DE40100100103307118608",
 "user_role": "owner"
 }
]

 In this case, the AS added the following example claims:

 o "sub": conveys the user on which behalf the client is asking for
 payment initation

 o "txn": transaction id used to trace the transaction across the
 services of provider "example.com"

 o "debtorAccount": API-specific element containing the debtor
 account. In the example, this account was not passed in the

Lodderstedt, et al. Expires May 6, 2020 [Page 17]

Internet-Draft oauth-rar November 2019

 authorization details but selected by the user during the
 authorization process. The field "user_role" conveys the role the
 user has with respect to this particuar account. In this case,
 she is the owner. This data is used for access control at the
 payment API (the RS).

3.5. Token Introspection Request

 In case of opaque access tokens, the data provided to a certain RS is
 determined using the RS's identifier with the AS (see
 [I-D.ietf-oauth-jwt-introspection-response], section 3).

3.6. Token Introspection Response

 The token endpoint response provides the RS with the authorization
 details applicable to it as a top-level JSON element along with the
 claims the RS requires for request processing.

 Here is an example for the payment initation example RS:

Lodderstedt, et al. Expires May 6, 2020 [Page 18]

Internet-Draft oauth-rar November 2019

 {
 "active": true,
 "sub": "24400320",
 "aud": "s6BhdRkqt3",
 "exp": 1311281970,
 "acr": "psd2_sca",
 "txn": "8b4729cc-32e4-4370-8cf0-5796154d1296",
 "authorization_details": [
 {
 "type": "https://www.someorg.com/payment_initiation",
 "actions": [
 "initiate",
 "status",
 "cancel"
],
 "locations": [
 "https://example.com/payments"
],
 "instructedAmount": {
 "currency": "EUR",
 "amount": "123.50"
 },
 "creditorName": "Merchant123",
 "creditorAccount": {
 "iban": "DE02100100109307118603"
 },
 "remittanceInformationUnstructured": "Ref Number Merchant"
 }
],
 "debtorAccount": {
 "iban": "DE40100100103307118608",
 "user_role": "owner"
 }
 }

4. Metadata

 The AS advertises support for "authorization_details" using the
 metadata parameter "authorization_details_supported" of type boolean.

 The authorization data types supported can be determined using the
 metadata parameter "authorization_data_types_supported", which is an
 JSON array.

 Clients announce the authorization data types they use in the new
 dynamic client registration parameter "authorization_data_types".

Lodderstedt, et al. Expires May 6, 2020 [Page 19]

Internet-Draft oauth-rar November 2019

 The registration of new authorization data types with the AS is out
 of scope of this draft.

5. Implementation Considerations

 The scheme and processing will vary significantly among different
 authorization data types. Any implementation of this draft is
 therefore supposed to allow the customization of the user consent and
 the handling of access token data.

 One option would be to have a mechanism allowing the registration of
 extension modules, each of them responsible for rendering the
 respective user consent and any transformation needed to provide the
 data needed to the resource server by way of structured access tokens
 or token introspection responses.

6. Security Considerations

 Authorization details are sent through the user agent in case of an
 OAuth authorization request, which makes them vulnerable to
 modifications by the user. In order to ensure their integrity, the
 client SHOULD send authorization details in a signed request object
 as defined in [I-D.ietf-oauth-jwsreq] or use the "request_uri"
 authorization request parameter as defined in [I-D.ietf-oauth-jwsreq]
 to pass the URI of the request object to the authorization server.

 All strings MUST be compared using the exact byte representation of
 the characters as defined by [RFC8259]. This is especially true for
 the "type" field, which dictates which other fields and functions are
 allowed in the request. The server MUST NOT perform any form of
 collation, transformation, or equivalence on the string values.

7. Privacy Considerations

 Implementers MUST design and use authorization details in a privacy
 preserving manner.

 Any sensitive personal data included in authorization details MUST be
 prevented from leaking, e.g., through referrer headers.
 Implementation options include encrypted request objects as defined
 in [I-D.ietf-oauth-jwsreq] or transmission of authorization details
 via end-to-end encrypted connections between client and authorization
 server by utilizing the "request_uri" authorization request parameter
 as defined in [I-D.ietf-oauth-jwsreq].

 Even if the request data are encrypted, an attacker could use the
 authorization server to learn the user data by injecting the
 encrypted request data into an authorization request on a device

https://datatracker.ietf.org/doc/html/rfc8259

Lodderstedt, et al. Expires May 6, 2020 [Page 20]

Internet-Draft oauth-rar November 2019

 under his control and use the authorization server's user consent
 screens to show the (decrypted) user data in the clear.
 Implementations MUST consider this attacker vector and implement
 appropriate counter measures, e.g. by only showing portions of the
 data or, if possible, determing whether the assumed user context is
 still the same (after user authentication).

 The AS MUST take into consideration the privacy implications when
 sharing authorization details with the resource servers. The AS
 SHOULD share this data with the resource servers on a "need to know"
 basis.

8. Acknowledgements

 We would would like to thank Daniel Fett, Sebastian Ebling, Dave
 Tonge, Mike Jones, Nat Sakimura, and Rob Otto for their valuable
 feedback during the preparation of this draft.

 We would also like to thank Daniel Fett, Dave Tonge, Travis Spencer,
 Joergen Binningsboe, Aamund Bremer, Steinar Noem, and Aaron Parecki
 for their valuable feedback to this draft.

9. IANA Considerations

 TBD

 o "authorization_details" as JWT claim

 o "authorization_details_supported" and
 "authorization_data_types_supported" as metadata parameters

 o "authorization_data_types" as dynamic client registration
 parameter

 o establish authorization data type registry

 o register type "openid_claims"

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Lodderstedt, et al. Expires May 6, 2020 [Page 21]

Internet-Draft oauth-rar November 2019

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7521] Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", RFC 7521, DOI 10.17487/RFC7521,
 May 2015, <https://www.rfc-editor.org/info/rfc7521>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8628] Denniss, W., Bradley, J., Jones, M., and H. Tschofenig,
 "OAuth 2.0 Device Authorization Grant", RFC 8628,
 DOI 10.17487/RFC8628, August 2019,
 <https://www.rfc-editor.org/info/rfc8628>.

10.2. Informative References

 [CSC] Consortium, C. S., "Architectures and protocols for remote
 signature applications", Jun 2019,
 <https://cloudsignatureconsortium.org/wp-

content/uploads/2019/07/CSC_API_V1_1.0.4.0.pdf>.

 [ETSI] ETSI, "ETSI TS 119 432, Electronic Signatures and
 Infrastructures (ESI); Protocols for remote digital
 signature creation", Mar 2019,
 <https://www.etsi.org/deliver/

etsi_ts/119400_119499/119432/01.01.01_60/
ts_119432v010101p.pdf>.

 [I-D.ietf-oauth-jwsreq]
 Sakimura, N. and J. Bradley, "The OAuth 2.0 Authorization
 Framework: JWT Secured Authorization Request (JAR)",

draft-ietf-oauth-jwsreq-20 (work in progress), October
 2019.

 [I-D.ietf-oauth-jwt-introspection-response]
 Lodderstedt, T. and V. Dzhuvinov, "JWT Response for OAuth
 Token Introspection", draft-ietf-oauth-jwt-introspection-

response-08 (work in progress), September 2019.

https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc7521
https://www.rfc-editor.org/info/rfc7521
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8628
https://www.rfc-editor.org/info/rfc8628
https://cloudsignatureconsortium.org/wp-content/uploads/2019/07/CSC_API_V1_1.0.4.0.pdf
https://cloudsignatureconsortium.org/wp-content/uploads/2019/07/CSC_API_V1_1.0.4.0.pdf
https://www.etsi.org/deliver/etsi_ts/119400_119499/119432/01.01.01_60/ts_119432v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/119400_119499/119432/01.01.01_60/ts_119432v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/119400_119499/119432/01.01.01_60/ts_119432v010101p.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwsreq-20
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-introspection-response-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-introspection-response-08

Lodderstedt, et al. Expires May 6, 2020 [Page 22]

Internet-Draft oauth-rar November 2019

 [I-D.ietf-oauth-resource-indicators]
 Campbell, B., Bradley, J., and H. Tschofenig, "Resource
 Indicators for OAuth 2.0", draft-ietf-oauth-resource-

indicators-08 (work in progress), September 2019.

 [I-D.ietf-oauth-security-topics]
 Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,
 "OAuth 2.0 Security Best Current Practice", draft-ietf-

oauth-security-topics-13 (work in progress), July 2019.

 [I-D.lodderstedt-oauth-par]
 Lodderstedt, T., Campbell, B., Sakimura, N., Tonge, D.,
 and F. Skokan, "OAuth 2.0 Pushed Authorization Requests",

draft-lodderstedt-oauth-par-00 (work in progress),
 September 2019.

 [OIDC] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0 incorporating
 errata set 1", Nov 2014,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [OpenID.CIBA]
 Fernandez, G., Walter, F., Nennker, A., Tonge, D., and B.
 Campbell, "OpenID Connect Client Initiated Backchannel
 Authentication Flow - Core 1.0", January 2019,
 <https://openid.net/specs/openid-client-initiated-

backchannel-authentication-core-1_0.html>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [transaction-authorization]
 Lodderstedt, T., "Transaction Authorization or why we need
 to re-think OAuth scopes", Apr 2019, <https://medium.com/

oauth-2/transaction-authorization-or-why-we-need-to-re-
think-oauth-scopes-2326e2038948>.

Appendix A. Additional Examples

A.1. OpenID Connect

 These hypothetical examples try to encapsulate all details specific
 to the OpenID Connect part of an authorization process into an
 authorization JSON object.

 The top-level elements are based on the definitions given in [OIDC]:

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-resource-indicators-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-resource-indicators-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-13
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-13
https://datatracker.ietf.org/doc/html/draft-lodderstedt-oauth-par-00
http://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://medium.com/oauth-2/transaction-authorization-or-why-we-need-to-re-think-oauth-scopes-2326e2038948
https://medium.com/oauth-2/transaction-authorization-or-why-we-need-to-re-think-oauth-scopes-2326e2038948
https://medium.com/oauth-2/transaction-authorization-or-why-we-need-to-re-think-oauth-scopes-2326e2038948

Lodderstedt, et al. Expires May 6, 2020 [Page 23]

Internet-Draft oauth-rar November 2019

 o "claim_sets": names of predefined claim sets, replacement for
 respective scope values, such as "profile"

 o "max_age": Maximum Authentication Age

 o "acr_values": array of ACR values

 o "claims": the "claims" JSON structure as defined in [OIDC]

 This is a simple request for some claim sets.

 [
 {
 "type": "openid",
 "locations": [
 "https://op.example.com/userinfo"
],
 "claim_sets": [
 "email",
 "profile"
]
 }
]

 Note: "locations" specifies the location of the userinfo endpoint
 since this is the only place where an access token is used by a
 client (RP) in OpenID Connect to obtain claims.

 A more sophisticated example is shown in the following

Lodderstedt, et al. Expires May 6, 2020 [Page 24]

Internet-Draft oauth-rar November 2019

 [
 {
 "type": "openid",
 "locations": [
 "https://op.example.com/userinfo"
],
 "max_age": 86400,
 "acr_values": "urn:mace:incommon:iap:silver",
 "claims": {
 "userinfo": {
 "given_name": {
 "essential": true
 },
 "nickname": null,
 "email": {
 "essential": true
 },
 "email_verified": {
 "essential": true
 },
 "picture": null,
 "http://example.info/claims/groups": null
 },
 "id_token": {
 "auth_time": {
 "essential": true
 }
 }
 }
 }
]

A.2. Remote Electronic Signing

 The following example is based on the concept layed out for remote
 electronic signing in ETSI TS 119 432 [ETSI] and the CSC API for
 remote signature creation [CSC].

Lodderstedt, et al. Expires May 6, 2020 [Page 25]

Internet-Draft oauth-rar November 2019

 [
 {
 "type": "sign",
 "locations": [
 "https://signing.example.com/signdoc"
],
 "credentialID": "60916d31-932e-4820-ba82-1fcead1c9ea3",
 "documentDigests": [
 {
 "hash": "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",
 "label": "Credit Contract"
 },
 {
 "hash": "HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0=",
 "label": "Contract Payment Protection Insurance"
 }
],
 "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1"
 }
]

 The top-level elements have the following meaning:

 o "credentialID": identifier of the certificate to be used for
 signing

 o "documentDigests": array containing the hash of every document to
 be signed ("hash" elements). Additionally, the corresponding
 "label" element identifies the respective document to the user,
 e.g. to be used in user consent.

 o "hashAlgorithm": algomrithm that was used to calculate the hash
 values.

 The AS is supposed to ask the user for consent for the creation of
 signatues for the documents listed in the structure. The client uses
 the access token issued as result of the process to call the sign doc
 endpoint at the respective signing service to actually create the
 signature. This access token is bound to the client, the user id and
 the hashes (and signature algorithm) as consented by the user.

A.3. Access to Tax Data

 This example is inspired by an API allowing third parties to access
 citizen's tax declarations and income statements, for example to
 determine their credit worthiness.

Lodderstedt, et al. Expires May 6, 2020 [Page 26]

Internet-Draft oauth-rar November 2019

 [
 {
 "type": "tax_data",
 "locations": [
 "https://taxservice.govehub.no"
],
 "actions":"read_tax_declaration",
 "periods": ["2018"],
 "duration_of_access": 30,
 "tax_payer_id": "23674185438934"
 }
]

 The top-level elements have the following meaning:

 o "periods": determines the periods the client wants to access

 o "duration_of_access": how long does the client intend to access
 the data in days

 o "tax_payer_id": identifier of the tax payer (if known to the
 client)

A.4. eHealth

 This example is inspired by an API used in the Norwegian eHealth
 system.

 In this use case the physical therapist sits in front of her computer
 using a local Electronic Health Records (EHR) system. She wants to
 look at the electronic patient records of a certain patient and she
 also wants to fetch the patients journal entries in another system,
 perhaps at another institution or a national service. Access to this
 data is provided by an API.

 The information necessary to authorize the request at the API is only
 known by the EHR system, and must be presented to the API.

 Here is an example authorization details object:

 [
 {
 "type": "patient_record",
 "location": "https://fhir.example.com/patient",
 "actions": [
 "read"
],
 "patient_identifier": [

Lodderstedt, et al. Expires May 6, 2020 [Page 27]

Internet-Draft oauth-rar November 2019

 {
 "system": "urn:oid:2.16.578.1.12.4.1.4.1",
 "value": "12345678901"
 }
],
 "reason_for_request": "Clinical treatment",
 "requesting_entity": {
 "type": "Practitioner",
 "practicioner_identifier": [
 {
 "system": " urn:oid:2.16.578.1.12.4.1.4.4",
 "value": "1234567"
 }
],
 "practitioner_role": {
 "organization": {
 "organization_identifier": [
 {
 "system": "urn:oid:2.16.578.1.12.4.1.2.101",
 "value": "<organizational number>"
 }
],
 "organization_type": {
 "coding": [
 {
 "system":
 "http://hl7.org/fhir/organization-type",
 "code": "dept",
 "display": "Hospital Department"
 }
]
 },
 "name": "Akuttmottak"
 },
 "role": {
 "coding": [
 {
 "system": "http://snomed.info/sct",
 "code": "36682004",
 "display": "Physical therapist"
 }
]
 }
 }
 }
 }
]

Lodderstedt, et al. Expires May 6, 2020 [Page 28]

Internet-Draft oauth-rar November 2019

 Description of the elements:

 o "patient_identifier": the identifier of the patient composed of a
 system identifier in OID format (namespace) and the acutal value
 within this namespace.

 o "reason_for_request": the reason why the user wants to access a
 certain API

 o "requesting_entity": specification of the requester by means of
 identity, role and organizational context. This data is provided
 to facilitate authorization and for auditing purposes.

 In this use case, the AS authenticates the requester, who is not the
 patient, and approves access based on policies.

Appendix B. Document History

 [[To be removed from the final specification]]

 -03

 o Reworked examples to illustrate privacy preserving use of
 "authorization_details"

 o Added text on audience restriction

 o Added description of relationship between "scope" and
 "authorization_details"

 o Added text on token request & response and "authorization_details"

 o Added text on how authorization details are conveyed to RSs by
 JWTs or token endpoint response

 o Added description of relationship between "claims" and
 "authorization_details"

 o Added more example from different sectors

 o Clarified string comparison to be byte-exact without collation

 -02

 o Added Security Considerations

 o Added Privacy Considerations

Lodderstedt, et al. Expires May 6, 2020 [Page 29]

Internet-Draft oauth-rar November 2019

 o Added notes on URI size and authorization details

 o Added requirement to return the effective authorization details
 granted by the resource owner in the token response

 o changed "authorization_details" structure from object to array

 o added Justin Richer & Brian Campbell as Co-Authors

 -00 / -01

 o first draft

Authors' Addresses

 Torsten Lodderstedt
 yes.com

 Email: torsten@lodderstedt.net

 Justin Richer
 Bespoke Engineering

 Email: ietf@justin.richer.org

 Brian Campbell
 Ping Identity

 Email: bcampbell@pingidentity.com

Lodderstedt, et al. Expires May 6, 2020 [Page 30]

