
Open Authentication Protocol T. Lodderstedt, Ed.

Internet-Draft Deutsche Telekom AG

Intended status: Standards Track M. McGloin

Expires: September 15, 2011 IBM

P. Hunt

Oracle Corporation

March 14, 2011

OAuth 2.0 Threat Model and Security Considerations

draft-lodderstedt-oauth-security-01

Abstract

This document gives security considerations based on a comprehensive

threat model for the OAuth 2.0 Protocol.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on September 15, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.



Table of Contents

1. Introduction

2. Overview

2.1. Scope

2.2. Attack Assumptions

2.3. Architectural assumptions

2.3.1. Authorization Servers

2.3.2. Resource Server

2.3.3. Client

2.3.3.1. Web Server

2.3.3.2. Native Applications

2.3.3.3. User Agent

2.3.3.4. Autonomous

3. Security Features

3.1. Tokens

3.2. Scope

3.3. Expires_In

3.4. Authorization Code

3.5. Redirect-URI

3.6. Access Token

3.7. Refresh Token

3.8. Client Authentication

4. Security Threat Model

4.1. Clients

4.1.1. Threat: Obtain Client Secrets

4.1.2. Threat: Obtain Refresh Tokens

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*



4.1.3. Threat: Obtain Access Tokens

4.1.4. Threat: End-user credentials phished using compromised or

embedded browser

4.2. Authorization Endpoint

4.2.1. Threat: Password phishing by counterfeit authorization

server

4.2.2. Threat: User unintentionally grants too much access scope

4.2.3. Threat: Malicious client obtains existing authorization by

fraud

4.2.4. Threat: Open redirector

4.3. Token endpoint

4.3.1. Threat: Eavesdropping access tokens

4.3.2. Threat: Obtain access tokens from authorization server

database

4.3.3. Threat: Obtain client credentials over non secure

transport

4.3.4. Threat: Obtain client secret from authorization server

database

4.3.5. Threat: Obtain client secret by online guessing

4.3.6. DoS on dynamic client secret creation

4.4. Obtaining Authorization

4.4.1. Authorization Code

4.4.1.1. Threat: Malicious client obtains authorization

4.4.1.2. Threat: Eavesdropping authorization codes

4.4.1.3. Threat: Obtain authorization codes from authorization

server database

4.4.1.4. Threat: Online guessing of authorization codes

4.4.1.5. Threat: Authorization code leaks when requesting access

token

4.4.1.6. Threat: Authorization code phishing

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*



4.4.1.7. Threat: Session fixation

4.4.1.8. Threat: DoS, Exhaustion of resources attacks

4.4.2. Implicit Grant

4.4.2.1. Threat: Access token leak in transport/end-points

4.4.2.2. Threat: Access token leak in browser history

4.4.2.3. Threat: Malicious client obtains authorization

4.4.3. Resource Owner Password Credentials

4.4.3.1. Threat: Accidental exposure of passwords at client site

4.4.3.2. Threat: Client obtains scopes without end-user

authorization

4.4.3.3. Threat: Client obtains refresh token through automatic

authorization

4.4.3.4. Threat: Obtain user passwords on transport

4.4.3.5. Threat: Obtain user passwords from authorization server

database

4.4.3.6. Threat: Online guessing

4.4.4. Client Credentials

4.5. Refreshing an Access Token

4.5.1. Threat: Eavesdropping refresh tokens from authorization

server

4.5.2. Threat: Obtaining refresh token from authorization server

database

4.5.3. Threat: Obtain refresh token by online guessing

4.5.4. Threat: Obtain refresh token phishing by counterfeit

authorization server

4.6. Accessing Protected Resources

4.6.1. Threat: Eavesdropping access tokens on transport

4.6.2. Threat: Replay authorized resource server requests

4.6.3. Threat: Guessing access tokens

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*



4.6.4. Threat: Access token phishing by counterfeit resource

server

4.6.5. Threat: Abuse of token by legitimate resource server or

client

4.6.6. Threat: Leak of confidential data in HTTP-Proxies

4.6.7. Threat: Token leakage via logfiles and HTTP referrers

5. Security Considerations

5.1. General

5.1.1. Confidentiality of Requests

5.1.2. Server authentication

5.1.3. Always keep the resource owner informed

5.1.4. Credentials

5.1.4.1. Credential storage protection

5.1.4.1.1. Standard system security means

5.1.4.1.2. Standard SQL inj. Countermeasures

5.1.4.1.3. No cleartext storage of credentials

5.1.4.1.4. Encryption of credentials

5.1.4.1.5. Use of asymmetric cryptography

5.1.4.2. Online attacks on secrets

5.1.4.2.1. Password policy

5.1.4.2.2. High entropy of secrets

5.1.4.2.3. Lock accounts

5.1.4.2.4. Tar pit

5.1.4.2.5. Usage of CAPTCHAs

5.1.5. Tokens (access, refresh, code)

5.1.5.1. Limit token scope

5.1.5.2. Expiration time

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*



5.1.5.3. Short expiration time

5.1.5.4. Limit number of usages/ One time usage

5.1.5.5. Bind tokens to a particular resource server (Audience)

5.1.5.6. Use endpoint address as token audience

5.1.5.7. Audience and Token scopes

5.1.5.8. Bind token to client id

5.1.5.9. Signed tokens

5.1.5.10. Encryption of token content

5.1.5.11. Random token value with high entropy

5.1.6. Access tokens

5.2. Authorization Server

5.2.1. Authorization Codes

5.2.1.1. Automatic revocation of derived tokens if abuse is

detected

5.2.2. Refresh tokens

5.2.2.1. Restricted issuance of refresh tokens

5.2.2.2. Binding of refresh token to client_id

5.2.2.3. Refresh Token Replacement

5.2.2.4. Refresh Token Revocation

5.2.2.5. Combine refresh token requests with user-provided secret

5.2.2.6. Device identification

5.2.3. Client authentication and authorization

5.2.3.1. Don't issue secrets to clients with inappropriate

security policy

5.2.3.2. Client_id only in combination with forced user consent

5.2.3.3. Client_id only in combination with redirect_uri

5.2.3.4. Deployment-specific client secrets

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*



5.2.3.5. Validation of pre-registered redirect_uri

5.2.3.6. Client secret revocation

5.2.3.7. Use strong client authentication (e.g. client_assertion

/ client_token)

5.2.4. End-user authorization

5.2.4.1. Automatic processing of repeated authorizations requires

client validation

5.2.4.2. Informed decisions based on transparency

5.2.4.3. Validation of client properties by end-user

5.2.4.4. Binding of authorization code to client_id

5.2.4.5. Binding of authorization code to redirect_uri

5.3. Client App Security

5.3.1. Don't store credentials in code or resources bundled with

software packages

5.3.2. Standard web server protection measures (for config files

and databases)

5.3.3. Store secrets in a secure storage

5.3.4. Utilize device lock to prevent unauthorized device access

5.3.5. Platform security measures

5.4. Resource Servers

5.4.1. Authorization headers

5.4.2. Authenticated requests

5.4.3. Signed requests

6. IANA Considerations

7. Acknowledgements

8. References

8.1. Normative References

8.2. Informative References

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*



Authors' Addresses

1. Introduction

This document gives security considerations based on a comprehensive

threat model for the OAuth 2.0 Protocol [I-D.ietf-oauth-v2]. It

contains the following content:

Documents any assumptions and scope considered when creating the

threat model

Describe the security features in-built into the OAuth protocol

and how they are intended to thwart attacks

Give a comprehensive threat model for OAuth and describes the

respective counter measures to thwart those threats.

Threats include any intentional attacks on OAuth tokens and resources

protected by OAuth tokens as well as security risks introduced if the

proper security measures are not put in place. Threats are structured

along the lines of the protocol structure to aid development teams

implement each part of the protocol securely. For example all threats

for granting access or all threats for a particular client profile or

all threats for protecting the resource server.

2. Overview

2.1. Scope

The security considerations document only considers clients bound to a

particular deployment as supported by [I-D.ietf-oauth-v2]. Such

deployments have the following characteristics:

Resource server URLs are static and well-known at development

time, authorization server URLs can be static or discovered.

Token scope values (e.g. applicable URLs and methods) are well-

known at development time.

Client registration: Since registration of clients is out of

scope of the current core spec, this document assumes a broad

variety of options from static registration during development

time to dynamic registration at runtime.

The following are considered out of scope :

Communication between authorization server and resource server

Token formats

*

*

*

*

*

*

*

*

*



Except for „Resource Owner Password Credentials“ (see [I-D.ietf-

oauth-v2], section 4.3), the mechanism used by authorization

servers to authenticate the user

Mechanism by which a user obtained an assertion and any resulting

attacks mounted as a result of the assertion being false.

Clients are not bound to a specific deployment: An example could

by a mail client with support for contact list access via the

portable contacts API (see [portable-contacts]). Such clients

cannot be registered upfront with a particular deployment and

must dynamically discover the URLs relevant for the Oauth

protocol.

2.2. Attack Assumptions

The following assumptions relate to an attacker and resources available

to an attacker:

It is assumed the attacker has full access to the network between

the client and service provider and may eaves drop on any

communications between the two.

It is assumed an attacker has unlimited resources to mount an

attack.

It is assumed that 2 parties involved in the OAuth 3 legged

protocol may collude to mount an attack against the 3rd party.

For example, the client and authorization server may be under

control of an attacker and collude to trick a user to gain access

to resources.

2.3. Architectural assumptions

This section documents the assumptions about the features, limitations

and design options of the different entities of a OAuth deployment

along with the security-sensitive data-elements managed by those

entity. These assumptions are the foundation of the treat analysis.

The OAuth protocol leaves deployments with a certain degree of freedom

how to implement and apply the standard. The core specification defines

the core concepts of an authorization server and an resource server.

Both servers can be implemented in the same server entity, or they may

also be different entities. The later is typically the case for multi-

service providers with a single authentication and authorization

system, and are more typical in middleware architectures.

2.3.1. Authorization Servers

The following data elements MAY be stored or accessible on the

authorization server:

*

*

*

*

*

*



user names and passwords

client ids and secrets

client-specific refresh tokens

client-specific access tokens (in case of handle-based design)

HTTPS certificate/key

per authorization process (in case of handle-based design):

redirect_uri, client_id, authorization code

2.3.2. Resource Server

The following data elements MAY be stored or accessible on the

authorization server:

user data (out of scope)

HTTPS certificate/key

authz server credentials (handle-based design), or

authz server shared secret/public key (assertion-based design)

access tokens (per request)

It is assumed that a resource server has no knowledge of refresh

tokens, user passwords, or client secrets.

2.3.3. Client

The following data elements are stored or accessible on the

authorization server:

client id (and secret)

refresh tokens (persistent) access tokens (transient)

trusted CA certs (HTTPS)

per authorization process: redirect_uri, authorization code

2.3.3.1. Web Server

Such clients typically represent a web site with its own user

management and login mechanism and have the following characteristics:

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*



Section 4.4.1).

Tokens are bound to a single user identity at the site

Web servers are able to protect client secrets

The potential number of tokens affected by a security breach

depends on number of site users.

Such clients are implemented using the authorization code flow (see 

2.3.3.2. Native Applications

This class of OAuth clients represent apps running on a user-controlled

device, such as a notebook, PC, Tablet, Smartphone, or Gaming Console.

Massively distributed applications such as these cannot reliably keep

secrets confidential, which are issued per software package. This is

because such secrets would need to be transferred to the user device as

part of the installation process. An attacker could reverse engineer

any secret from the binary or accompanying resources. Native

Applications are able to protect per installation/instance secrets

(e.g. refresh tokens) to some extent.

Device platforms typically allow users to lock the device with a pin

and to segregate different apps or users (multi-user operation

systems).

Some devices can be identified/authenticated (to varying degrees of

assurance):

Handsets and smart phones by its International Mobile Equipment

Identity (IMEI)

Set top boxes, gaming consoles, others by using certificates and

TPM module - Note: This does not help to identify client apps but

may be used to bound tokens to devices and to detect token theft

Mobile devices, such as handsets or smart phones have the following

special characteristics:

Limited input capabilities, therefore such clients typically

obtain a refresh token in order to provide automatic login for

sub-sequent application sessions

As mobile and small devices, they can get cloned, stolen or lost

easier than other devices.

Security breach will affect single user (or a few users) only.

For the purposes of this document, the scenario of attackers who

control a smartphone device entirely is out of scope.

There are several implementation options for native applications:

*

*

*

*

*

*

*

*



Handle (or artifact)

The authorization code flow in combination with an embedded or

external browser (Section 4.4.1)

The implicte grant flow in combination with an embedded or

external browser (Section 4.4.2)

The resource owner password credentials flow can be used as well

(Section 4.4.3)

Different threats exists for those implementation options, which are

discussed in the respective sections of the threat model.

2.3.3.3. User Agent

[TBD]

Such client are implemented using the implicite grant flow (Section

4.4.2).

2.3.3.4. Autonomous

Autonomous clients access service providers using rights grants by

client credentials only. Thus the autonomous client becomes the „user“.

Authenticating autonomous clients is conceptually similar to end-user

authentication since the issued tokens refer to the client's identity.

Autonomous clients shall always be required to use a secret or some

other form of authentication (e.g. client assertion in the form of a

SAML assertion or STS token) acceptable to the authorization/token

services. The client must ensure the confidentiality of client_secret

or other credential.

3. Security Features

These are some of the security features which have been built into the

OAuth 2.0 protocol to mitigate attacks and security issues.

3.1. Tokens

OAuth makes extensive use of tokens. Tokens can be implemented in 2

ways as follows:

a reference to some internal data structure

within the authorization server, the internal data structure

contains the attributes of the token, such as user id, scope, etc.

Handles typically require a communication between resource server

and token server in order to validate the token and obtain token-

bound data. Handles enable simple revocation and do not require

cryptographic mechanisms to protected token content from being

modified. As a disadvantage, they require additional resource/token

server communication impacting on performance and scalability. An

*

*

*



Assertions (aka self-contained token)

bearer token

proof token

authorization code (OAuth Section 4.1.2) is an example of a 'handle'

token. An access token may also be implemented as a handle token. A

'handle' token is often referred to as an 'opaque' token because the

resource server does not need to be able to interpret the token

directly, it simply uses the token.

a parseable token. An assertion

typically has a duration, an audience, and is digitally signed

containing information about the user and the client. Examples of

assertion formats are SAML assertions and Kerberos tickets.

Assertions can typically directly be validated and used by a

resource server without interactions with the authorization server.

This results in better performance and scalability. Implementing

token revocation is more difficult with assertions than with

handles.

Tokens can be sent to resource server in two ways:

A 'bearer token' is a token that can be used by any

client who has received the token (cf. [I-D.ietf-oauth-v2-bearer] .

Because mere possession is enough to use the token it is important

that communication between end-points be secured to ensure that only

authorized end-points may capture the token. The bearer token is

convenient to client applications as it does not require them to do

anything to use them (such as a proof of identity). Bearer tokens

have similar characteristics to web SSO cookies used in browsers.

A 'proof token' is a token that can only be used by a

specific client. Each use of the token, requires the client to

perform some action that proves that it is the authorized user of

the token. Examples of this are MAC (mutual authentication) and HoK

(holder-of-key) tokens (cf. [I-D.hammer-oauth-v2-mac-token].

3.2. Scope

A Scope represents the access authorization associated with a

particular token with respect to resource servers, resources and

methods on those resources. Scopes are the OAuth way to explicitly

manage the power associated with an access token. A scope can be

controlled by the authorization server and/or the end-user in order to

limit access to resources for OAuth clients these parties deem less

secure or trustworthy. Optionally, the client can request the scope to

apply to the token but only for lesser scope than would otherwise be

granted, e.g. to reduce the potential impact if this token is sent over

non secure channels. A scope is typically complemented by a restriction

on a token's lifetime.



3.3. Expires_In

Expires_In allows an authorization server (based on its policies or on

behalf of the end-user) to limit the lifetime of the access token. This

mechanisms can be used to issue short-living tokens to OAuth clients

the authorization server deems less secure or where sending tokens over

non secure channels.

3.4. Authorization Code

An Authorization Code represents the intermediary result of a

successful end-user authorization process and is used by the client to

obtain access and refresh token. Authorization codes are sent to the

client's redirect_uri instead of tokens for two purposes.

3.5. Redirect-URI

A Redirect-uri helps to identify clients and prevents phishing attacks

from other clients attempting to trick the user into believing the

phisher is the client. The redirect URI is pre-registered as requests

with authorization code or token will be directed to that URI.

Moreover, the value of the actual redirect_uri has to be presented and

is verified when an authorization code is exchanged for tokens. This

helps to prevent session fixation attacks.

3.6. Access Token

An Access Token is used by a client to access a resource. An access

token must be acquired using a HTTP POST operation to ensure no logging

or caching of requests. Access tokens typically have short life-spans

(minutes or hours) that cover typical session lifetimes. An access

token may be refreshed through the use of a Refresh Token.

The short lifespan of an access token enables the possibility of

revocation by requiring the client to refresh their access token at

regular intervals.

3.7. Refresh Token

A Refresh Token is coupled with a short access token lifetime, can be

used to grant longer access to resources without involving end user

authorization. This offers an advantage where resource servers and

authorization servers are not the same entity, e.g. in a distributed

environment, as the refresh token must always be exchanged at the

authorization server. The authorization server can revoke the refresh

token at any time causing the granted access to be revoked once the

current access token expires. Because of this, a short access token

lifetime is important if timely revocation is a high priority.



Deployment-independent client_id with pre-registered redirect_uri and

without client_secret

3.8. Client Authentication

Authentication protocols have typically not taken into account the

identity of the software component acting on behalf of the end-user.

OAuth does this in order to increase security level in delegated

authorization scenarios and because the client will be able to act

without the user's presence. By authenticating a client when requesting

an access token, the token service is able to assess whether a given

client and authorization code meets appropriate security requirements

and binds the authorization code approved by the user to the client

making the request.

OAuth uses the client_id to collate associated request to the same

originator, such as

a particular end-user authorization process and the corresponding

request on the tokens endpoint to exchange the authorization code

for tokens or

the initial authorization and issuance of a tokens by an end-user

to a particular client and sub-sequent requests by this client to

obtain tokens w/o user consent (automatic processing of repeated

authorization)

The client identity may also be used by the authorization server to

display relevant registration information to a user when requesting

consent for scope requested by a particular client. The client identity

may be used to limit the number of request for a particular client or

to charge the client per request. Client Identity may furthermore be

useful to differentiate (e.g. in server log files) between accesses by

end-user, and delegated accesses by client on behalf of a user.

The client_secret is used to verify the client identifier. This should

only be used where the client is capable of keeping its secret

confidential. The client identity can also be verified using the 

redirect_uri or by the end-user.

Clients (and the trustworthiness of its identity) can be classifed by

using the following parameters:

Deployment-specific or -independent client_id (Note: for native

apps, every installation of a particular app on a certain device

is considered a deployment.)

Validated properties, such as app name or redirect_uri

Client_secret available

Typical client categories are:

*

*

*

*

*



Deployment-independent client_id with pre-registered redirect_uri and

with client_secre

Deployment-specific client_id with pre-registered redirect_uri and with

client_secret

Deployment-specific client_id with client_secret without validated

properties

Such an identity is used by multiple installations of the same

software package. The identity of such a client can only be

validated with the help of the end-user. This is a viable option for

native apps in order to identify the client for the purpose of

displaying meta information about the client to the user and to

differentiate clients in log files. Revocation of such an identity

will affect ALL deployments of the respective software.

This is an option for native applications only, since web

application would require different redirect URIs. This category is

not advisable because the client secret cannot be protected

appropriately (cf. Section 4.1.1). Due to its security weaknesses,

such client identities have the same trustlevel as deployment-

independent clients without secret. Revocation will affect ALL

deployments.

The client registration process insures the validation of the

client's properties, such as redirect_uri, website address, web site

name, contacts. Such a client identity can be utilized for all

relevant use cases cited above. This level can be achieved for web

applications in combination with a manual or user-bound registration

process. Achieving this level for native applications is much more

difficult. Either the installation of the app is conducted by an

administrator, who validates the clients authenticity, or the

process from validating the app to the installation of the app on

the device and the creation of the client credentials is controlled

end-to-end by a single entity (e.g. app market provider). Revocation

will affect a single deployment only.

Such a client can be recognized by the authorization server in

transactions with subsequent requests (e.g. authorization and token

issuance, refresh token issuance and access token refreshment).

Automatic processing of re-authorizations could be allowed as well.

Such client credentials can be generated automatically without any

validation of client properties, which makes it another option

especially for native apps. Revocation will affect a single

deployment only.

Use of the client secret is considered a relatively weak form of

credential for the client. Use of stronger mechanisms such as a client

assertion (e.g. SAML), key cryptography, are preferred.



4. Security Threat Model

This sections gives a comprehensive threat model of OAuth 2.0. Threats

are grouped first by attackes directed against an OAuth component,

which are client, authorization server, and resource server.

Subsequently, they are grouped by flow, e.g. obtain token or access

protected resources. Every countermeasure description refers to a

detailed description in Section 5.

4.1. Clients

This section describes possible threats directed to OAuth clients.

4.1.1. Threat: Obtain Client Secrets

The attacker could try to get access to the secret of a particular

client in order to:

replay its tokens and authorization codes, or

obtain tokens on behalf of the attacked client with the

privileges of that client.

The resulting impact would be:

Client authentication of access to authorization server can be

bypassed

Stolen refresh tokens or authorization codes can be replayed

Depending on the client category, there are the following approaches an

attacker could utilize to obtain the client secret.

Attack: Obtain Secret From Source Code or Binary. This applies for all

client profiles and especially for open source projects, where the

source code is public accessible. Even if the attacker does not has

access to the source code, it could reverse engineer secrets from the

binary of native apps.

Countermeasures:

Don't issue secrets to clients with inappropriate security policy

- Section 5.2.3.1

Client_id only in combination with forced user consent - Section

5.2.3.2

Deployment-specific client secrets - Section 5.2.3.4

Client secret revocation - Section 5.2.3.6

*

*

*

*

*

*

*

*



Attack: Obtain a Deployment-Specific Secret. An attacker may try to

obtain the secret from a client installation, either from a web site

(web server) or a particular devices (native app).

Countermeasures:

Web server: apply standard web server protection measures (for

config files and databases) - Section 5.3.2

Native apps: Store secrets in a secure local storage - Section

5.3.3

Client secret revocation - Section 5.2.3.6

4.1.2. Threat: Obtain Refresh Tokens

Depending on the client type, there are different ways refresh tokens

may be revealed to an attacker. The following sub-sections give a more

detailed description of the different attacks with respect to different

client types and further specialized countermeasures. Some generally

applicable countermeasure to mitigate such attacks shall be given in

advance:

The authorization server must validate the client id associated

with the particular refresh token with every refresh request - 

Section 5.2.2.2

Limited scope tokens - Section 5.1.5.1

Refresh token revocation - Section 5.2.2.4

Client secret revocation - Section 5.2.3.6

Refresh tokens can automatically be replaced in order to detect

unauthorized token usage by another party (Refresh Token

Replacement) - Section 5.2.2.3

Attack: Obtain Refresh Token from Web application. An attack may obtain

the refresh tokens issued to a web server client. Impact: Exposure of

all refresh tokens on that side.

Countermeasures:

Standard web server protection measures - Section 5.3.2

Use strong client authentication (e.g. client_assertion /

client_token), so the attacker cannot obtain the client secret

required to exchange the tokens - Section 5.2.3.7

Attack: Obtain Refresh Token from Native clients. On native clients,

leakage of a refresh token typically affects a single user, only.

*

*

*

*

*

*

*

*

*

*



Read from local filesystem: The attacker could try get file system

access on the device and read the refresh tokens. The attacker could

utilize a malicious app for that purpose.

Countermeasures:

Store secrets in a secure storage - Section 5.3.3

Utilize device lock to prevent unauthorized device access - 

Section 5.3.4

Steal device: The host device (e.g. mobile phone) may be stolen. In

that case, the attacker gets access to all apps under the identity of

the legitimate user.

Countermeasures:

Utilize device lock to prevent unauthorized device access - 

Section 5.3.4

Where a user knows the device has been cloned, they can use this

countermeasure (Refresh Token Revocation) - Section 5.2.2.4

Clone device: All device data and applications are copied to another

device. Applications are used as-is on the target device.

Countermeasures:

Combine refresh token request with device identification - 

Section 5.2.2.6

Combine refresh token requests with user-provided secret - 

Section 5.2.2.5

Refresh Token Replacement - Section 5.2.2.3

Where a user knows the device has been cloned, they can use this

countermeasure - Refresh Token Revocation - Section 5.2.2.4

Obtain refresh tokens from backup: A refresh token could be obtained

from the backup of a client application, or device.

Countermeasures:

tbd

4.1.3. Threat: Obtain Access Tokens

Depending on the client type, there are different ways access tokens

may be revealed to an attacker. Access tokens could be stolen from the

*

*

*

*

*

*

*

*

*



device if the app stores them in a storage, which is accessible to

other applications.

Impact: Where the token is a bearer token and no additional mechanism

is used to identify the client, the attacker can access all resources

associated with the token and its.

Countermeasures:

Keep access tokens in transient memory and limit grants: Section

5.1.6

Limited scope tokens - Section 5.1.5.1

Combine refresh token requests with user-provided secret - 

Section 5.2.2.5

Client secret revocation - Section 5.2.3.6

Keep access tokens in private memory or apply same protection

means as for refresh tokens - Section 5.2.2

Keep access token lifetime short - Section 5.1.5.3

4.1.4. Threat: End-user credentials phished using compromised or

embedded browser

A malicious app could attempt to phish end-user passwords by misusing

an embedded browser in the end-user authorization process, or by

presenting its own user-interface instead of allowing trusted system

browser to render the authorization UI. By doing so, the usual visual

trust mechanisms may be bypassed (e.g. TLS confirmation, web site

mechanisms). By using an embedded or internal client app UI, the client

app has access to additional information it should not have access to

(e.g. uid/password).

Impact: If the client app or the communication is compromised, the user

would not be aware and all information in the authorization exchange

could be captured such as username and password.

Countermeasures:

Client developers and end-user can be educated to trust an

external System-Browser only.

Client apps could be validated prior publication in a app market.

Client developers should not collect authentication information

directly from users and should instead use redirects to and back

from a trusted external system-browser.

4.2. Authorization Endpoint

*

*

*

*

*

*

*

*

*



4.2.1. Threat: Password phishing by counterfeit authorization server

OAuth makes no attempt to verify the authenticity of the Authorization

Server. A hostile party could take advantage of this by intercepting

the Client's requests and returning misleading or otherwise incorrect

responses. This could be achieved using DNS or ARP spoofing. Wide

deployment of OAuth and similar protocols may cause Users to become

inured to the practice of being redirected to websites where they are

asked to enter their passwords. If Users are not careful to verify the

authenticity of these websites before entering their credentials, it

will be possible for attackers to exploit this practice to steal Users'

passwords.

Countermeasures:

Service providers should consider such attacks when developing

services based on OAuth, and should require transport-layer

security for any requests where the authenticity of the Service

Provider or of request responses is an issue (see Section 5.1.2).

Service Providers should attempt to educate Users about the risks

phishing attacks pose, and should provide mechanisms that make it

easy for Users to confirm the authenticity of their sites.

4.2.2. Threat: User unintentionally grants too much access scope

When obtaining end user authenticaton, the end-user may not understand

the scope of the access being granted and to whom or they may end up

providing a client with access to resources which should not be

permitted.

Countermeasures:

Explain the scope (resources and the permissions) the user is

about to grant in a understandable way - Section 5.2.4.2

Narrow scope based on client-specific policy - When obtaining end

user authorization and where the client requests scope, the

service provider may want to consider whether to honour that

scope based on who the client is. That decision is between the

client and service provider and is outside the scope of this

spec. The service provider may also want to consider what scope

to grant based on the profile used, e.g. providing lower scope

where no client secret is provided from a native application. - 

Section 5.1.5.1

4.2.3. Threat: Malicious client obtains existing authorization by fraud

Authorization servers may wish to automatically process authorization

requests from Clients which have been previously authorized by the

user. When the User is redirected to the authorization server's end-

user authorization endpoint to grant access, the authorization server

*

*

*

*



detects that the User has already granted access to that particular

Client. Instead of prompting the User for approval, the authorization

server automatically redirects the User back to the Provider.

A malicious client may exploit that feature and try to obtain such an

authorization code instead of the legimate client.

Countermeasures:

Service providers should not automatically process repeat

authorizations where the client is not authenticated through a

client secret or some other authentication mechanism such as

signing with security certs (see Section 5.2.3.7) or validation

of a pre-registered redirect uri (Section 5.2.3.5 )

Service Providers can mitigate the risks associated with

automatic processing by limiting the scope of Access Tokens

obtained through automated approvals - Section 5.1.5.1

4.2.4. Threat: Open redirector

An attacker could use the end-user authorization endpoint and the

redirect_uri parameter to abuse the authorization server as redirector.

Impact?

Countermeasure

don't redirect to redirect_uri, if client identity or

redirect_uri could not be verified

4.3. Token endpoint

4.3.1. Threat: Eavesdropping access tokens

The OAuth specification does not describe any mechanism for protecting

Tokens from eavesdroppers when they are transmitted from the Service

Provider to the Client.

Countermeasures:

Service Providers MUST ensure that these transmissions are

protected using transport-layer mechanisms such as TLS or SSL

(see Section 5.1.1).

If end-to-end confidentiality cannot be guaranteed, reducing

scope (see Section 5.1.5.1) and expiry time (Section 5.1.5.3) for

access tokens can be used to reduce the damage in case of leaks.

4.3.2. Threat: Obtain access tokens from authorization server database

This threat is applicable if the authorization server stores access

tokens as handles in a database. An attacker may obtain access tokens

from the authorization server's database by gaining access to the

*

*

*

*

*



database or launching a SQL injection attack. Impact: disclosure of all

access tokens

Countermeasures:

System security measures - Section 5.1.4.1.1

Store access token hashes only - Section 5.1.4.1.3

Standard SQL inj. Countermeasures - Section 5.1.4.1.2

4.3.3. Threat: Obtain client credentials over non secure transport

An attacker could attempt to eavesdrop the transmission of client

credentials between client and server during the client authentication

process or during Oauth token requests. Impact: Revelation of a client

credential enabling the possibility for phishing or immitation of a

client service.

Countermeasures:

Implement transport security through Confidentiality of Requests

Alternative authentication means, which do not require to send

plaintext credentials over the wire (Examples: Digest

authentication)

4.3.4. Threat: Obtain client secret from authorization server database

An attacker may obtain valid client_id/secret combinations from the

authorization server's database by gaining access to the database or

launching a SQL injection attack. Impact: disclosure of all client_id/

secret combinations. This allows the attacker to act on behalf of

legitimate clients.

Countermeasures:

Ensure proper handling of credentials as per Credential storage

protection.

4.3.5. Threat: Obtain client secret by online guessing

An attacker may try to guess valid client_id/secret pairs. Impact:

disclosure of single client_id/secret pair.

Countermeasures:

High entropy of secrets - Section 5.1.4.2.2

Lock accounts - Section 5.1.4.2.3

*

*

*

*

*

*

*

*



4.3.6. DoS on dynamic client secret creation

If a Service Provider includes a nontrivial amount of entropy in client

secrets and if the service provider automatically grants them, an

attacker could exhaust the pool by repeatedly applying for them.

Countermeasures:

The service provider should consider some verification step for

new clients. The service provider should include a nontrivial

amount of entropy in client secrets.

4.4. Obtaining Authorization

This section covers threats which are specific to certain flows

utilized to obtain access tokens. Each flow is characterized by

response types and/or grant types on the end-user authorization and

tokens endpoint, respectively.

4.4.1. Authorization Code

4.4.1.1. Threat: Malicious client obtains authorization

Attacker abuses valid client id

countermeasures

client validation

client authentication

user consent

4.4.1.2. Threat: Eavesdropping authorization codes

The OAuth specification does not describe any mechanism for protecting

authorization codes from eavesdroppers when they are transmitted from

the Service Provider to the Client and where the Service Provider

Grants an Access Token.

Note: A description of a similar attack on the SAML protocol can be

found at http://www.oasis-open.org/committees/download.php/3405/oasis-

sstc-saml-bindings-1.1.pdf (§4.1.1.9.1).

Countermeasures:

The authorization server SHOULD enforce a one time usage

restriction (see Section 5.1.5.4).

Authorization server as well as the client MUST ensure that these

transmissions are protected using transport-layer mechanisms such

as TLS or SSL (see Section 5.1.1).

*

*

*

*

*

*



The authorization server shall require the client to authenticate

wherever possible, so the binding of the authorization code to a

certain client can be validated in a reliable way (see Section

5.2.4.4).

Limited duration of authorization codes - Section 5.1.5.3

If an Authorization Server observes multiple attempts to redeem a

authorization code, the Authorization Server may want to revoke

all tokens granted based on the authorization code (see Section

5.2.1.1).

In the absence of these countermeasures, reducing scope (Section

5.1.5.1) and expiry time (Section 5.1.5.3) for access tokens can

be used to reduce the damage in case of leaks.

4.4.1.3. Threat: Obtain authorization codes from authorization server

database

This threat is applicable if the authorization server stores

authorization codes as handles in a database. An attacker may obtain

authorization codes from the authorization server's database by gaining

access to the database or launching a SQL injection attack. Impact:

disclosure of all authorization codes, most likely along with the

respective redirect_uri and client_id values.

Countermeasures:

Credential storage protection can be employed - Section 5.1.4.1

System security measures - Section 5.1.4.1.1

Store access token hashes only - Section 5.1.4.1.3

Standard SQL inj. Countermeasures - Section 5.1.4.1.2

4.4.1.4. Threat: Online guessing of authorization codes

An attacker may try to guess valid authorization code values and send

it using the grant type „code“ in order to obtain a valid access token.

Impact: disclosure of single access token (+probably refresh token)

Countermeasures:

For handle-based designs: Section 5.1.5.11

For assertion-based designs: Section 5.1.5.9

Binding of authorization code to client_id, adds another value

the attacker has to guess - Section 5.2.4.4

*

*

*

*

*

*

*

*

*

*

*



Binding of authorization code to redirect_uri, adds another value

the attacker has to guess - Section 5.2.4.5

Short expiration time - Section 5.1.5.3

4.4.1.5. Threat: Authorization code leaks when requesting access token

Authorization codes are passed via the browser which may

unintentionally leak those codes to untrusted web sites and attackers

by different ways:

Referer headers: browsers frequently pass a “referer” header when

a web page embeds content, or when a user travels from one web

page to another web page. These referer headers may be sent even

when the origin site does not trust the destination site. The

referer header is commonly logged for traffic analysis purposes.

Request logs: web server request logs commonly include query

parameters on requests.

Open redirectors: web sites sometimes need to send users to

another destination via a redirector. Open redirectors pose a

particular risk to web-based delegation protocols because the

redirector can leak verification codes to untrusted destination

sites.

Browser history: web browsers commonly record visited URLs in the

browser history. Another user of the same web browser may be able

to view URLs that were visited by previous users.

Similar attacks on the SAML protocol are discussed in: http://

www.thomasgross.net/publications/papers/GroPfi2006-

SAML2_Analysis_Janus.WSSS_06.pdf and http://www.oasis-open.org/

committees/download.php/11191/sstc-gross-sec-analysis-response-01.pdf.

Countermeasures:

The authorization server shall require the client to authenticate

wherever possible, so the binding of the authorization code to a

certain client can be validated in a reliable way (see Section

5.2.4.4).

Authorization codes must be time-limited (see Section 5.1.5.3)

Authorization codes should be single-use tokens (Section 5.1.5.4)

If an Authorization Server observes multiple attempts to redeem a

authorization code, the Authorization Server may want to revoke

all tokens granted based on the authorization code (see Section

5.2.1.1)

*

*

*

*

*

*

*

*

*

*



The resource server may reload the target page of the

redirect_uri in order to automatically cleanup the browser cache.

4.4.1.6. Threat: Authorization code phishing

A hostile party could act as the client web server and get access to

the authorization code. This could be achieved using DNS or ARP

spoofing. 

Impact: This affects web applications and may lead to a disclosure of

authorization codes and, potentially, the corresponding access and

refresh tokens.

Countermeasures:

The browser shall be utilized to authenticate the redirect_uri of

the client using server authentication - Section 5.1.2

The authorization server shall require the client to authenticate

with a secret, so the binding of the authorization code to a

certain client can be validated in a reliable way (see Section

5.2.4.4).

4.4.1.7. Threat: Session fixation

The session fixation attack leverages the 3-legged OAuth flow in an

attempt to get another user to log-in and authorize access on behalf of

the attacker. The victim, seeing only a normal request from an expected

application, approves the request. The attacker then uses the victim's

authorization to gain access to the information unknowingly authorized

by the victim.

In this attack, the attacker is using a known client application

(consumer site), and a target OAuth resource provider. The attack

depends on the victim expecting the consumer site to request access to

the resource provider.

The attacker utilizes the following flow:

The attacker initiates browser access to the consumer site, and

initates access to data from the resource provider. The consumer site,

initiates an authorization request and receives a redirect_uri back

from the resource provider's authorization server. Instead of following

the link, the attacker stops the process and saves the redirect_uri.

The attacker modifies the redirect_uri to allow control to be returned

to the attacker site.

The attacker tricks another user (the victim) to open that redirect_uri

and to authorize access (e.g. an email link, or blog link). The way the

attacker achieve that goal is out of scope.

Having clicked, the link, the victim is requested to authenticate and

authorize the consumer site to have access.

The authorization server redirects the user agent to the attackers web

site instead of the original target web site.

*

*

*



The attacker obtains the authorization code from its web site,

constructs a redirect_uri to the target web site (or app) based on the

original authorization request's redirect_uri and the newly obtained

authorization code and directs its user agent to this URL.

The web uses the authorization code to fetch a token from the

authorization server and associates this token with the attacker's user

account on this site.

Countermeasures:

The attacker must use another redirect_uri for its authorization

process than the target web site because it needs to intercept

the flow. So if the authorization server associates the

authorization code with the redirect_uri of a particular end-user

authorization, such a change (and with that such an attack) can

be detected - see Section 5.2.4.4

The authorization server may also enforce the usage and

validation of pre-registered redirect Uris (see Section 5.2.3.5).

For native apps, one could also consider to use deployment-

specific client ids and secrets (see Section 5.2.3.4, along with

the binding of authorization code to client_id (see Section

5.2.4.4), to detect a session fixation because the attacker does

not have access the deployment-specific secret. Thus he will not

be able to exchange the authorization code.

The client may consider to use other flows, which are not

vulnerable to session fixation attacks (see Section 4.4.2 or 

Section 4.4.3).

4.4.1.8. Threat: DoS, Exhaustion of resources attacks

If a Service Provider includes a nontrivial amount of entropy in

authorization codes or access tokens (limiting the number of possible

codes/tokens) and automatically grants either without user intervention

and has no limit on code or access tokens per user, an attacker could

exhaust the pool by repeatedly directing user(s) browser to request

code or access tokens. This is because more entropy means a larger

number of tokens can be issued.

Countermeasures:

The service provider should consider limiting the number of

access tokens granted per user. The service provider should

include a nontrivial amount of entropy in authorization codes.

4.4.2. Implicit Grant

*

*

*

*

*



4.4.2.1. Threat: Access token leak in transport/end-points

Description: the access token is directly returned to the client as

part of the redirect URL. This token might be eavesdropped by an

attacker. The token is sent from server to client via a URI fragment of

the redirect_uri. If the communication is not secured or the end-point

is not secured, the token could be leaked by parsing the returned URI.

Impact: the attacker would be able to assume the same rights granted by

the token.

Countermeasures:

Confidentiality of Requests - Section 5.1.1

Bind token to client id - Section 5.1.5.8

4.4.2.2. Threat: Access token leak in browser history

An attacker could obtain the token from the browsers history.

Countermeasures:

Shorten token duration (see Section 5.1.5.3) and reduced scope of

the token may reduce the impact of that attack (see Section

5.1.5.1).

Make these requests non-cachable

Native apps can directly embedd a browser widget and therewith

gain full control of the cache. So the app can cleanup browser

history after authorization process.

4.4.2.3. Threat: Malicious client obtains authorization

An malicious client could attempt to obtain a token by fraud. Client

secrets are not an effective countermeasure in this case.

The following countermeasures are advisable:

Always require user consent and let end-user validate client

identity - Section 5.2.4.3

No automatic processing of repeated authorizations - Section

5.2.4.1

4.4.3. Resource Owner Password Credentials

The “password” grant type (see OAuth Core Section 4.3), often used for

legacy/migration reasons, allows a client to request an access token

using an end-users user-id and password along with its own credential.

The “password” grant-type has higher risk because it maintains the uid/

password anti-pattern. Additionally, because the user does not have

control over the authorization process, clients using this grant-type

*

*

*

*

*

*

*



are not limited by scope, but instead have potentially the same

capabilities as the user themselves. As there is no authorization step,

the ability to offer token revocation is bypassed.

Impact: The resource server can only differentiate scope based on the

access token being associated with a particular client. The client

could also acquire long-living tokens and pass them up to a attacker

web service for further abuse. The client, eavesdroppers, or end-points

could eavesdrop user id and password.

Countermeasures:

Except for migration reasons, minimize use of this grant type

The authorization server must validate the client id associated

with the particular refresh token with every refresh request - 

Section 5.2.2.2

Service Providers MUST ensure that these transmissions are

protected using transport-layer mechanisms such as TLS or SSL

(see Section 5.1.1).

4.4.3.1. Threat: Accidental exposure of passwords at client site

If an authorization server does not provide enough protection, an

attacker or disgruntled employee could retrieve the passwords for a

client

Countermeasures:

Use other flows, which do not rely on the client's cooperation

for secure resource owner credential handling

Use digest authentication instead of plaintext credential

processing

Obfuscation of passwords in logs

4.4.3.2. Threat: Client obtains scopes without end-user authorization

All interaction with the resource owner is performed by the client.

Thus it might, intentionally or unintentionally, happen that the client

obtains a token with scope unknown for or unintended by the resource

owner. For example, the resource owner might think the client needs and

acquires read-only access to its media storage only but the client

tries to acquire an access token with full access permissions.

Countermeasures:

Use other flows, which do not rely on the client's cooperation

for resource owner interaction

The authorization server may generally restrict the scope of

access tokens (Section 5.1.5.1) issued by this flow. If the

*

*

*

*

*

*

*

*



particular client is trustworthy and can be authenticated in a

reliable way, the authorization server could relax that

restriction. Resource owners may prescribe (e.g. in their

preferences) what the maximum permission for client using this

flow shall be.

The authorization server could notify the resource owner by an

appropriate media, e.g. e-Mail, of the grant issued (see Section

5.1.3).

4.4.3.3. Threat: Client obtains refresh token through automatic

authorization

All interaction with the resource owner is performed by the client.

Thus it might, intentionally or unintentionally, happen that the client

obtains a long-term authorization represented by a refresh token even

if the resource owner did not intend so.

Countermeasures:

Use other flows, which do not rely on the client's cooperation

for resource owner interaction

The authorization server may generally refuse to issue refresh

tokens in this flow (see Section 5.2.2.1). If the particular

client is trustworthy and can be authenticated in a reliable way

(cf. client authentication), the authorization server could relax

that restriction. Resource owners may allow or deny (e.g. in

their preferences) to issue refresh tokens using this flow as

well.

The authorization server could notify the resource owner by an

appropriate media, e.g. e-Mail, of the refresh token issued (see 

Section 5.1.3).

4.4.3.4. Threat: Obtain user passwords on transport

An attacker could attempt to eavesdrop the transmission of end-user

credentials with the grant type „password“ between client and server.

Impact: disclosure of a single end-users password.

Countermeasures:

Confidentiality of Requests - Section 5.1.1

alternative authentication means, which do not require to send

plaintext credentials over the wire (Examples: Digest

authentication)

*

*

*

*

*

*



4.4.3.5. Threat: Obtain user passwords from authorization server

database

An attacker may obtain valid username/password combinations from the

authorization server's database by gaining access to the database or

launching a SQL injection attack.

Impact: disclosure of all username/password combinations. The impact

may exceed the service providers domain since many users tend to use

the same credentials on different services.

Countermeasures:

Credential storage protection can be employed - Section 5.1.4.1

4.4.3.6. Threat: Online guessing

An attacker may try to guess valid username/password combinations using

the grant type „password“.

Impact: Revelation of a single username/password combination.

Countermeasures:

Password policy - Section 5.1.4.2.1

Lock accounts - Section 5.1.4.2.3

Tar pit - Section 5.1.4.2.4

CAPTCHA - Section 5.1.4.2.5

Abandon on grant type „password“

Client authentication (see Section 5.2.3) will provide another

authentication factor and thus hinder the attack.

4.4.4. Client Credentials

[TBD]

4.5. Refreshing an Access Token

4.5.1. Threat: Eavesdropping refresh tokens from authorization server

The OAuth specification does not describe any mechanism for protecting

Tokens from eavesdroppers when they are transmitted from the Service

Provider to the Client.

Countermeasures:

Service Providers MUST ensure that these transmissions are

protected using transport-layer mechanisms such as TLS or SSL

(see Section 5.1.1).

*

*

*

*

*

*

*

*



If end-to-end confidentiality cannot be guaranteed, reducing

scope (see Section 5.1.5.1) and expiry time (see Section 5.1.5.3)

for issued access tokens can be used to reduce the damage in case

of leaks.

4.5.2. Threat: Obtaining refresh token from authorization server

database

This threat is applicable if the authorization server stores refresh

tokens as handles in a database. An attacker may obtain refresh tokens

from the authorization server's database by gaining access to the

database or launching a SQL injection attack.

Impact: disclosure of all refresh tokens

Countermeasures:

Credential storage protection - Section 5.1.4.1

Bind token to client id, if the attacker cannot obtain the

required id and secret - Section 5.1.5.8

4.5.3. Threat: Obtain refresh token by online guessing

An attacker may try to guess valid refresh token values and send it

using the grant type „refresh_token“ in order to obtain a valid access

token.

Impact: exposure of single refresh token and derivable access tokens.

Countermeasures:

For handle-based designs - Section 5.1.5.11

For assertion-based designs - Section 5.1.5.9

Bind token to client id, because the attacker would guess the

matching client id, too - Section 5.1.5.8

4.5.4. Threat: Obtain refresh token phishing by counterfeit

authorization server

An attacker could try to obtain valid refresh tokens by proxying

requests to the authorization server. Given the assumption that the

authorization server URL is well-known at development time or can at

least be obtained from a well-known resource server, the attacker must

utilize some kind of spoofing in order to suceed.

Countermeasures:

Server authentication (as described in Section 5.1.2)

4.6. Accessing Protected Resources

*

*

*

*

*

*

*



4.6.1. Threat: Eavesdropping access tokens on transport

An attacker could try to obtain a valid access token on transport

between client and resource server. As access tokens are shared secrets

between authorization and resource server, they MUST by treated with

the same care as other credentials (e.g. end-user passwords).

Countermeasures:

Access tokens sent as bearer tokens, SHOULD NOT be sent in the

clear over an insecure channel. Instead transport protection

means shall be utilized to prevent eavesdropping by an attacker

(see Section 5.1.1).

A short lifetime reduces impact in case tokens are compromised

(see Section 5.1.5.3).

The access token can be bound to a client's identity and require

the client to authenticate with the resource server (see Section

5.4.2). Client authentication MUST be performed without exposing

the required secret to the transport channel.

4.6.2. Threat: Replay authorized resource server requests

An attacker could attempt to replay valid requests in order to obtain

or to modify/destroy user data.

Countermeasures:

The resource server should utilize transport security measure in

order to prevent such attacks (see Section 5.1.1). This would

prevent the attacker from capturing valid requests.

Alternatively, the resource server could employ signed requests

(see Section 5.4.3) along with nounces and timestamps in order to

uniquely identify requests. The resource server MUST detect and

refuse every replayed request.

4.6.3. Threat: Guessing access tokens

Where the token is a handle, the attacker may use attempt to guess the

access token values based on knowledge they have from other access

tokens.

Impact: Access to a single user's data.

Countermeasures:

Handle Tokens should have a reasonable entropy (see Section

5.1.5.11) in order to make guessing a valid token value

difficult.

Assertion (or self-contained token ) tokens contents SHALL be

protected by a digital signature (see Section 5.1.5.9).

*

*

*

*

*

*

*



Security can be further strengthened by using a short access

token duration (see Section 5.1.5.2 and Section 5.1.5.3).

4.6.4. Threat: Access token phishing by counterfeit resource server

An attacker may pretend to be a particular resource server and to

accept tokens from a particular authorization server. If the client

sends a valid access tokens to this counterfeit resource server, the

server in turn may use that token to access other services on behalf of

the resource owner.

Countermeasures:

Clients SHOULD not make authenticated requests with an access

token to unfamiliar resource servers, regardless of the presence

of a secure channel. If the resource server address is well-known

to the client, it may authenticate the resource servers (see 

Section 5.1.2).

Associate the endpoint address of the resource server the client

talked to with the access token (e.g. in an audience field) and

validate association at legitimate resource server. The endpoint

address validation policy may be strict (exact match) or more

relaxed (e.g. same host). This would require to tell the

authorization server the resource server endpoint address in the

authorization process.

Associate an access token with a client and authenticate the

client with resource server requests (typically via signature in

order to not disclose secret to a potential attacker). This

prevents the attack because the counterfeit server is assumed to

miss the capabilities to correctly authenticate on behalf of the

legitimate client to the resource server (Section 5.4.2).

Restrict the token scope (see Section 5.1.5.1) and or limit the

token to a certain resource server (Section 5.1.5.5).

4.6.5. Threat: Abuse of token by legitimate resource server or client

A legitimate resource server could attempt to use an access token to

access another resource servers. Similarily, a client could try to use

a token obtained for one server on another resource server.

Countermeasures:

Tokens should be restricted to particular resource servers (see 

Section 5.1.5.5).

4.6.6. Threat: Leak of confidential data in HTTP-Proxies

The HTTP Authorization scheme (OAuth HTTP Authorization Scheme) is

optional. However, [RFC2616](Fielding, R., Gettys, J., Mogul, J.,

*

*

*

*

*

*



Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext

Transfer Protocol -- HTTP/1.1,” .) relies on the Authorization and WWW-

Authenticate headers to distinguish authenticated content so that it

can be protected. Proxies and caches, in particular, may fail to

adequately protect requests not using these headers. For example,

private authenticated content may be stored in (and thus retrievable

from) publicly-accessible caches.

CounterMeasures:

Service Providers not using the HTTP Authorization scheme (OAuth

HTTP Authorization Scheme - see Section 5.4.1) should take care

to use other mechanisms, such as the Cache-Control header, to

ensure that authenticated content is protected.

Reducing scope (see Section 5.1.5.1) and expiry time (Section

5.1.5.3) for access tokens can be used to reduce the damage in

case of leaks.

4.6.7. Threat: Token leakage via logfiles and HTTP referrers

If access tokens are sent via URI query parameters, such tokens may

leak to log files and HTTP referrers.

Countermeasures:

Use authorization headers or POST parameters instead of URI

request parameters (see Section 5.4.1).

Set logging configuration appropriately

Prevent unauthorized persons from access to system log files (see

Section 5.1.4.1.1)

HTTP referrers can be prevented by reloading the target page

again without URI parameters

Abuse of leaked access tokens can be prevented by enforcing

authenticated requests (see Section 5.4.2).

The impact of token leakage may be reduced by limiting scope (see

Section 5.1.5.1) and duration (see Section 5.1.5.3) and enforcing

one time token usage (see Section 5.1.5.4).

5. Security Considerations

This section describes the countermeasures as recommended to mitigate

the threats as described in Section 4.

5.1. General

*

*

*

*

*

*

*

*



5.1.1. Confidentiality of Requests

This is applicable to all requests sent from client to authorization

server or resource server. While OAuth provides a mechanism for

verifying the integrity of requests, it provides no guarantee of

request confidentiality. Unless further precautions are taken,

eavesdroppers will have full access to request content and may be able

to mount attacks through using content of request, e.g. secrets or

tokens, or mount replay attacks.

Attacks can be mitigated by using transport-layer mechanisms such as

TLS or SSL. VPN may considered as well.

This is a countermeasure against the following threats:

Replay of access tokens obtained on tokens endpoint or resource

server's endpoint

Replay of refresh tokens obtained on tokens endpoint

Replay of authorization codes obtained on tokens endpoint

(redirect?)

Replay of user passwords and client secrets

5.1.2. Server authentication

HTTPS server authentication or similar means can be used to

authenticate the identity of a server. The goal is to reliably bind the

DNS name of the server to the public key presented by the server during

connection establishment.

The client MUST validate the binding of the server to its domain name.

If the server fails to prove that binding, it is condered a men-in-the-

middle. The security measure depends on the certification authorities

the client trusts for that purpose. Clients should carefully select

those trusted CAs and protect the storage for trusted CA certificates

from modifications.

This is a countermeasure against the following threats:

Spoofing

Proxying

Phishing by conterfeit servers

5.1.3. Always keep the resource owner informed

Transparency to the resource owner is a key element of the OAuth

protocol. The user shall always be in control of the authorization

processes and get the necessary information to meet informed decisions.

Moreover, user involvement is a further security countermeasure. The

user can probably recognize certain kinds of attacks better than the

*

*

*

*

*

*

*



authorization server. Information can be presented/exchanged during the

authorization process, after the authorization process, and every time

the user wishes to get informed by using techniques such as:

User consent forms

Notification messages (e-Mail, SMS, …)

Activity/Event logs

User self-care apps or portals

5.1.4. Credentials

This sections describes countermeasures used to protect all kind of

credentials from unauthorized access and abuse. Credentials are long

term secrets, such as client secrets and user passwords as well as all

kinds of tokens (refresh and access token) or authorization codes.

5.1.4.1. Credential storage protection

5.1.4.1.1. Standard system security means

A server system may be locked down so that no attacker may get access

to sensible configuration files and databases.

5.1.4.1.2. Standard SQL inj. Countermeasures

[TBD]

5.1.4.1.3. No cleartext storage of credentials

The authorization server may consider to not store credential in clear

text. Typical approaches are to store hashes instead. If the credential

lacks a reasonable entropy level (because it is a user password) an

additional salt will harden the storage to prevent offline dictionary

attacks. Note: Some authentication protocols require the authorization

server to have access to the secret in the clear. Those protocols

cannot be implemented if the server only has access to hashes.

5.1.4.1.4. Encryption of credentials

[TBD]

5.1.4.1.5. Use of asymmetric cryptography

Usage of asymmetric cryptography will free the authorization server of

the obligation to manage credentials. Nevertheless, it MUST ensure the

integrity of the respective public keys.

*

*

*

*



5.1.4.2. Online attacks on secrets

5.1.4.2.1. Password policy

The authorization server may decide to enforce a complex user password

policy in order to increase the user passwords' entropy. This will

hinder online password attacks.

5.1.4.2.2. High entropy of secrets

When creating token handles or other secrets not intended for usage by

human users, the authorization server MUST include a reasonable level

of entropy in order to mitigate the risk of guessing attacks.

The token value MUST be constructed from a cryptographically strong

random or pseudo-random number sequence [RFC1750] generated by the

Authorization Server. The probability of any two Authorization Code

values being identical MUST be less than or equal to 2^(-128) and

SHOULD be less than or equal to 2^(-160).

5.1.4.2.3. Lock accounts

Online attacks on passwords can be mitigated by locking the respective

accounts after a certain number of failed attempts.

Note: This measure can be abused to lock down legitimate service users.

5.1.4.2.4. Tar pit

The authorization server may react on failed attempts to authenticate

by username/password by temporarily locking the respective account and

delaying the response for a certain duration. This duration may

increase with the number of failed attempts. The objective is to slow

the attackes attempts on a certain username down.

Note: this may require a more complex and stateful design of the

authorization server.

5.1.4.2.5. Usage of CAPTCHAs

The idea is to prevent programms from automatically checkinga huge

number of passwords by requiring human interaction.

Note: this has a negative impact on user experience.

5.1.5. Tokens (access, refresh, code)

5.1.5.1. Limit token scope

The authorization server may decide to reduce or limit the scope

associated with a token. Basis of this decision is out of scope,

examples are:



a client-specific policy, e.g. issue only less powerful tokens to

unauthenticated clients,

a service-specific policy, e.g. it a very sensible service,

a resource-owner specific setting, or

combinations of such policies and preferences.

The authorization server may allow different scopes dependent on the

grant type. For example, end-user authorization via direct interaction

with the end-user (authorization code) might be considered more

reliable than direct authorization via gran type username/password.

This means will reduce the impact of the following threats:

token leakage

token issuance to malicious software

unintended issuance of to powerful tokens with resource owner

credentials flow

5.1.5.2. Expiration time

Tokens should generally expire after a reasonable duration. This

complements and strengthens other security measures (such as

signatures) and reduces the impact of all kinds of token leaks.

5.1.5.3. Short expiration time

A short expiration time for tokens is a protection means against the

following threats:

replay

reduce impact of token leak

reduce likelyhood of sucessful online guessing

Note: Short token duration requires preciser clock synchronisation

between authorization server and resource server. Furthermore, shorter

duration may require more token refreshments (access token) or repeated

end-user authorization processes (authorization code and refresh

token).

*

*

*

*

*

*

*

*

*

*



5.1.5.4. Limit number of usages/ One time usage

The authorization server may restrict the number of request, which can

be performed with a certain token. This mechanism can be used to

mitigate the following threats:

replay of tokens

reduce likelyhood of sucessful online guessing

Additionally, If an Authorization Server observes multiple attempts to

redeem a authorization code, the Authorization Server may want to

revoke all tokens granted based on the authorization code.

5.1.5.5. Bind tokens to a particular resource server (Audience)

Authorization servers in multi-service environments may consider to

issue tokens with different content to different resource servers and

to explicitely indicate in the token the target server a token is

intended to be sent to (cf. Audience in SAML Assertions). This

countermeasure can be used in the following situations:

It reduce the impact of a successful replay attempt, since the

token is applicable to a single resource server, only.

It prevents abuse of a token by a rough resource server or

client, since the token can only be used on that server. It is

rejected by other servers.

It reduce the impact of a leakage of a valid token to a

conterfeit resource server.

5.1.5.6. Use endpoint address as token audience

This may be used to indicate to a resource server, which endpoint

address has been used to obtain the token. This measure will allow to

detect requests from a counterfeit resource server, since such token

will contain the endpoint address of that server.

5.1.5.7. Audience and Token scopes

Deployments may consider to use only tokens with explicitely defined

scope, where every scope is associated with a particular resource

server. This approach can be used to mitigate attacks, where a resource

server or client uses a token for a different then the intended

purpose.

*

*

*

*

*



5.1.5.8. Bind token to client id

An authorization server may bind a token to a certain client identity.

This identity match must be validated for every request with that

token. This means can be used, to

detect token leakage and

prevent token abuse.

Note: Validating the client identity may require the target server to

authenticate the client's identity. This authentication can be based on

secrets managed independent of the token (e.g. pre-registered client

id/secret on authorization server) or sent with the token itself (e.g.

as part of the encrypted token content).

5.1.5.9. Signed tokens

Self-contained tokens shall be signed in order to detect any attempt to

modify or produce faked tokens.

5.1.5.10. Encryption of token content

Self-contained may be encrypted for privacy reasons or to protect

system internal data.

5.1.5.11. Random token value with high entropy

When creating token handles, the authorization server MUST include a

reasonable level of entropy in order to mitigate the risk of guessing

attacks. The token value MUST be constructed from a cryptographically

strong random or pseudo-random number sequence [RFC1750] generated by

the Authorization Server. The probability of any two Authorization Code

values being identical MUST be less than or equal to 2^(-128) and

SHOULD be less than or equal to 2^(-160).

5.1.6. Access tokens

keep them in transient memory (accessible by the client app only)

exposure to 3rd parties (malicious app)

limit number of access tokens granted to a user

5.2. Authorization Server

5.2.1. Authorization Codes

*

*

*

*

*



5.2.1.1. Automatic revocation of derived tokens if abuse is detected

If an Authorization Server observes multiple attempts to redeem a

authorization code, the Authorization Server may want to revoke all

tokens granted based on the authorization code.

5.2.2. Refresh tokens

5.2.2.1. Restricted issuance of refresh tokens

The authorization server may decide based on an appropriate policy not

to issue refresh tokens. Since refresh tokens areo long term

credentials, they may be subject theft. For example, if the

authorization server does not trust a client to securely store such

tokens, it may refuse to issue such a client a refresh token.

5.2.2.2. Binding of refresh token to client_id

The authorization server MUST bind every refresh token to the id of the

client such a token was originally issued to and validate this binding

for every request to refresh that token. This measure is a

countermeasure against refresh token theft or leakage.

Note: This binding MUST be protected from unauthorized modifications.

5.2.2.3. Refresh Token Replacement

Refresh token replacement is intended to automatically detect and

prevent attempts to use the same refresh token in parallel from

different apps/devices. This happens if a token gets stolen from the

client and is subsequently used by the attacker and the legitimate

client. The basic idea is to change the refresh token value with every

refresh request in order to detect attempts to obtain access tokens

using old refresh tokens. Since the authorization server cannot

determine whether the attacker or the legitimate client is trying to

access, in case of such an access attempt the valid refresh token and

the access authorization associated with it are both revoked.

The OAuth specification supports this measure in that the tokens

response allows the authorization server to return a new refresh token

even for requests with grant type „refresh_token“.

Note: this measure may cause problems in clustered environments since

usage of the currently valid refresh token must be ensured. In such an

environment, other measures might be more appropriate.

5.2.2.4. Refresh Token Revocation

The authorization server may allow clients or end-users to explicitely

request the invalidation of refresh tokens.

This is a countermeasure againts:

device theft*



...

5.2.2.5. Combine refresh token requests with user-provided secret

The exchange of a refresh token can be bound to the presence of a

certain user-provided secret, such as a PIN, a password or a SIM card.

This is a kind of multi-factor authentication on the tokens endpoint,

since an attacker must possess both factors in order to be able to

obtain an access token.

5.2.2.6. Device identification

The authorization server may require to bind authentication credentials

to a device identifier or token assigned to that device. As the IMEI

can be spoofed, that is not suitable, For mobile phones, a registration

process can be used to assign a unique token to the device using an sms

message. That token or identifer can then be validated with when

authenticating user credentials.

This is a countermeasure against the following threats:

phishing attacks

...

5.2.3. Client authentication and authorization

As described in Section 3 (Security Features), clients are identified,

authenticated and authorized for several purposes, such as a

Collate sub-sequent requests to the same client,

Indicate the trustworthiness of a particular client to the end-

user,

Authorize access of clients to certain features on the

authorization or resource server, and

Log a client identity to log files for analysis or statics.

Due to the different capababilities and characterictics of the

different client types, there are different ways to support achieve

objectives, which will be described in this section. Generally spoken,

authorization server providers should be aware of the security policy

and deployment of a particular clients and adapt its treatment

accordingly. For example, one approach could be to treat all clients as

less trustworthy and unsecure. On the other extrem, a service provider

could activate every client installation by hand of an administrator

and that way gain confidence in the identity of the software package

and the security of the environment the client is installed in. And

there are several approaches in between.

*

*

*

*

*

*

*



5.2.3.1. Don't issue secrets to clients with inappropriate security

policy

Authorization servers should not issue secrets to clients, if these

cannot sufficiently protect it. This prevents the server from

overestimating the value of a sucessful authentication of the client.

For example, it is of limited benefit to create a single client id and

secret which is shared by all installations of a native app. First of

all, this secret must be somehow transmitted from the developer via the

respective distribution channel, e.g. an app market, to all

installations of the app on end-user devices. So the secret is

typically burned into the source code of the app or a associated

resource bundle, which cannot be entirely protected from reverse

engineering. Second, effectively such secrets cannot be revoked since

this would immediatly put all installations out of work. Moreover,

since the authorization server cannot really trust on the client's

identity, it would be dangerous to indicate to end-users the

trustworthiness of the client.

There are other ways to achieve a reasonable security level, as

described in the following sections.

5.2.3.2. Client_id only in combination with forced user consent

The authorization may issue a client id, but only accept authorization

request, which are approved by the end-user. This measure precludes

automatic authorization processes. This is a countermeasure for clients

without secret against the following threats:

...

...

5.2.3.3. Client_id only in combination with redirect_uri

The authorization may issue a client id, but bind this client_id to a

certain pre-configured redirect_uri. So any authorization request with

another redirect_uri is refused automatically. Alternatively, the

authorization server may not accept any dynamic redirect_uri for such a

client_id and instead always redirect to the well-known pre-configured

redirect_uri. This is a countermeasure for clients of LOA 2 against the

following threats:

...

...

5.2.3.4. Deployment-specific client secrets

A authorization server may issue separate client ids and corresponding

secrets to the different deployments of a client.

*

*

*

*



For web applications, this could mean to create one client_id and

client_secret per web site a software package is installed on. So the

provider of that particular site could request client id and secret

from the authorization server during setup of the web site. This would

also allow to validate some of the properties of that web site, such as

redirect_uri, address, and whatever proofs useful. The web site

provider has to ensure the security of the client secret on the site.

As a result, such client could reach LOA 7.

For native applications, things are more complicated because every

installation of the app on any device is another deployment. Deployment

specific secrets will require

Either to obtain a client_id and client_secret during download

process from the app market, or

During installation on the device.

Either approach will require an automated mechanism for issuing client

ids and secrets, which is currently not defined by OAuth.

The first approach would allow to achieve LOA 7, whereas the second

option does not allow to validate properties of the client thus can

achieve at most LOA 6. But this would at least help to prevent several

replay attacks. Moreover, deployment-specific client_id and secret

allow to selectively revoke all refresh tokens of a specific deployment

at once. This is a countermeasure against the following threats:

...

...

5.2.3.5. Validation of pre-registered redirect_uri

An authorization server may require clients to register their

redirect_uri or a pattern (TBD: make definition more precise) thereof.

The way this registration is performed is out of scope of this

document. Every actual redirect_uri sent with the respective client_id

to the end-user authorization endpoint must comply with that pattern.

Otherwise the authorization server must assume the inbound GET request

has been sent by an attacker and refuse it.

Note: the authorization server MUST NOT redirect the user agent back to

the redirect_uri of the authorization request.

Session fixation: allows to detect session fixation attempts

already after first redirect to end-user authorization endpoint

For clients of LOA 2/5/7, this measure also helps to detect

malicious apps early in the end-user authorization process. This

reduces the need for a interactive validation by the user.

1. 

2. 

*

*

*

*



The underlying assumption of this measure is that an attacker must use

another redirect_uri in order to get access to the authorization code.

Deployments might consider the possibility of an attacker using

spoofing attacks to a victims device to circumvent this security

measure. This is a countermeasure against the following threats:

session fixation

malicious apps (for deployment-specific clients with secret)

Note: Pre-registering clients might not scale in some deployments

(manual process) or require dynamic client registration (not specified

yet). With the lack of dynamic client registration, it only works for

clients bound to certain deployments at development/configuration time.

As soon as dynamic resource server discovery gets involved, that's no

longer feasable.

5.2.3.6. Client secret revocation

An authorization server may revoke a client's secret in order to

prevent abuse of a revealed secret.

Note: This measure will immediately invalidate any authorization code

or refresh token issued to the respective client. This might be

unintentionally for client identifiers and secrets used across multiple

deployments of a particular native or web application.

This a countermeasure against:

...

...

5.2.3.7. Use strong client authentication (e.g. client_assertion /

client_token)

Assumption: prevents an attacker from obtaining a client secret because

this secret is kept in some hardware security module?

5.2.4. End-user authorization

5.2.4.1. Automatic processing of repeated authorizations requires

client validation

Service providers should not automatically process repeat

authorizations where the client is not authenticated through a client

secret or some other authentication mechanism such as signing with

security certs (5.7.2.7. Use strong client authentication (e.g.

client_assertion / client_token)) or validation of a pre-registered

redirect uri (5.7.2.5. Validation of pre-registered redirect_uri ).

*

*

*

*



5.2.4.2. Informed decisions based on transparency

The authorization server shall intelligible explain to the end-user

what happens in the authorization process and what the consequences

are. For example, the user shall understand what access he is about to

grant to which client for what duration. It shall also be obvious to

the user, whether the server is able to reliably certify certain client

properties (web site address, security policy).

5.2.4.3. Validation of client properties by end-user

In the authorization process, the user is typically asked to approve a

client's request for authorization. This is an important security

mechanism by itself because the end-users can be involed in the

validation of client properties, such as whether the client name known

to the authorization server fits the name of the web site or the app

the end-user is using. This measure is especially helpful in all

situation where the authorization server is unable to authenticate the

client. It is a countermeasure against:

Malicious app

...

5.2.4.4. Binding of authorization code to client_id

The authorization server MUST bind every authorization code to the id

of the respective client which initiated the end-user authorization

process. This measure is a countermeasure against:

Session fixation since an attacker cannot use another client_id

to exchange an authorization code into a token

Online guessing of authorization codes

Note: This binding MUST be protected from unauthorized modifications.

5.2.4.5. Binding of authorization code to redirect_uri

The authorization server MAY bind every authorization code to the

redirect_uri used as redirect target of the client in the end-user

authorization process. This binding MUST be validated when the client

attempts to exchange the respective authorization code for an access

token. This measure is a countermeasure against session fixation since

an attacker cannot use another redirect_uri to exchange an

authorization code into a token.

5.3. Client App Security

*

*

*

*



5.3.1. Don't store credentials in code or resources bundled with

software packages

[Anything more to say ? :-)]

5.3.2. Standard web server protection measures (for config files and

databases)

5.3.3. Store secrets in a secure storage

The are different way to store secrets of all kinds (tokens, client

secrets) securely on a device or server.

Most multi-user operation systems seggregate the personal storage of

the different system users. Moreover, most modern smartphone operating

systems even support to store app-specific data in separat areas of the

file systems and protect it from access by other apps. Additionally,

apps can implements confidential data itself using a user-supplied

secret, such as PIN or password.

Another option is to swap refresh token storage to a trusted backend

server. This mean in turn requires a resilient authentication

mechanisms between client and backend server. Note: Applications must

ensure that confidential data are kept confidential even after readin

from secure storage, which typically means to keep this data in the

local memory of the app.

5.3.4. Utilize device lock to prevent unauthorized device access

5.3.5. Platform security measures

Validation process

software package signatures

Remote removal

5.4. Resource Servers

5.4.1. Authorization headers

Authorization headers are recognized and specially treated by HTTP

proxies and servers. Thus the usage of such headers for sending access

tokens to resource servers reduces the likelihood of leakage or

unintended storage of authenticated requests in general and especially

Authorization headers.

5.4.2. Authenticated requests

An authorization server may bind tokens to a certain client identitiy

and encourage resource servers to validate that binding. This will

require the resource server to authenticate the originator of a request

*

*

*

*



as the legitimate owner of a particular token. There are a couple of

options to implement this countermeasure:

The authorization server may associate the distinguished name of

the client with the token (either internally or in the payload of

an self-contained token). The client then uses client

certificate-based HTTP authentication on the resource server's

endpoint to authenticate its identity and the resource server

validates the name with the name referenced by the token.

same as before, but the client uses his private key to sign the

request to the resource server (public key is either contained in

the token or sent along with the request)

Alternatively, the authorization server may issue a token-bound

secret, which the client uses to sign the request. The resource

server obtains the secret either directly from the authorization

server or it is contained in an encrypted section of the token.

That way the resource server does not "know" the client but is

able to validate whether the authorization server issued the

token to that client

This mechanisms is a countermeasure against abuse of tokens by

counterfeit resource servers.

5.4.3. Signed requests

A resource server may decide to accept signed requests only, either to

replace transport level security measures or to complement such

measures. Every signed request must be uniquly identifiable and must

not be processed twice by the resource server. This countermeasure

helps to mitigate:

modifications of the message and

replay attempts

6. IANA Considerations

This document makes no request of IANA.

Note to RFC Editor: this section may be removed on publication as an

RFC.

7. Acknowledgements

We would like to thank Francisco Corella for his feedback.

*

*

*

*

*



8. References

8.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[I-D.ietf-

oauth-v2]

Hammer-Lahav, E, Recordon, D and D Hardt, "The OAuth

2.0 Authorization Protocol", Internet-Draft draft-

ietf-oauth-v2-22, September 2011.

8.2. Informative References

[I-D.lodderstedt-

oauth-revocation]

Lodderstedt, T, Dronia, S and M Scurtescu,

"Token Revocation", Internet-Draft draft-

lodderstedt-oauth-revocation-03, September

2011.

[I-D.ietf-oauth-

v2-bearer]

Jones, M, Hardt, D and D Recordon, "The OAuth

2.0 Authorization Protocol: Bearer Tokens",

Internet-Draft draft-ietf-oauth-v2-bearer-14,

November 2011.

[I-D.hammer-oauth-

v2-mac-token]

Hammer-Lahav, E, Barth, A and B Adida, "HTTP

Authentication: MAC Access Authentication",

Internet-Draft draft-hammer-oauth-v2-mac-

token-05, May 2011.

[portable-

contacts]

Smarr, J., "Portable Contacts 1.0 Draft C",

August 2008.

Authors' Addresses

Dr.-Ing. Torsten Lodderstedt editor Lodderstedt Deutsche Telekom AG

EMail: torsten@lodderstedt.net

Mark McGloin McGloin IBM EMail: mark.mcgloin@ie.ibm.com

Phil Hunt Hunt Oracle Corporation EMail: phil.hunt@yahoo.com

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/draft-ietf-oauth-v2-22
http://tools.ietf.org/html/draft-ietf-oauth-v2-22
http://tools.ietf.org/html/draft-lodderstedt-oauth-revocation-03
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-14
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-14
http://tools.ietf.org/html/draft-hammer-oauth-v2-mac-token-05
http://tools.ietf.org/html/draft-hammer-oauth-v2-mac-token-05
mailto:torsten@lodderstedt.net
mailto:mark.mcgloin@ie.ibm.com
mailto:phil.hunt@yahoo.com

	Abstract
	Requirements Language
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Overview
	2.1. Scope
	2.2. Attack Assumptions
	2.3. Architectural assumptions
	2.3.1. Authorization Servers
	2.3.2. Resource Server
	2.3.3. Client
	2.3.3.1. Web Server
	2.3.3.2. Native Applications
	2.3.3.3. User Agent
	2.3.3.4. Autonomous
	3. Security Features
	3.1. Tokens
	3.2. Scope
	3.3. Expires_In
	3.4. Authorization Code
	3.5. Redirect-URI
	3.6. Access Token
	3.7. Refresh Token
	3.8. Client Authentication
	4. Security Threat Model
	4.1. Clients
	4.1.1. Threat: Obtain Client Secrets
	4.1.2. Threat: Obtain Refresh Tokens
	4.1.3. Threat: Obtain Access Tokens
	4.1.4. Threat: End-user credentials phished using compromised or embedded browser
	4.2. Authorization Endpoint
	4.2.1. Threat: Password phishing by counterfeit authorization server
	4.2.2. Threat: User unintentionally grants too much access scope
	4.2.3. Threat: Malicious client obtains existing authorization by fraud
	4.2.4. Threat: Open redirector
	4.3. Token endpoint
	4.3.1. Threat: Eavesdropping access tokens
	4.3.2. Threat: Obtain access tokens from authorization server database
	4.3.3. Threat: Obtain client credentials over non secure transport
	4.3.4. Threat: Obtain client secret from authorization server database
	4.3.5. Threat: Obtain client secret by online guessing
	4.3.6. DoS on dynamic client secret creation
	4.4. Obtaining Authorization
	4.4.1. Authorization Code
	4.4.1.1. Threat: Malicious client obtains authorization
	4.4.1.2. Threat: Eavesdropping authorization codes
	4.4.1.3. Threat: Obtain authorization codes from authorization server database
	4.4.1.4. Threat: Online guessing of authorization codes
	4.4.1.5. Threat: Authorization code leaks when requesting access token
	4.4.1.6. Threat: Authorization code phishing
	4.4.1.7. Threat: Session fixation
	4.4.1.8. Threat: DoS, Exhaustion of resources attacks
	4.4.2. Implicit Grant
	4.4.2.1. Threat: Access token leak in transport/end-points
	4.4.2.2. Threat: Access token leak in browser history
	4.4.2.3. Threat: Malicious client obtains authorization
	4.4.3. Resource Owner Password Credentials
	4.4.3.1. Threat: Accidental exposure of passwords at client site
	4.4.3.2. Threat: Client obtains scopes without end-user authorization
	4.4.3.3. Threat: Client obtains refresh token through automatic authorization
	4.4.3.4. Threat: Obtain user passwords on transport
	4.4.3.5. Threat: Obtain user passwords from authorization server database
	4.4.3.6. Threat: Online guessing
	4.4.4. Client Credentials
	4.5. Refreshing an Access Token
	4.5.1. Threat: Eavesdropping refresh tokens from authorization server
	4.5.2. Threat: Obtaining refresh token from authorization server database
	4.5.3. Threat: Obtain refresh token by online guessing
	4.5.4. Threat: Obtain refresh token phishing by counterfeit authorization server
	4.6. Accessing Protected Resources
	4.6.1. Threat: Eavesdropping access tokens on transport
	4.6.2. Threat: Replay authorized resource server requests
	4.6.3. Threat: Guessing access tokens
	4.6.4. Threat: Access token phishing by counterfeit resource server
	4.6.5. Threat: Abuse of token by legitimate resource server or client
	4.6.6. Threat: Leak of confidential data in HTTP-Proxies
	4.6.7. Threat: Token leakage via logfiles and HTTP referrers
	5. Security Considerations
	5.1. General
	5.1.1. Confidentiality of Requests
	5.1.2. Server authentication
	5.1.3. Always keep the resource owner informed
	5.1.4. Credentials
	5.1.4.1. Credential storage protection
	5.1.4.1.1. Standard system security means
	5.1.4.1.2. Standard SQL inj. Countermeasures
	5.1.4.1.3. No cleartext storage of credentials
	5.1.4.1.4. Encryption of credentials
	5.1.4.1.5. Use of asymmetric cryptography
	5.1.4.2. Online attacks on secrets
	5.1.4.2.1. Password policy
	5.1.4.2.2. High entropy of secrets
	5.1.4.2.3. Lock accounts
	5.1.4.2.4. Tar pit
	5.1.4.2.5. Usage of CAPTCHAs
	5.1.5. Tokens (access, refresh, code)
	5.1.5.1. Limit token scope
	5.1.5.2. Expiration time
	5.1.5.3. Short expiration time
	5.1.5.4. Limit number of usages/ One time usage
	5.1.5.5. Bind tokens to a particular resource server (Audience)
	5.1.5.6. Use endpoint address as token audience
	5.1.5.7. Audience and Token scopes
	5.1.5.8. Bind token to client id
	5.1.5.9. Signed tokens
	5.1.5.10. Encryption of token content
	5.1.5.11. Random token value with high entropy
	5.1.6. Access tokens
	5.2. Authorization Server
	5.2.1. Authorization Codes
	5.2.1.1. Automatic revocation of derived tokens if abuse is detected
	5.2.2. Refresh tokens
	5.2.2.1. Restricted issuance of refresh tokens
	5.2.2.2. Binding of refresh token to client_id
	5.2.2.3. Refresh Token Replacement
	5.2.2.4. Refresh Token Revocation
	5.2.2.5. Combine refresh token requests with user-provided secret
	5.2.2.6. Device identification
	5.2.3. Client authentication and authorization
	5.2.3.1. Don't issue secrets to clients with inappropriate security policy
	5.2.3.2. Client_id only in combination with forced user consent
	5.2.3.3. Client_id only in combination with redirect_uri
	5.2.3.4. Deployment-specific client secrets
	5.2.3.5. Validation of pre-registered redirect_uri
	5.2.3.6. Client secret revocation
	5.2.3.7. Use strong client authentication (e.g. client_assertion / client_token)
	5.2.4. End-user authorization
	5.2.4.1. Automatic processing of repeated authorizations requires client validation
	5.2.4.2. Informed decisions based on transparency
	5.2.4.3. Validation of client properties by end-user
	5.2.4.4. Binding of authorization code to client_id
	5.2.4.5. Binding of authorization code to redirect_uri
	5.3. Client App Security
	5.3.1. Don't store credentials in code or resources bundled with software packages
	5.3.2. Standard web server protection measures (for config files and databases)
	5.3.3. Store secrets in a secure storage
	5.3.4. Utilize device lock to prevent unauthorized device access
	5.3.5. Platform security measures
	5.4. Resource Servers
	5.4.1. Authorization headers
	5.4.2. Authenticated requests
	5.4.3. Signed requests
	6. IANA Considerations
	7. Acknowledgements
	8. References
	8.1. Normative References
	8.2. Informative References
	Authors' Addresses

