
Open Authentication Protocol T. Lodderstedt, Ed.
Internet-Draft Deutsche Telekom AG
Intended status: Informational J. Bradley
Expires: May 16, 2017 Ping Identity
 A. Labunets
 Facebook
 November 12, 2016

OAuth Security Topics
draft-lodderstedt-oauth-security-topics-00

Abstract

 This draft gives a comprehensive overview on open OAuth security
 topics. It is intended to serve as a tool for the OAuth working
 group to systematically address these open security topics,
 recommending mitigations, and potentially also defining OAuth
 extensions needed to cope with the respective security threats. This
 draft will potentially become a BCP over time.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 16, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Lodderstedt, et al. Expires May 16, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Security Topics November 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. OAuth Credentials Leakage 3
2.1. Redirect URI validation of authorization requests 3
2.1.1. Authorization Code Grant 3
2.1.2. Implicit Grant 4
2.1.3. Countermeasure: exact redirect URI matching 6

2.2. Authorization code leakage via referrer headers 7
2.2.1. Countermeasures 7

2.3. Code in browser history (TBD) 8
2.4. Access token in browser history (TBD) 8
2.5. Access token on bad resource servers (TBD) 8
2.6. Mix-Up (TBD) . 9

3. OAuth Credentials Injection 9
3.1. Code Injection . 9
3.1.1. Proposed Counter Measures 11
3.1.2. Access Token Injection (TBD) 13
3.1.3. XSRF (TBD) . 13

4. Other Attacks . 14
5. Acknowledgements . 14
6. IANA Considerations . 14
7. Security Considerations 14
8. Normative References . 14

 Authors' Addresses . 15

1. Introduction

 It's been a while since OAuth has been published in RFC 6749
 [RFC6749] and RFC 6750 [RFC6750]. Since publication, OAuth 2.0 has
 gotten massive traction in the market and became the standard for API
 protection and, as foundation of OpenID Connect, identity providing.

 o OAuth implementations are being attacked through known
 implementation weaknesses and anti-patterns (XSRF, referrer
 header). Although most of these threats are discussed in RFC 6819
 [RFC6819], continued exploitation demonstrates there may be a need
 for more specific recommendations or that the existing mitigations
 are too difficult to deploy.

 o Technology has changed, e.g. the way browsers treat fragments in
 some situations, which may change the implicit grant's underlying
 security model.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc6819

Lodderstedt, et al. Expires May 16, 2017 [Page 2]

Internet-Draft Security Topics November 2016

 o OAuth is used in much more dynamic setups than originally
 anticipated, creating new challenges with respect to security.
 Those challenges go beyond the original scope of both RFC 6749
 [RFC6749] and RFC 6819 [RFC6819].

 This remainder of the document is organized as follows: The next
 section describes various scenarios how OAuth credentials (namely
 access tokens and authorization codes) may be disclosed to attackers
 and proposes countermeasures. Afterwards, the document discusses
 attacks possible with captured credential and how they may be
 prevented. The last sections discuss additional threats.

2. OAuth Credentials Leakage

2.1. Redirect URI validation of authorization requests

 The following implementation issue has been observed: Some
 authorization servers allow clients to register redirect URI patterns
 instead of complete redirect URIs. In those cases, the authorization
 servers, at runtime, match the actual redirect URI parameter value at
 the authorization endpoint against this pattern. This approach
 allows clients to encode transaction state into additional redirect
 URI parameters or to register just a single pattern for multiple
 redirect URIs. As a downside, it turned out to be more complex to
 implement and error prone to manage than exact redirect URI matching.
 Several successful attacks have been observed in the wild, which
 utilized flaws in the pattern matching implementation or concrete
 configurations. Such a flaw effectively breaks client identification
 or authentication (depending on grant and client type) and allows the
 attacker to obtain an authorization code or access token, either

 o by directly sending the user agent to a URI under the attackers
 control or

 o usually via the client as open redirector in conjunction with
 fragment handling (implicit grant) carrying the response including
 the respective OAuth credentials.

2.1.1. Authorization Code Grant

 For a public client using the grant type code, an attack would look
 as follows:

 Let's assume the pattern "https://*.example.com/*" had been
 registered for the client "s6BhdRkqt3". This pattern allows redirect
 URI from any host residing in the domain example.com. So if an
 attacker manager to establish a host or subdomain in "example.com" he

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc6819

Lodderstedt, et al. Expires May 16, 2017 [Page 3]

Internet-Draft Security Topics November 2016

 can impersonate the legitimate client. Assume the attacker sets up
 the host "evil.example.com".

 (1) The attacker needs to trick the user into opening a tampered URL
 in his browser, which launches a page under the attacker's
 control, say "https://www.evil.com".

 (2) This URL initiates an authorization request with the client id
 of a legitimate client to the authorization endpoint. This is
 the example authorization request (line breaks are for display
 purposes only):

 GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz
 &redirect_uri=https%3A%2F%2Fevil.client.example.com%2Fcb HTTP/1.1
 Host: server.example.com

 (3) The authorization validates the redirect URI in order to
 identify the client. Since the pattern allows arbitrary domains
 host names in "example.com", the authorization request is
 processed under the legitimate client's identity. This includes
 the way the request for user consent is presented to the user.
 If auto-approval is allowed (which is not recommended for public
 clients according to RFC 6749), the attack can be performed even
 easier.

 (4) If the user does not recognize the attack, the code is issued
 and directly sent to the attacker's client.

 (5) Since the attacker impersonated a public client, it can directly
 exchange the code for tokens at the respective token endpoint.

 Note: This attack will not work for confidential clients, since the
 code exchange requires authentication with the legitimate client's
 secret. The attacker will need to utilize the legitimate client to
 redeem the code. This and other kinds of injections are covered in
 Section OAuth Credentials Injection.

2.1.2. Implicit Grant

 The attack described above for grant type authorization code works
 similarly for the implicit grant. If the attacker is able to send
 the authorization response to a URI under his control, he will
 directly get access to the fragment carrying the access token.

 Additionally, it is possible to conduct an attack utilizing the way
 user agents treat fragments in case of redirects. User agents re-
 attach fragments to the destination URL of a redirect if the location
 header does not contain a fragment (see [RFC7231], section 9.5). In

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7231#section-9.5

Lodderstedt, et al. Expires May 16, 2017 [Page 4]

Internet-Draft Security Topics November 2016

 this attack this behavior is combined with the client as an open
 redirector in order to get access to access tokens. This allows
 circumvention even of strict redirect URI patterns.

 Assume the pattern for client "s6BhdRkqt3" is
 "https://client.example.com/cb?*", i.e. any parameter is allowed for
 redirects to "https://client.example.com/cb". Unfortunately, the
 client exposes an open redirector. This endpoint supports a
 parameter "redirect_to", which takes a target URL and will send the
 browser to this URL using a HTTP 302.

 (1) Same as above, the attacker needs to trick the user into opening
 a tampered URL in his browser, which launches a page under the
 attacker's control, say "https://www.evil.com".

 (2) The URL initiates an authorization request, which is very
 similar to the attack on the code flow. As differences, it
 utilizes the open redirector by encoding
 "redirect_to=https://client.evil.com" into the redirect URI and
 it uses the response type "token" (line breaks are for display
 purposes only):

 GET /authorize?response_type=token&client_id=s6BhdRkqt3&state=xyz
 &redirect_uri=https%3A%2F%2Fclient.example.com%2Fcb%26redirect_to
 %253Dhttps%253A%252F%252Fclient.evil.com%252Fcb HTTP/1.1
 Host: server.example.com

 (3) Since the redirect URI matches the registered pattern, the
 authorization server allows the request and sends the resulting
 access token with a 302 redirect (some response parameters are
 omitted for better readability)

 HTTP/1.1 302 Found
 Location: https://client.example.com/cb?
 redirect_to%3Dhttps%3A%2F%2Fclient.evil.com%2Fcb
 #access_token=2YotnFZFEjr1zCsicMWpAA&...

 (4) At the example.com, the request arrives at the open redirector.
 It will read the redirect parameter and will issue a HTTP 302 to
 the URL "https://evil.example.com/cb".

 HTTP/1.1 302 Found
 Location: https://client.evil.com/cb

 (5) Since the redirector at example.com does not include a fragment
 in the Location header, the user agent will re-attach the
 original fragment

https://client.evil.com/cb

Lodderstedt, et al. Expires May 16, 2017 [Page 5]

Internet-Draft Security Topics November 2016

 "#access_token=2YotnFZFEjr1zCsicMWpAA&..." to the URL and will
 navigate to the following URL:

https://client.evil.com/cb#access_token=2YotnFZFEjr1zCsicMWpAA&...

 (6) The attacker's page at client.evil.com can access the fragment
 and obtain the access token.

2.1.3. Countermeasure: exact redirect URI matching

 Since the cause of the implementation and management issues is the
 complexity of the pattern matching, this document proposes to
 recommend general use of exact redirect URI matching instead, i.e.
 the authorization server shall compare the two URIs using simple
 string comparison as defined in [RFC3986], Section 6.2.1..

 This would cause the following impacts:

 o This change will require all OAuth clients to maintain the
 transaction state (and XSRF tokens) in the "state" parameter.
 This is a normative change to RFC 6749 since section 3.1.2.2
 allows for dynamic URI query parameters in the redirect URI. In
 order to assess the practical impact, the working group needs to
 collect data whether this feature is used in deployed reality
 today.

 o The working group might also consider this change as a step
 towards improved interoperability for OAuth implementations since

RFC 6749 is somehow vague on redirect URI validation. There is
 especially no rule for pattern matching. So one may assume all
 clients utilizing pattern matching will do so in a deployment
 specific way. On the other hand, RFC 6749 already recommends
 exact matching if the full URL had been registered.

 o Clients with multiple redirect URIs need to register all of them
 explicitly.
 Note: clients with just a single redirect URI would not even need
 to send a redirect URI with the authorization request. Does it
 make sense to emphasize this option? Would that further simplify
 use of the protocol?

 o Exact redirect matching does not work for native apps utilizing a
 local web server due to dynamic port numbers - at least wild cards
 for port numbers are required.
 Note: Does redirect uri validation solve any problem for native
 apps? Effective against impersonation when used in conjunction
 with claimed HTTPS redirect URIs only.

https://client.evil
https://datatracker.ietf.org/doc/html/rfc3986#section-6.2.1
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Lodderstedt, et al. Expires May 16, 2017 [Page 6]

Internet-Draft Security Topics November 2016

 Additional recommendations:

 o It is also advisable that the domains on which callbacks are
 hosted should not expose open redirectors (see respective
 section).

 o As a further recommendation, clients may drop fragments via
 intermediary URL with fix fragment (e.g.

https://developers.facebook.com/blog/post/552/) to prevent the
 user agent from appending any unintended fragments.

 Alternatives to exact redirect URI matching: authenticate client
 using digital signatures (JAR? https://tools.ietf.org/html/draft-

ietf-oauth-jwsreq-09), ...

2.2. Authorization code leakage via referrer headers

 The section above already discussed use of the referrer header for
 one kind of attack to obtain OAuth credentials. It is also possible
 authorization codes are unintentionally disclosed to attackers, if a
 OAuth client renders a page containing links to other pages (ads,
 faq, ...) as result of a successful authorization request.

 If the user clicks onto one of those links and the target is under
 the control of an attacker, it can get access to the response URL in
 the referrer header.

 It is also possible that an attacker injects cross-domain content
 somehow into the page, such as (f.e. if this is blog web site
 etc.): the implication is obviously the same - loading this content
 by browser results in leaking referrer with a code.

2.2.1. Countermeasures

 There are some means to prevent leakage as described above:

 o Use of the HTML link attribute rel="noreferrer" (Chrome
 52.0.2743.116, FF 49.0.1, Edge 38.14393.0.0, IE/Win10)

 o Use of the "referrer" meta link attribute (possible values e.g.
 noreferrer, origin, ...) (cf. https://w3c.github.io/webappsec-

referrer-policy/ - work in progress (seems Google, Chrome and Edge
 support it))

 o Redirect to intermediate page (sanitize history) before sending
 user agent to other pages
 Note: double check redirect/referrer header behavior

https://developers.facebook.com/blog/post/552/
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-09
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-09
https://w3c.github.io/webappsec-referrer-policy/
https://w3c.github.io/webappsec-referrer-policy/

Lodderstedt, et al. Expires May 16, 2017 [Page 7]

Internet-Draft Security Topics November 2016

 o Use form post mode instead of redirect for authorization response

 Note: There shouldn't be a referer header when loading HTTP content
 from a HTTPS -loaded page (e.g. help/faq pages)

 Note: This kind of attack is not applicable to the implicit grant
 since fragments are not be included in referrer headers (cf.

https://tools.ietf.org/html/rfc7231#section-5.5.2)

2.3. Code in browser history (TBD)

 When browser navigates to "client.com/redirection_endpoint?code=abcd"
 as a result of a redirect from a provider's authorization endpoint.

 Proposal for counter-measures: code is one time use, has limited
 duration, is bound to client id/secret (confidential clients only)

2.4. Access token in browser history (TBD)

 When a client or just a web site which already has a token
 deliberately navigates to a page like provider.com/
 get_user_profile?access_token=abcdef.. Actually RFC6750 discourages
 this practice and asks to transfer tokens via a header, but in
 practice web sites often just pass access token in query

 When browser navigates to client.com/
 redirection_endpoint#access_token=abcef as a result of a redirect
 from a provider's authorization endpoint.

 Proposal: replace implicit flow with postmessage communication

2.5. Access token on bad resource servers (TBD)

 In the beginning, the basic assumption of OAuth 2.0 was that the
 OAuth client is implemented for and tightly bound to a certain
 deployment. It therefore knows the URLs of the authorization and
 resource servers upfront, at development/deployment time. So well-
 known URLs to resource servers serve as trust anchor. The validation
 whether the client talks to a legitimate resource server is based on
 TLS server authentication (see [RFC6819], Section 4.5.4).

 As OAuth clients nowadays more and more bind dynamically at runtime
 to authorization and resource servers, there need to be alternative
 solutions to ensure, client do not deliver access tokens to bad
 resource servers.

 ...

https://tools.ietf.org/html/rfc7231#section-5.5.2
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6819#section-4.5.4

Lodderstedt, et al. Expires May 16, 2017 [Page 8]

Internet-Draft Security Topics November 2016

 Potential mitigations:

 o PoP

 o Token Binding

 o AS-provided Meta Data

 o ...

2.6. Mix-Up (TBD)

 Mix-up is another kind of attack on more dynamic OAuth scenarios (or
 at least scenarios where a OAuth client interacts with multiple
 authorization servers). The goal of the attack is to obtain an
 authorization code or an access token by tricking the client into
 sending those credentials to the attacker (which acts as MITM between
 client and authorization server)

 A detailed description of the attack and potential counter-measures
 is given in cf. https://tools.ietf.org/html/draft-ietf-oauth-mix-up-

mitigation-01.

 Potential mitigations:

 o AS returns client_id and its iss in the response. Client compares
 this data to AS it believed it sent the user agent to.

 o ID token (so requires OpenID Connect) carries client id and issuer

 o register AS-specific redirect URIs, bind transaction to AS

 o ...

3. OAuth Credentials Injection

 Credential injection means an attacker somehow obtained a valid OAuth
 credential (code or token) and is able to utilize this to impersonate
 the legitimate resource owner or to cause a victim to access
 resources under the attacker's control (XSRF).

3.1. Code Injection

 In such an attack, the adversary attempts to inject a stolen
 authorization code into a legitimate client on a device under his
 control. In the simplest case, the attacker would want to use the
 code in his own client. But there are situations where this might
 not be possible or intended. Example are:

https://tools.ietf.org/html/draft-ietf-oauth-mix-up-mitigation-01
https://tools.ietf.org/html/draft-ietf-oauth-mix-up-mitigation-01

Lodderstedt, et al. Expires May 16, 2017 [Page 9]

Internet-Draft Security Topics November 2016

 o The code is bound to a particular confidential client and the
 attacker is unable to obtain the required client credentials to
 redeem the code himself and/or

 o The attacker wants to access certain functions in this particular
 client. As an example, the attacker potentially wants to
 impersonate his victim in a certain app.

 o Another example could be that access to the authorization and
 resource servers is some how limited to networks, the attackers is
 unable to access directly.

 How does an attack look like?

 (1) The attacker obtains an authorization code by executing any of
 the attacks described above (OAuth Credentials Leakage).

 (2) It performs an OAuth authorization process with the legitimate
 client on his device.

 (3) The attacker injects the stolen authorization code in the
 response of the authorization server to the legitimate client.

 (4) The client sends the code to the authorization server's token
 endpoint, along with client id, client secret and actual
 redirect_uri.

 (5) The authorization server checks the client secret, whether the
 code was issued to the particular client and whether the actual
 redirect URI matches the redirect_uri parameter.

 (6) If all checks succeed, the authorization server issues access
 and other tokens to the client.

 (7) The attacker just impersonated the victim.

 Obviously, the check in step (5) will fail, if the code was issued to
 another client id, e.g. a client set up by the attacker.

 An attempt to inject a code obtained via a malware pretending to be
 the legitimate client should also be detected, if the authorization
 server stored the complete redirect URI used in the authorization
 request and compares it with the redirect_uri parameter.

[RFC6749], Section 4.1.3, requires the AS to ... "ensure that the
 "redirect_uri" parameter is present if the "redirect_uri" parameter
 was included in the initial authorization request as described in

Section 4.1.1, and if included ensure that their values are

https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.3

Lodderstedt, et al. Expires May 16, 2017 [Page 10]

Internet-Draft Security Topics November 2016

 identical." In the attack scenario described above, the legitimate
 client would use the correct redirect URI it always uses for
 authorization requests. But this URI would not match the tampered
 redirect URI used by the attacker (otherwise, the redirect would not
 land at the attackers page). So the authorization server would
 detect the attack and refuse to exchange the code.

 Note: this check could also detect attempt to inject a code, which
 had been obtained from another instance of the same client on another
 device, if certain conditions are fulfilled:

 o the redirect URI itself needs to contain a nonce or another kind
 of one-time use, secret data and

 o the client has bound this data to this particular instance

 But this approach conflicts with the idea to enforce exact redirect
 URI matching at the authorization endpoint. Moreover, it has been
 observed that providers very often ignore the redirect_uri check
 requirement at this stage, maybe, because it doesn't seem to be
 security-critical from reading the spec.

 Other providers just pattern match the redirect_uri parameter against
 the registered redirect URI pattern. This saves the authorization
 server from storing the link between the actual redirect URI and the
 respective authorization code for every transaction. But this kind
 of check obviously does not fulfill the intent of the spec, since the
 tampered redirect URI is not considered. So any attempt to inject a
 code obtained using the client_id of a legitimate client or by
 utilizing the legitimate client on another device won't be detected
 in the respective deployments.

 It is also assumed that the requirements defined in [RFC6749],
 Section 4.1.3, increase client implementation complexity as clients
 need to memorize or re-construct the correct redirect URI for the
 call to the tokens endpoint.

 The authors therefore propose to the working group to drop this
 feature in favor of more effective and (hopefully) simpler approaches
 to code injection prevention as described in the following section.

3.1.1. Proposed Counter Measures

 The general proposal is to bind every particular authorization code
 to a certain client on a certain device (or in a certain user agent)
 in the context of a certain transaction. There are multiple
 technical solutions to achieve this goal:

https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.3
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.3

Lodderstedt, et al. Expires May 16, 2017 [Page 11]

Internet-Draft Security Topics November 2016

 Nonce OpenID Connect's existing "nonce" parameter is used for this
 purpose. The nonce value is one time use and created by the
 client. The client is supposed to bind it to the user agent
 session and sends it with the initial request to the OpenId
 Provider (OP). The OP associates the nonce to the
 authorization code and attests this binding in the ID token,
 which is issued as part of the code exchange at the token
 endpoint. If an attacker injected an authorization code in
 the authorization response, the nonce value in the client
 session and the nonce value in the ID token will not match
 and the attack is detected. assumption: attacker cannot get
 hold of the user agent state on the victims device, where he
 has stolen the respective authorization code.
 pro:
 - existing feature, used in the wild
 con:
 - OAuth does not have an ID Token - would need to push that
 down the stack

 State It has been discussed in the security workshop in December to
 use the OAuth state value much similar in the way as
 described above. In the case of the state value, the idea is
 to add a further parameter state to the code exchange
 request. The authorization server then compares the state
 value it associated with the code and the state value in the
 parameter. If those values do not match, it is considered an
 attack and the request fails. Note: a variant of this
 solution would be send a hash of the state (in order to
 prevent bulky requests and DoS).
 pro:
 - use existing concept
 con:
 - state needs to fulfil certain requirements (one time use,
 complexity)
 - new parameter means normative spec change

 PKCE Basically, the PKCE challenge/verifier could be used in the
 same way as Nonce or State. In contrast to its original
 intention, the verifier check would fail although the client
 uses its correct verifier but the code is associated with a
 challenge, which does not match.
 pro:
 - existing and deployed OAuth feature
 con:
 - currently used and recommended for native apps, not web
 apps

Lodderstedt, et al. Expires May 16, 2017 [Page 12]

Internet-Draft Security Topics November 2016

 Token Binding Code must be bind to UA-AS and UA-Client legs -
 requires further data (extension to response) to manifest
 binding id for particular code.
 pro:
 - highly secure
 con:
 - highly sophisticated, requires browser support, will it
 work for native apps?

 per instance client id/secret ...

 Note on pre-warmed secrets: An attacker can circumvent the counter-
 measures described above if he is able to create the respective
 secret on a device under his control, which is then used in the
 victim's authorization request.
 Exact redirect URI matching of authorization requests can prevent the
 attacker from using the pre-warmed secret in the faked authorization
 transaction on the victim's device.
 Unfortunately it does not work for all kinds of OAuth clients. It is
 effective for web and JS apps, for native apps with claimed URLs.
 What about other native apps? Treat nonce or PKCE challenge as
 replay detection tokens (needs to ensure cluster-wide one-time use)?

3.1.2. Access Token Injection (TBD)

 Note: An attacker in possession of an access token can access any
 resources the access token gives him the permission to. This kind of
 attacks simply illustrates the fact that bearer tokens utilized by
 OAuth are reusable similar to passwords unless they are protected by
 further means.
 (where do we treat access token replay/use at the resource server?

https://tools.ietf.org/html/rfc6819#section-4.6.4 has some text about
 it but is it sufficient?)

 The attack described in this section is about injecting a stolen
 access token into a legitimate client on a device under the
 adversaries control. The attacker wants to impersonate a victim and
 cannot use his own client, since he wants to access certain functions
 in this particular client.

 Proposal: token binding, hybrid flow+nonce(OIDC), other
 cryptographical binding between access token and user agent instance

3.1.3. XSRF (TBD)

 injection of code or access token on a victim's device (e.g. to cause
 client to access resources under the attacker's control)

https://tools.ietf.org/html/rfc6819#section-4.6.4

Lodderstedt, et al. Expires May 16, 2017 [Page 13]

Internet-Draft Security Topics November 2016

 mitigation: XSRF tokens (one time use) w/ user agent binding (cf.
https://www.owasp.org/index.php/

 CrossSite_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet)

4. Other Attacks

 Using the AS as Open Redirector - error handling AS (redirects)
 (draft-ietf-oauth-closing-redirectors-00)

 Using the Client as Open Redirector

 redirect via status code 307 - use 302

5. Acknowledgements

 We would like to thank ... for their valuable feedback.

6. IANA Considerations

 This draft includes no request to IANA.

7. Security Considerations

 All relevant security considerations have been given in the
 functional specification.

8. Normative References

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <http://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <http://www.rfc-editor.org/info/rfc6750>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <http://www.rfc-editor.org/info/rfc6819>.

https://www.owasp.org/index.php/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-closing-redirectors-00
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6749
http://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
http://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc6819
http://www.rfc-editor.org/info/rfc6819

Lodderstedt, et al. Expires May 16, 2017 [Page 14]

Internet-Draft Security Topics November 2016

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

Authors' Addresses

 Torsten Lodderstedt (editor)
 Deutsche Telekom AG

 Email: torsten@lodderstedt.net

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com

 Andrey Labunets
 Facebook

 Email: isciurus@fb.com

https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231

Lodderstedt, et al. Expires May 16, 2017 [Page 15]

